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Abstract
Deep learning models are undeniably powerful but often criticised for their “black-box” nature. Proto-
typical Part Networks (ProtoPNets) address this by providing local, prototype-based explanations for
individual predictions. However, while local insights are useful, they fail to capture the model’s overall
behaviour, a critical shortcoming when domain experts need to diagnose, validate and refine complex
models. In this paper we propose a method that converts ProtoPNet activations into human-readable,
prototype-based rules using a RIPPER-style induction algorithm. This rule-driven perspective not only
elucidates the model’s global decision-making process but also offers actionable insights for model
debugging and enhancement.
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1. Introduction

Deep learning models achieve high accuracy but often lack transparency, limiting trust in
critical applications [20, 19]. Methods like the Prototypical Part Network (ProtoPNet) [1] have
been developed to address this. ProtoPNet augments a CNN with a prototype layer that learns
representative image patches; during inference the prediction made for an image is explained
by showing a user the patches that most strongly influence the prediction—–a process inspired
by prototype theory [26, 11, 12]. While such local explanations offer intuitive, example-based
insights, they do not capture the model’s global decision process. Global interpretability is
essential for understanding model behavior, troubleshooting errors, and refining models, as
seen in fields like medical imaging.

In our work, we convert ProtoPNet’s local explanations into global, rule-based ones using an
adapted RIPPER rule induction algorithm [3], inspired by frameworks such as AIMEE [2]. This
approach maps prototype contributions into if-then rules, yielding a human-readable summary
of the model’s decision-making. We validate our method on the Caltech bird dataset [25] by
comparing the rule-based algorithm’s adherence, accuracy, and complexity to the original
model, addressing challenges like the trade-off between adherence and interpretability and
prototype-feature alignment [1, 11, 12, 14].
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2. Related Work

Prototype-based neural networks have emerged as a promising approach to enhance inter-
pretability in deep learning. ProtoPNet [1] augments CNNs with a prototype layer that learns
representative image patches, providing case-based explanations inspired by prototype the-
ory [26]. Subsequent work has addressed challenges such as redundancy and scalability through
methods like prototype merging [16] and decision-tree variants [10]. Alternative interpretability
approaches include post-hoc attribution methods (e.g., LIME [24], SHAP [23]) and concept
bottleneck models. Despite these advances, achieving a coherent global explanation of model be-
havior remains challenging. Our work builds on these foundations by transforming ProtoPNet’s
local explanations into global, rule-based insights via a RIPPER-style induction algorithm.

3. Generating Global Explanations

Our goal is to move from instance-level prototype explanations to a global, rule-based represen-
tation of model behavior. We combine a CNN backbone (e.g., ResNet [4]) with ProtoPNet [1] to
obtain local interpretability, and then convert the resulting prototype activations into a set of
human-readable if-then rules using a RIPPER-style induction algorithm [3]. This section details
the process of extracting prototype activations, converting them into binary presence-absence
features via a hard gating mechanism, and inducing global rules.

3.1. Extracting Prototype Activations

ProtoPNet augments a CNN with a prototype layer that learns representative image patches.
The process involves:

1. Feature Extraction: An input image 𝑥 is passed through the convolutional layers in
the CNN backbone. Each convolutional filter extracts local features, and as the image
propagates through the network, these features are spatially organized into a feature
map—a multi-dimensional array where each element corresponds to a small, localized
region (or ”patch”) of the original image.

2. Prototype Comparison: Each patch is compared to a set of learned prototypes using a
similarity metric (typically the negative squared Euclidean distance).

3. Activation Scoring: A max-pooling operation aggregates the similarity scores for each
prototype 𝑝𝑗 :

𝑎(𝑝𝑗 , 𝑥) = max
𝑧∈𝑓(𝑥)

sim(𝑧, 𝑝𝑗),

where 𝑓(𝑥) denotes the feature map and sim(𝑧, 𝑝𝑗) the similarity between patch 𝑧 and
prototype 𝑝𝑗 . This score is then weighted by a non-negative coefficient via a ReLU
activation:

𝑠(𝑝𝑗 , 𝑥) = 𝑎(𝑝𝑗 , 𝑥)× ReLU(𝑤(𝑝𝑗)).

