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Abstract
Deep learning has been successfully applied to medical image segmentation, enabling accurate identification of
regions of interest such as organs and lesions. This approach works effectively across diverse datasets, including
those with single-image contrast, multi-contrast, and multimodal imaging data. To improve human understanding
of these black-box models, there is a growing need for Explainable AI (XAI) techniques for model transparency
and accountability. Previous research has primarily focused on post hoc pixel-level explanations, using methods
gradient-based and perturbation-based approaches. These methods rely on gradients or perturbations to explain
model predictions. However, these pixel-level explanations often struggle with the complexity inherent in multi-
contrast magnetic resonance imaging (MRI) segmentation tasks, and the sparsely distributed explanations have
limited clinical relevance. In this study, we propose using contrast-level Shapley values to explain state-of-the-art
models trained on standard metrics used in brain tumor segmentation. Our results demonstrate that Shapley
analysis provides valuable insights into different models’ behavior used for tumor segmentation. We demonstrated
a bias for U-Net towards over-weighing T1-contrast and FLAIR, while Swin-UNETR provided a cross-contrast
understanding with balanced Shapley distribution.
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1. Introduction

Segmentation is a fundamental task in medical imaging, involving identifying regions of interest (ROIs)
such as organs, lesions, and tissues. By precisely outlining anatomical and pathological structures,
segmentation plays a pivotal role in computer-aided diagnosis, ultimately improving diagnostic precision
[1]. Typically, segmentations task are carried out using multi-contrast MRI or multi-modal imaging
datasets, due to the necessity of identifying unique microstructural features, such as in gliomas [2],
that are only apparent in some MRI contrasts, but not others. Many deep learning models, including
those used for segmentation, are considered black boxes, offering limited interpretability, resulting
in a lack of transparency and accountability [3]. Various Explainable AI (XAI) techniques have been
developed in the literature [4] to tackle this problem, primarily categorized into gradient-based and
perturbation-based methods.

Gradient-based techniques, such as saliency maps [5] and Grad-CAM [6], visualize deep learning pre-
dictions by identifying influential regions in input data, while perturbation-based approaches (Shapley
values [7] and LIME [8]) observe model behavior by systematically perturbing inputs and measuring
impact. These methods have been applied successfully to explain the classification problem, however,
explaining segmentation still presents significant challenges. There is ongoing debate about whether
explanations are necessary for segmentation, as the masks themselves may serve as explanations.
Furthermore, there remains uncertainty regarding which components should be explained—when using
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Clinical practice: 
1) Which image contrast or modality conveys the most information?
2) Which image feature does the model look at?

Clinical benefits: 
1) Which method is more intuitive and comparative?
2) Which result conveys more information?

(1) Cross contrast understanding (Proposed Methods) 

(2) Pixel-level understanding (ex. GradCam)

t1c

t2f

t1n

t2w

t1c t1n t2f t2w

(a) Brain tumor segmentation from multi contrast MRI

t1c t1n t2 t2f GT

(b) 

Figure 1: (a) An example of tumor segmentation from multi-contrast MRI. The decision process is not always
intuitive because the model does not explain which contrast contributes to the decision, as redundant information
can be observed between image contrasts. (b) Our proposed Contrast-level shapley value aims to provide a
cross-contrast level explanation which provides a global understanding of the multi-contrast image segmentation.

gradient-based approaches for models like U-Net, no consensus exists on which layer to target, and
in clinical application, which MRI contrasts to explain. Moreover, pixel-level explanations, typically
represented as discretized heatmap maps, require further interpretation for grouping analysis [9].

