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Abstract

This work presents a radiomic-based framework for the classification of metastatic versus non-metastatic lung
lesions using multimodal imaging features from PET and CT scans. The proposed pipeline integrates Extreme
Gradient Boosting (XGBoost) with SHapley Additive exPlanations (SHAP) to enhance model interpretability. A
comparative evaluation shows that the fusion of PET and CT radiomics improves classification performance
compared to unimodal analysis. SHAP values provide insights into feature importance, highlighting the com-
plementary roles of structural and metabolic imaging. This Late-Breaking Work addresses key challenges in
explainability, reproducibility, and clinical relevance, contributing toward trustworthy Al in medical imaging.
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1. Introduction

Lung cancer and metastatic pulmonary lesions represent a persistent challenge in clinical oncology.
Accurate and early diagnosis is essential to guide treatment strategies and improve patient survival
[1]. Imaging modalities such as Computed Tomography (CT) and Positron Emission Tomography
(PET) have long been employed for this purpose, offering insights into the structural and functional
properties of lung lesions. However, conventional imaging assessment often relies on subjective visual
interpretation, which may lead to diagnostic variability and uncertainty.

Radiomics has emerged as a promising approach to overcome these limitations by extracting quanti-
tative descriptors from medical images [2]. These features—spanning shape, intensity, and texture—can
capture subtle imaging patterns that may not be visible to the naked eye. When combined with machine
learning (ML), radiomics enables data-driven classification models that support decision-making and
improve diagnostic reproducibility.

A clinically relevant application of radiomics is in the characterization of solitary pulmonary nodules
(SPNs), small rounded lesions (<3 cm) frequently identified in routine imaging [3]. Differentiating
benign from malignant SPNs remains a complex task. Benign nodules often exhibit smooth contours
or calcifications, whereas malignant nodules may present irregular borders and faster growth rates
[4, 5]. Although histological analysis provides definitive diagnosis, it is invasive and not always feasible.
Therefore, non-invasive biomarkers derived from PET and CT images play a critical role in patient
stratification [6].

CT offers high-resolution morphological details such as lesion shape, density, and anatomical con-
text [7]. PET, using fluorodeoxyglucose (FDG), measures glucose metabolism and highlights areas of
increased uptake typically associated with malignancy [8]. While both modalities offer valuable but
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distinct information, PET may produce false positives due to inflammatory uptake, and CT findings can
be non-specific. In this context, the integration of radiomic features extracted from both PET and CT
scans allows for a more comprehensive characterization of lesion properties. Such structural-functional
fusion has shown promise in improving diagnostic accuracy, particularly in oncologic applications [9].

In this work, we present a machine learning-based framework that combines radiomic features
from PET, CT, and PET-CT images to classify lung lesions as metastatic or non-metastatic. We use
eXtreme Gradient Boosting (XGBoost) for its efficiency and strong performance on structured data
[10]. Radiomic features extracted from each imaging modality include intensity metrics (e.g., SUVmin,
SUVmean), shape descriptors, and texture-based features such as those derived from the Gray-Level
Co-occurrence Matrix (GLCM).

A key objective of this study is to address the issue of model interpretability. While ML models
can achieve high accuracy, their clinical adoption is limited if predictions are not explainable. To
this end, we integrate Explainable Artificial Intelligence (XAI) into our workflow, specifically through
SHapley Additive exPlanations (SHAP) [11]. SHAP assigns importance values to each feature based on
its contribution to the model output, offering both global and patient-specific interpretability [12, 13].

The main contributions of this study are:

+ A comparative analysis of radiomic features derived from CT, PET, and their integration through
feature-level fusion.

+ The use of SHAP to identify and visualize the most influential features contributing to lesion
classification.

« A transparent and reproducible pipeline that combines predictive accuracy with clinical inter-
pretability.

By bridging radiomics, machine learning, and explainability, this work contributes to the development
of reliable AI tools for lung cancer diagnosis. The proposed framework supports not only performance
benchmarking across modalities but also delivers insights into feature relevance, reinforcing clinical
trust and interpretability in Al-based imaging solutions.