Since in clinical practice radiologists detect lesions by analyzing differences between different MRI
contrasts [2], an explainability framework that reveals deep learning model behavior with regards to how
they weigh different MRI contrasts in the segmentation process would be immediately clinically relevant.
Therefore, the main objective of this paper is to establish a framework for explaining the contributions
of different MRI contrasts in the segmentation process with an application in brain tumor segmentation.
This method delivers intuitive quantitative model explanations and enables effective comparisons at
multiple levels: between contrasts within a subject (see Figure 4), and between model architectures for
comprehensive model behavior interpretation (see Section 3). We perform systematic experiments to
explain how the state-of-the-art models such as U-Net and Transformer (Swin-UNETR) weigh different
MRI contrasts with respect to different evaluation metrics such as Dice and HD95. We conduct statistical
analyses to provide an in-depth understanding of how and why different model architectures weigh
MRI contrasts differently, even when they achieve similar segmentation performance. In summary,
our paper, to the best of our knowledge, is the first study to propose a clinically-relevant explanation
framework for brain tumor segmentation in multi-contrast MRI.

2. Methods

2.1. Dataset and Learning Objectives

The training dataset is sourced from the Brain Tumor Segmentation (BraTS) Challenge 2024 GoAT
challenge [10], consisting of 1,351 subjects. For each subject, four MRI contrasts were given: Native
(𝑡1𝑛), Post-contrast T1-weighted (𝑡1𝑐), T2-weighted (𝑡2𝑤), and T2 Fluid Attenuated Inversion Recovery
(𝑡2𝑓 ). The ground truth annotations consist of three disjoint classes: Enhancing tumor (ET), Peritumoral



Table 1
Comparison of Dice Scores and HD95 Metrics for Different Models

Model
Dice Score [-] HD95 [mm]

NCR ET ED Avg NCR ET ED Avg
U-Net 70.33% 81.26% 84.79% 78.79% 6.99 5.10 4.56 5.55
Segresnet 69.88% 80.30% 84.16% 78.11% 7.57 7.46 5.04 6.69
UNETR 69.45% 80.55% 83.95% 77.98% 7.38 6.24 5.22 6.28
Swin-UNETR 69.32% 81.29% 85.25% 78.62% 7.38 5.60 5.21 6.06

edematous tissue (ED), and Necrotic tumor core (NCR). The detailed preprocessing and training pipeline
can be found in our previous research [11, 12].

2.2. Model Architectures and Evaluating Metric

Several state-of-the-art model architectures are tested in this study, including U-Net [13], Seg-Resnet
[14], UNETR [15], and Swin-UNETR [16]. To evaluate the segmentation quality, we used common
metrics, including the Dice coefficient and the 95th percentile Hausdorff distance (HD95).

2.3. Contrast Level Shapley Value

Given a training dataset comprised of the pairs {(𝐼, 𝑥0)}𝑖=1, where 𝐼 ∈ R4×𝐷×𝑊×𝐻 represents the
four 3D-MRI contrast as a multi-channel input, 𝑥0 ∈ R3×𝐷×𝑊×𝐻 represents the associated one-hot
encoded segmentation mask, with 3 tumor labels: ED, NCR, and ET as described in Section 2.1. The
deep learning models (𝜔) were trained to predict the tumor labels 𝑥̂0 given the input 𝐼 :

𝑥̂0 = 𝜔(𝐼). (1)

Derived from the Shapley value [7]. The Contrast level Shapley value 𝜑𝑖(M ) was then evaluated
with respect to each specific metric (M) by:

𝜑𝑖(M ) =
∑︁

𝑆⊆𝑁∖{𝑖}

|𝑆|!(|𝑁 | − |𝑆| − 1)!

|𝑁 |!
(M (𝑆 ∪ {𝑖})−M (𝑆)) (2)

where 𝑁 is the set of all of MRI contrasts; |𝑁 | is the total number of contrasts; 𝑆 is a subset of MRI
contrasts excluding certain contrast 𝑖 (𝑆 ⊆ 𝑁 ∖ {𝑖}) and |𝑆| is the number of contrasts in 𝑆; M (𝑆) is
the target metric evaluated on the subset 𝑆.

The contrast-level Shapley values are examined to assess whether observed differences(group means
and variances) across folds or between models are statistically significant. Test for equal variance:
Levene’s test is applied to assess homogeneity of variance even when the normality assumption cannot
be guaranteed. Test for equal mean: If the normality assumption cannot be guaranteed, the Kruskal-
Wallis test is used instead of ANOVA, and Dunn’s test is applied for post-hoc analysis instead of Tukey’s
test. Confidence interval of the difference: If a significant difference in means is observed, we
further generate the confidence interval of the mean difference between groups when the normality
assumption is not violated.

3. Experiments and Results

Table 1 presents a comparative analysis of model performance. The results demonstrate that all models
achieve similar performance in terms of Dice scores and HD95 across all three labels, with U-Net
marginally outperforming transformer-based models (Swin-UNETR and UNETR) and the Segresnet
model.



Next, contrast-level Shapley values for each metric, averaged over three labels, are com-
puted using four model architectures across five data folds. We define the matrix of contrast-
level Shapley values for each combination of metric 𝑀 ∈ {Dice, HD95}, model 𝜔 ∈
{U-Net, SegResNet, UNETR, Swin-UNETR}, and fold 𝑓 = 1, . . . , 5 as:

Φ𝜔,𝑓 (𝑀) =

⎛⎜⎜⎜⎜⎝
𝜑𝜔,𝑓
𝑡1𝑛,1(𝑀) 𝜑𝜔,𝑓

𝑡1𝑛,2(𝑀) · · · 𝜑𝜔,𝑓
𝑡1𝑛,𝐽𝑓

(𝑀)

𝜑𝜔,𝑓
𝑡1𝑐,1(𝑀) 𝜑𝜔,𝑓

𝑡1𝑐,2(𝑀) · · · 𝜑𝜔,𝑓
𝑡1𝑐,𝐽𝑓

(𝑀)

𝜑𝜔,𝑓
𝑡2𝑤,1(𝑀) 𝜑𝜔,𝑓

𝑡2𝑤,2(𝑀) · · · 𝜑𝜔,𝑓
𝑡2𝑤,𝐽𝑓

(𝑀)

𝜑𝜔,𝑓
𝑡2𝑓,1(𝑀) 𝜑𝜔,𝑓

𝑡2𝑓,2(𝑀) · · · 𝜑𝜔,𝑓
𝑡2𝑓,𝐽𝑓

(𝑀)

⎞⎟⎟⎟⎟⎠ ,Φ𝜔,𝑓 (𝑀) ∈ R4,𝐽𝑓 , (3)

where 𝜑𝜔,𝑓
𝑖,𝑗 (𝑀) represents the Shapley value for the 𝑗-th subject in fold 𝑓 , given contrast 𝑖, model 𝜔,

and metric 𝑀 . We use 𝐽𝑓 to denote the total number of subjects in fold 𝑓 .
For a given combination (𝑀,𝜔, 𝑓), the contrast-wise vector C𝜔,𝑓

𝑖 (𝑀) (𝑖 ∈ {t1n, t1c, t2w, t2f}) and
subject-wise vector S𝜔,𝑓

𝑗 (𝑀) (𝑗 = 1, . . . , 𝐽𝑓 ) are defined as follows:

C𝜔,𝑓
𝑖 (𝑀) = Φ𝜔,𝑓

𝑖,· (𝑀) =
(︁
𝜑𝜔,𝑓
𝑖,1 (𝑀), 𝜑𝜔,𝑓

𝑖,2 (𝑀), · · · , 𝜑𝜔,𝑓
𝑖,𝐽𝑓

(𝑀)
)︁
,C𝜔,𝑓

𝑖 (𝑀) ∈ R𝐽𝑓

S𝜔,𝑓
𝑗 (𝑀) = Φ𝜔,𝑓

·,𝑗 (𝑀) =
(︁
𝜑𝜔,𝑓
𝑡1𝑛,𝑗(𝑀), 𝜑𝜔,𝑓

𝑡1𝑐,𝑗(𝑀), 𝜑𝜔,𝑓
𝑡2𝑤,𝑗(𝑀), 𝜑𝜔,𝑓

𝑡2𝑓,𝑗(𝑀)
)︁𝑇

,S𝜔,𝑓
𝑗 (𝑀) ∈ R4

(4)

In this study, we utilized four NVIDIA A40 GPUs to train our deep learning model and calculate the
Shapley value. The evaluation time for each fold and model is approximately 1–2 minutes per subject.