2. Related Work

Radiomics has emerged as a powerful approach for quantifying imaging biomarkers, with early landmark
studies such as Aerts et al. [14] demonstrating its utility in predicting prognosis in lung cancer using CT-
based features. Subsequent works extended radiomic analysis to PET and PET-CT imaging, highlighting
the potential of metabolic features for tumor characterization [9, 15].

Several studies have explored the predictive power of radiomics in distinguishing benign from malig-
nant lung lesions [16, 17]. However, most models have prioritized performance over interpretability,
limiting their clinical applicability.

Explainable Al techniques, such as SHAP, have recently gained attention in the biomedical domain,
offering insights into feature contributions at both global and local levels. Compared to other XAI
methods like LIME or Grad-CAM, SHAP is particularly well-suited for tabular radiomic data thanks
to its stability, local consistency, and its solid mathematical foundation based on cooperative game
theory [11].

Radiomic features are typically structured, high-dimensional, and exhibit complex correlations,
making SHAP’s local accuracy and ability to model feature interactions particularly valuable for
deriving reliable and clinically meaningful interpretations[18].

While some recent works have applied SHAP to CT or PET-based radiomic classifiers [19], few have
systematically investigated its application to multimodal PET-CT fusion. To the best of our knowledge,
this is among the first studies to combine PET and CT radiomic features with SHAP-based interpretation
for metastatic lung lesion classification, offering a transparent and reproducible pipeline that balances
performance and explainability.



3. Materials and Methods

3.1. Dataset Description

This study employs a publicly available dataset from Kirienko et al. [9], which includes patients who
underwent FDG PET/CT scans for the evaluation of lung lesions between 2011 and 2017. Eligibility
criteria required patients to be over 18 years old and to have a histologically confirmed diagnosis of
either primary or metastatic lung tumors.

Importantly, the dataset is already provided in a structured format containing radiomic features that
were pre-extracted using the LIFEx software package from semiautomatically segmented PET and CT
images [20]. Clinical metadata such as age, sex, and histological subtype were also available. Further
demographic details are reported in the original publication.

3.2. Data Preparation

For this analysis, we selected the 468 patients who underwent both PET and CT imaging. Among them,
105 were diagnosed with metastatic lesions and 363 with non-metastatic lesions. Radiomic features
were extracted from segmented lung lesions using standardized protocols, generating three datasets:

« CT-only: 41 radiomic features.
« PET-only: 43 radiomic features.
« PET+CT: 84 combined features.

3.3. Addressing Class Imbalance

The dataset was affected by a pronounced class imbalance. To mitigate this, we applied random
undersampling of the majority class (non-metastatic), generating balanced subsets of 105 vs. 105
samples. This process was repeated 100 times with different random seeds to ensure coverage and
reduce sampling bias. We also experimented with SMOTE, but it resulted in lower performance and
increased overfitting. Hence, undersampling was adopted for its better generalization performance in
cross-validation [21].

3.4. Machine Learning Approach

Our classification pipeline is outlined in Figure 1. The XGBoost algorithm was chosen after a comparative
evaluation against Random Forest, Support Vector Machines (SVM), and Logistic Regression. Across all
datasets, XGBoost consistently achieved the highest AUROC and F1-score. Furthermore, its compatibility
with SHAP makes it particularly suitable for interpretable radiomic applications [10].

Each model was trained using 10-fold cross-validation, repeated 100 times to ensure robustness.
Evaluation metrics included F1-score, Accuracy, Specificity, Precision, Sensitivity, Area Under the ROC
Curve (AUROC), and Area Under the Precision-Recall Curve (AUPRC).

3.5. Explainable Al with SHAP

To interpret model predictions, we employed SHapley Additive exPlanations (SHAP), a game-theoretic
approach that assigns each feature a contribution score for every prediction [11]. SHAP values were
computed for all models and used to analyze feature importance both globally and locally.