3.1. Shapley-based prediction insights: a clustering analysis

To analyze how segmentation performance overlaps with model weighting of MRI contrasts via contrast-
level Shapley values, we applied k-means clustering. For each model-metric pair (𝑀,𝜔), clustering
was performed on the S𝜔,𝑓

𝑗 (𝑀) across five folds, i.e., ∪5
𝑓=1 ∪

𝐽𝑓
𝑗=1 {S

𝜔,𝑓
𝑗 (𝑀)}.

We then use UMAP to visualize the clusters of Shapley value embeddings. Figure 2 illustrates
an example with a significant pattern. For U-Net and Swin-UNETR, Shapley embedding clusters
differentiate subjects with higher Dice scores from those with lower Dice scores.

(a) UNETR (b) SEGRES

Figure 2: Clustering results on (a) ∪5
𝑓=1 ∪𝐽𝑓

𝑗=1 {SUnet,𝑓
𝑗 (Dice)} and (b) ∪5

𝑓=1 ∪𝐽𝑓

𝑗=1 {SSwin-UNETR,𝑓
𝑗 (Dice)} are visualized

using UMAP for dimensionality reduction. The color represents the Dice score; the size of the dot is used to
differentiate between cluster labels.

3.2. Shapley-based model prediction consistency: a comparative analysis

3.2.1. Does each model learn consistent explanations?

To assess the consistency of explanations across folds for each model, we analyzed the distribution of
C𝜔,𝑓

𝑖 (𝑀). The group standard deviation 𝜎 and mean 𝜇 are key factors for determining distribution



Table 2
Post-hoc tests reveal the pairs of folds where no statistical difference exists.

𝐻0(𝜇|Dice, t1c, SU, (1,5)) 𝐻0(𝜇|Dice, t1c, SU, (2,3)) 𝐻0(𝜇|Dice, t1c, SU, (2,4)) 𝐻0(𝜇|Dice, t1c, SU, (4,5)) All other tests
𝑝 = 0.0385 𝑝 = 0.0442 𝑝 = 0.0687 𝑝 = 0.0107 𝑝 < 0.01

*Note that, we abbreviate Swin-UNETR as SU in this table.

similarity, and statistical tests were applied to these metrics:

𝐻0(𝜎|𝑀, 𝑖, 𝜔) : 𝜎(C𝜔,1
𝑖 (𝑀)) = 𝜎(C𝜔,2

𝑖 (𝑀)) = 𝜎(C𝜔,3
𝑖 (𝑀)) = 𝜎(C𝜔,4

𝑖 (𝑀)) = 𝜎(C𝜔,5
𝑖 (𝑀)),

𝐻0(𝜇|𝑀, 𝑖, 𝜔) : 𝜇(C𝜔,1
𝑖 (𝑀)) = 𝜇(C𝜔,2

𝑖 (𝑀)) = 𝜇(C𝜔,3
𝑖 (𝑀)) = 𝜇(C𝜔,4

𝑖 (𝑀)) = 𝜇(C𝜔,5
𝑖 (𝑀)).

(5)

If significant differences in mean or standard deviation are found, we conclude that inconsistent
explanations are present across folds for a given pair of (𝑀, 𝑖, 𝜔).

Since the normality assumption for the Shapley value distribution C𝜔,𝑓
𝑖 (𝑀) could not be guaranteed

for some contrasts 𝑖, as indicated by the normality tests and non-zero skewness (Figure 3), Levene’s
test, Kruskal-Wallis, and Dunn’s post-hoc tests were applied.

For all combinations of (𝑀, 𝑖, 𝜔), we get 𝑝 < 0.01 in all 32 Levene’s tests, rejecting 𝐻0(𝜎|𝑀, 𝑖, 𝜔) and
indicating unequal variances across the five folds. Similarly, all 32 Kruskal-Wallis tests yield 𝑝 < 0.01,
rejecting 𝐻0(𝜇|𝑀, 𝑖, 𝜔) and suggesting unequal means. These results invalidate the assumption that
“Model 𝜔 learns consistent explanations across all five folds using contrast 𝑖 for metric 𝑀 evaluation,"
indicating significant differences in variance and means for at least one fold pair of each (𝑀, 𝑖, 𝜔)
combination.

Post-hoc tests are conducted to evaluate which pairs (𝑓𝑗 , 𝑓 ′
𝑗) show consistency explanation with the

following null hypothesis:

𝐻0(𝜇|𝑀, 𝑖, 𝜔, (𝑓𝑗 , 𝑓𝑗′)) : 𝜇(C
𝜔,𝑓𝑗
𝑖 (𝑀)) = 𝜇(C

𝜔,𝑓𝑗′
𝑖 (𝑀)), 𝑓𝑗 , 𝑓𝑗′ ∈ {1, 2, · · · , 5}; 𝑓𝑗 ̸= 𝑓𝑗′ . (6)

Dunn’s post-hoc tests reveal no significant differences in the 𝑡1𝑐 explanation between fold pairs 1 & 5, 2 &
3, 2 & 4, and 4 & 5 for Swin-UNETR, while significant differences exist in all other tests (Table 3). For exam-
ple, in Table 3, 𝑝 = 0.038 in the 1st column, the null hypothesis 𝜇(CSwin-UNETR,1

𝑡1𝑐 (𝐷𝑖𝑐𝑒)) = 𝜇(CSwin-UNETR,5
𝑡1𝑐 (𝐷𝑖𝑐𝑒))

is not rejected, indicating “Swin-UNETR learns consistent 𝑡1𝑐 contrast-level explanations between the
1st and 5th folds."

(a) U-net (b) Swin-UNETR

Figure 3: The contrast-level Shapley values for all folds are computed based on the Dice score in each model.
Panels (a) and (b) display the case of UNet and Swin-UNETR models, respectively.

3.2.2. Do different models learn consistent explanations?

We first visualize the contrast-level Shapley value across all five folds for U-net, CU-net,𝑓
𝑖 (Dice), and

Swin-UNETR, CSwin-UNETR,𝑓
𝑖 (Dice), using violin plot in Figure 3. We could observe that 𝑡1𝑐 and 𝑡2𝑓



Table 3
Confidence Interval for Model Difference. The results indicate that Swin-UNETR exhibits significantly higher
𝑡1𝑛 Shapley values compared to all other models for the Dice score at a 95% confidence level.

𝑓 = 1 𝑓 = 2 𝑓 = 3 𝑓 = 4 𝑓 = 5

𝐶𝐼0.95(𝜇(C
(SU, U),𝑓
𝑡1𝑛 (Dice))) [0.11,0.12] [0.02,0.03] [0.14,0.15] [0.09,0.10] [0.15,0.16]

𝐶𝐼0.95(𝜇(C
(SU, S),𝑓
𝑡1𝑛 (Dice))) [0.05,0.06] [0.09,0.11] [0.06,0.07] [0.01,0.02] [0.07,0.08]

𝐶𝐼0.95(𝜇(C
(SU, UR),𝑓
𝑡1𝑛 (Dice))) [0.06,0.07] [0.00,0.01] [0.16,0.17] [0.03,0.06] [0.11,0.12]

*Note that, we abbreviate Swin-UNETR as SU, U-Net as U, SegResNet as S, and UNETR as UR in this table.

are the most important image contrasts with the highest contrast-level Shapley value, this finding is
consistent with the clinical explanation where 𝑡2𝑓 suppresses cerebrospinal fluid signal, making edema
and infiltration more visible, while 𝑡1𝑐 provides clear delineation of enhancing tumor (see section 2.1).
We can also observe from this figure that Swin-UNETR weights 𝑡1𝑛 significantly higher than U-Net.