The SHAP value for a feature jin a sample x is defined as:

o= Y =Dl p - fie)) (1)
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This enables the identification of radiomic traits most responsible for distinguishing between
metastatic and non-metastatic lesions, offering actionable insights to clinicians and radiologists.
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Figure 1: Pipeline of the radiomics classification workflow. Due to class imbalance (105 metastatic vs. 363
non-metastatic cases), the dataset was balanced using random undersampling of the majority class. This process
was repeated 100 times to generate multiple balanced subsets, ensuring robustness and reducing sampling bias.
For each subset, a 10-fold cross-validation was performed, and final performance metrics were averaged across
all repetitions.

4. Results

This study evaluated the effectiveness of radiomic features extracted from CT, PET, and the integration
of features from both modalities in classifying metastatic versus non-metastatic lung lesions using the
XGBoost classifier. Results demonstrated that PET-derived features provided higher discriminative
power compared to CT features alone, and the integration of features from both modalities yielded the
best performance.

4.1. Classification Performance

The model was evaluated using a repeated 10-fold cross-validation strategy. Classification metrics,
including Accuracy, F1-score, Precision, Sensitivity, Specificity, AUROC, and AUPRC, were averaged
over 100 repetitions (Table 1). PET-based features achieved the highest standalone performance (AUROC:
0.863+0.053), while combining PET and CT features further improved accuracy and robustness (AUROC:
0.887 + 0.048).

Metric CT PET PET-CT
F1 Score 0.679 + 0.068 | 0.802 + 0.052 | 0.828 + 0.054
Accuracy | 0.674 £ 0.063 | 0.797 £ 0.053 | 0.824 &+ 0.054

Specificity | 0.655 + 0.090 | 0.767 + 0.085 | 0.798 + 0.078
Precision | 0.670 &+ 0.064 | 0.785 + 0.062 | 0.811 % 0.062
Sensitivity | 0.694 £ 0.098 | 0.827 + 0.079 | 0.850 + 0.078

AUROC 0.728 £ 0.067 | 0.863 £ 0.053 | 0.887 + 0.048

AUPRC 0.707 £+ 0.080 | 0.825 £+ 0.076 | 0.865 + 0.067

Table 1

Performance metrics of the XGBoost classifier for each imaging modality, averaged over repeated 10-fold cross-

validation.




4.2. Explainability with SHAP

To provide interpretability to the model’s decisions, SHAP (SHapley Additive exPlanations) analysis
was performed for each imaging modality. SHAP summary plots visualize both the importance of
individual features and the direction of their influence on predictions. In each plot, features are ranked
by their overall contribution to the model’s output. Each dot represents a patient; its color reflects the
actual feature value (red = high, blue = low), and its horizontal position indicates the SHAP value—i.e.,
how much that feature increases (right) or decreases (left) the probability of predicting a metastasis.

Figure 2 presents the SHAP summary plots for the CT, PET, and PET-CT feature integration datasets,
highlighting both modality-specific predictors and complementary features contributing to metastasis
classification.
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Figure 2: SHAP summary plots for the classification of metastatic versus non-metastatic lung lesions using
(a) CT-based, (b) PET-based, and (c) integrated CT-PET radiomic features. Each dot represents a patient. The
x-axis indicates the SHAP value (feature impact), while the color represents the actual feature value (red = high,
blue = low). Features are ordered by their average contribution to the model’s predictions. Positive SHAP values
indicate a shift toward metastasis classification, while negative values support a non-metastatic prediction.

CT-based radiomics features. In the CT dataset, texture and intensity-based features were the
primary contributors. Long Run Emphasis (LRE_GLRLM_CT) and High-Order Energy (EnergyH_CT)



exhibited a negative association with metastasis probability, suggesting that metastatic lesions tend to
be more heterogeneous and have a less uniform intensity distribution. Additionally, shape descriptors
such as Compacity_CT contributed to capturing geometric variability between lesion types.

PET-based radiomics features. Metabolic and texture-related PET features strongly influenced
model predictions. SUVmin_PET emerged as the most influential feature and, interestingly, exhibited
a negative correlation with metastasis, suggesting that some metastatic lesions may present lower
focal uptake. SUVmean_PET and Correlation. GLCM_PET also emerged as key features, highlighting
complex uptake patterns and spatial relationships indicative of malignancy.