To further investigate how model explanations are different within folds, we follow the procedure
from Section 3.2.1, with the key difference being that we compare results across multiple models while
fixing the fold, unlike the previous tests where the models were fixed:

𝐻0(𝜎|𝑀, 𝑖, 𝑓) : 𝜎(CU-Net,𝑓
𝑖 (𝑀)) = 𝜎(CSegresnet,𝑓

𝑖 (𝑀)) = 𝜎(CUNETR,𝑓
𝑖 (𝑀)) = 𝜎(CSwin-UNETR,𝑓

𝑖 (𝑀)),

𝐻0(𝜇|𝑀, 𝑖, 𝑓) : 𝜇(CU-Net,𝑓
𝑖 (𝑀)) = 𝜇(CSegresnet,𝑓

𝑖 (𝑀)) = 𝜇(CUNETR,𝑓
𝑖 (𝑀)) = 𝜇(CSwin-UNETR,𝑓

𝑖 (𝑀)).
(7)

For all combinations of (𝑀, 𝑖, 𝑓 ), the assumption that “Within each fold 𝑓 , all models learned consistent
explanations when using contrast 𝑖 for metric 𝑀 " is invalid [Levene’s test (𝑝 < 0.01), Kruskal-Wallis
test (𝑝 < 0.01) for all tests]. However, the post-hoc tests do not reveal generalizable patterns across the
models similar to the conclusion we presented in Table 3. To highlight performance differences, we
provide the confidence intervals.

Since the distributions of Shapley values are independent across models, and for each input 𝑗, the
differences between Shapley values, 𝜑𝜔,𝑓

𝑖,𝑗 (𝑀)−𝜑𝜔′,𝑓
𝑖,𝑗 (𝑀) (𝜔 ̸= 𝜔′), passed the normality test, we further

assess the difference between models by evaluating the confidence interval𝐶𝐼𝛼(𝜇(C
(𝜔,𝜔′),𝑓
𝑖 (𝑀))) given

a desired level 𝛼, where we define:

C
(𝜔,𝜔′),𝑓
𝑖 (𝑀) =

(︁
𝜑𝜔,𝑓
𝑖,1 (𝑀)− 𝜑𝜔′,𝑓

𝑖,1 (𝑀), · · · , 𝜑𝜔,𝑓
𝑖,𝐽𝑓

(𝑀)− 𝜑𝜔′,𝑓
𝑖,𝐽𝑓

(𝑀)
)︁𝑇

, (8)

with 𝐽𝑓 denoting the total number of subjects in fold 𝑓 from Definition (3).
Here, we focus on the model difference in t1n, to test the hypothesis that Swin-UNETR has a higher

contrast shapley value compared to other models, indicating a more balanced shapley value distribution
and less basis toward t1c and t2f. The confidence intervals for the mean difference in Shapley values
(Swin-UNETR minus the other models) indicate a significant positive difference at a confidence level
of 0.95, suggesting that Swin-UNETR places more attention on the 𝑡1𝑛 contrast (Figure 3).

To understand how transformer-based models differ from convolutional neural networks, we analyze
cases where the Swin-UNETR model achieves a Dice score at least 20% higher than U-Net and vice
versa. Specifically, we examine cases where the Swin-UNETR model achieves a Dice score 25% higher
than U-Net (Figure 4), and U-Net achieves a Dice score 23% higher than Swin-UNETR (Figure 4).
This comparison highlights the advantages and limitations of each architecture in medical image
segmentation tasks.

4. Discussion

In this study, we systematically investigated the Shapley value for model explanation in multi-contrast
medical image segmentation. Our proposed contrast-level Shapley explainability framework has three
key contributions: (1) It is the first study to use Shapley analysis to explain multi-contrast medical
image segmentation; (2) It is the first paper to analyze how different network structures weigh various
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Figure 4: Case comparison where Swin-UNETR outperforms U-Net. For the first four columns, from top to
bottom, display: Ground truth, U-Net predictions, and Swin-UNETR predictions. For the last four columns, from
top to bottom, display: input images, model explanations for U-Net (explanation (a) and (b)), and Swin-UNETR
predictions (explanation (a) and (b)), where (a) shows GradCAM explanation for each contrast and (b) presents
the proposed constrast-level Shapley values.

MRI contrasts when making segmentation decisions; (3) It enhances clinical relevance by providing
deeper insights into model performance with aggregate contributions of each MRI contrast in the tumor
segmentation process, which is inherently interpretable by neuroradiologists, as they detect lesions by
analyzing differences between different MRI contrasts in clinical practice.

Specifically, the contrast-level Shapley value reveals the (in)consistency of each model’s explanations.
The statistics indicate that Swin-UNETR is the most robust among all tested architectures. Despite
being trained on different folds, Swin-UNETR consistently learns invariant representations across data
subsets, whereas other models show variations in their explanations across folds (Table 1).

Moreover, the contrast-level Shapley value provides insights on the differences among model ar-
chitectures. As shown in Figure 3, the model explanations indicate that U-Net exhibits a bias toward
features from 𝑡1𝑐 and 𝑡2𝑓 , while Swin-UNETR distributes its explanations more evenly across contrasts.
This was further confirmed by comparing 𝑡1𝑛 Shapley values across different models, which revealed
statistically higher Shapley values for Swin-UNETR (Table 3).

We also present a case in Figure 4 to demonstrate how explanations of different models could provide
key insights into model failure. As discussed before, the training data includes 3 different tumor subtypes
(see section 2.1). The innermost component of the tumor (shown in red in Figure 4) is necrotic tissue in
glioblastoma and meningioma, however, in metastasis, the definition of the innermost component is
any tumor component that is not enhancing (but not necrotic). This implies that in 𝑡2𝑓 images, the
necrotic core will appear dark but non-enhancing metastatic tumor core and edema will appear bright.

Due to its dependence on contrasts with the highest intensity differences, namely 𝑡1𝑐 and 𝑡2𝑓 , the
U-Net architecture fails to accurately capture the innermost component (NCR). This suggests a potential
bias towards 𝑡1𝑐 and 𝑡2𝑓 , as indicated by the distribution of 𝐶𝜔,𝑓

𝑡1𝑐 (Dice) and 𝐶𝜔,𝑓
𝑡2𝑓 (Dice) exhibiting a

significantly higher central tendency compared to 𝐶𝜔,𝑓
𝑡1𝑛 (Dice) and 𝐶𝜔,𝑓

𝑡2𝑤(Dice) across all folds 𝑓 and
models 𝜔 ∈ {UNET, Seg-Resnet, UNETR, Swin-UNETR }, as shown in Figure 2 and supported by
statistical tests in Section 3.2. This bias may contribute to confusion with edema prediction, causing
over-prediction relying on 𝑡2𝑓 (edema appears bright as shown in Figure 4). However, swin-UNETR
effectively learns both local and global relationships within different contrasts through its self-attention
mechanism, and was able to more accurately localize the tumor core in this challenging case.

Finally, for this case, we provide a comparison between GradCAM and our proposed contrast-level
Shapley. As seen in Figure 4, pixel-level explanations provided by GradCAM on each MRI contrast show
model differences in terms of using pixel-level features. The heatmap of Swin-UNETR is more smooth
while the heatmap of U-Net highlights only a few regions, but both of the explanations fail to capture
clinically relevant explanations regarding contrast-level importance. For example, in Swin-UNETR,
GradCAM exhibits a higher attention to 𝑡1𝑐 compared to 𝑡2𝑓 . However, Contrast Shapley reveals that
t1c negatively impacts the final Dice score, with a lower impact magnitude compared to 𝑡2𝑓 .



5. Conclusion

In this study, we propose Contrast Shapley for multi-contrast glioma segmentation. This method
provides a quantitative framework for model explanation, offering insights into the fundamental
characteristics of different deep learning architectures.
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