Integrated CT-PET features. The integration of PET and CT features enabled complementary
information fusion. SUVmin_PET remained the most influential predictor, reinforcing its discriminative
value. Features such as LZHGE_GLZLM_PET (Large Zone High Gray-Level Emphasis) captured
additional textural complexity in metastatic lesions, while EnergyH_CT contributed morphological
information, confirming the benefit of multimodal radiomic fusion in enhancing model explainability
and performance.

5. Discussion

This study highlights the potential of radiomic features extracted from PET and CT imaging for the
non-invasive classification of lung lesions as metastatic or non-metastatic. PET-derived metabolic
features, such as SUVmin and SUVmean, were among the most discriminative. Interestingly, SUVmin
was negatively correlated with metastasis, suggesting that certain metastatic lesions may exhibit lower
metabolic activity. This finding may reflect underlying biological factors, such as tumor heterogeneity
or microenvironmental effects, and supports previous work emphasizing the complex behavior of
radiomic biomarkers [22].

Texture-based features, particularly those derived from Gray-Level Co-occurrence Matrix (GLCM)
and Gray-Level Zone Length Matrix (GLZLM), also showed strong associations with metastatic status.
Metrics such as Correlation GLCM_PET, Contrast_ GLCM_CT, and LZHGE_GLZLM_PET indicated greater
heterogeneity in metastatic lesions, consistent with prior findings on texture complexity in malignant
tissues [23].

Multimodal integration of PET and CT features significantly improved classification performance
over single-modality models. PET provided insights into metabolic activity, while CT added valuable
information about lesion morphology and signal distribution. The complementary nature of these
modalities reinforces the growing interest in multi-parametric imaging for precision oncology [24].

Importantly, SHAP-based analysis enabled interpretable model outputs, identifying the most influ-
ential features and their direction of impact on classification. This enhances transparency, which is a
critical factor for clinical adoption of Altools [25]. By highlighting feature contributions on a per-sample
basis, SHAP promotes model trustworthiness and facilitates integration into decision-support systems.

Despite these promising results, several limitations should be acknowledged. The dataset, though
carefully curated, is relatively small, which may affect generalizability. Although class imbalance was
addressed via repeated random undersampling, alternative approaches such as class-weighted loss
functions could be considered in future work to further mitigate bias. Moreover, some features that were
predictive in the unimodal CT or PET settings became less relevant when combined, suggesting possible
redundancy or dominance effects in the fused feature space—an aspect that deserves deeper exploration,
potentially with the aid of domain knowledge. Finally, while SHAP provided interpretable insights, its
limitations—particularly in the presence of highly correlated features—should not be overlooked [26].
Alternative or complementary XAl methods, such as counterfactuals or interaction-aware attributions,
may help further refine the interpretability and clinical utility of radiomic models.



6. Conclusions

This work presents a preliminary investigation into the use of radiomic features extracted from PET and
CT imaging for classifying lung lesions as metastatic or non-metastatic. The integration of metabolic
and structural descriptors allowed for a more comprehensive characterization of lesion properties,
offering insights into how tumor biology affects both tissue morphology and metabolic behavior. While
the combination of features did not yield a drastic performance gain over PET alone, it provided a richer
and more interpretable representation of disease traits.

The use of XGBoost, paired with SHAP-based explanations, enabled transparent feature attribution
and highlighted complementary roles of CT and PET-derived metrics. These insights could support a
better understanding of disease patterns and assist clinicians in identifying key imaging phenotypes
associated with metastatic progression.

Although the findings are promising, this study represents an early step toward clinically applicable
radiomic decision support. Future work will explore deep learning models capable of learning complex
feature hierarchies directly from imaging data, as well as more advanced explainability tools. In
particular, the use of SHAP interaction values may reveal synergistic relationships between features,
shedding light on how structural and metabolic traits jointly influence classification.

Validation on external, multi-institutional cohorts will be critical to assess generalizability. Ultimately,
interpretable and biologically informed Al frameworks have the potential to enhance diagnostic accuracy
and support precision oncology workflows in lung cancer care.
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