The resulting prototype-activation profile highlights the image regions that most influence the
classification.



3.2. Binary Feature Creation via Hard Gating Method

To induce interpretable rules, we convert the continuous activation scores 𝑠(𝑝𝑗 , 𝑥) into binary
presence-absence indicators using a hard gating mechanism. This approach discretizes the
activations while retaining a differentiable approximation during training. The process involves
three key steps:

1. Noise Injection: To simulate stochastic sampling and encourage exploration of binary
states, we add Gumbel noise to the activation score:

𝑦(𝑝𝑗 , 𝑥) = 𝑠(𝑝𝑗 , 𝑥) +𝐺(𝑝𝑗 , 𝑥),

where the Gumbel noise is generated as

𝐺(𝑝𝑗 , 𝑥) = − log
(︀
− log(𝑈(𝑝𝑗 , 𝑥))

)︀
with 𝑈(𝑝𝑗 , 𝑥) ∼ Uniform(0, 1).

This transformation converts uniformly distributed random values into noise that ef-
fectively approximates the extreme value distribution, which is useful for modeling the
binary decision process.

2. Soft Gating: The noisy score 𝑦(𝑝𝑗 , 𝑥) is then passed through a temperature-scaled
sigmoid function to obtain a soft probability:

𝜋(𝑝𝑗 , 𝑥) = 𝜎

(︂
𝑦(𝑝𝑗 , 𝑥)

𝑇

)︂
.

The temperature parameter 𝑇 controls the sharpness of the sigmoid output: a lower 𝑇
results in a steeper function, closely approximating a hard threshold, while a higher 𝑇
produces a smoother transition. This soft gating step maintains differentiability, which is
critical for gradient-based optimization during training.

3. Thresholding: Finally, the soft probability 𝜋(𝑝𝑗 , 𝑥) is converted into a binary decision
using a threshold of 0.5:

presence(𝑝𝑗 , 𝑥) =

{︃
1, 𝜋(𝑝𝑗 , 𝑥) ≥ 0.5,

0, otherwise.

This discretization yields a clear binary indicator of whether prototype 𝑝𝑗 is considered
active in the image 𝑥. The resulting binary presence-absence matrix is then used as input
for the RIPPER-style rule induction algorithm.

Overall, this hard gating method effectively captures uncertainty in the activation signals
while providing a differentiable pathway for training and a clear binary representation for
downstream rule extraction.

3.3. Adapted RIPPER Rule Induction

After converting each image’s continuous prototype activations into binary indicators, we train a
RIPPER-style rule learner [3] to form a global, logical view of prototype-based classifications. In



standard RIPPER, a one-vs-all approach iteratively adds or removes conditions (e.g., “Prototype
𝑖 is present”) to maximize target class coverage while minimizing misclassifications, followed
by pruning to avoid overfitting.

Our implementation extends RIPPER to better accommodate prototype-based features by:

1. Cross-Class Penalty: Adding a term in the First Order Inductive Learner (FOIL) [6] gain
calculation to penalize conditions referencing non-target prototypes.

2. Merging Redundant Single-Literal Rules: Combining multiple single-literal rules
for the same class into a single rule with an AND clause to reduce redundancy while
preserving coverage and accuracy.

3. Top- N Prototype-Based Fallbacks: Constructing minimal fallback rules using the top-
N frequently activated prototypes when a class remains uncovered.

4. Adaptive Rule Growth and Pruning: Iteratively growing rules by adding conditions
that maximize modified FOIL gain, then pruning using a hold-out set and removing a
fraction of positive examples to prevent redundancy.

This adapted RIPPER method yields a global set of rules consistent with ProtoPNet’s decisions,
providing a structured framework to analyze the model’s internal logic.

4. Experiment Design

This section describes the design of an experiment performed to evaluate the approach to
generate global explanations for ProtoPNet models described in Section 3. The evaluation uses
10 randomly selected classes from the Caltech Bird Dataset [25].300 images from these classes
were randomly for training the ProtoPNet an this set was expanded to 1794 augmented images
(using random flips, skewing, and other perturbations) to enhance robustness.

For binarized feature extraction, 280 test images spanning the 10 classes were sampled from
the original dataset. Seventy percent of these images were used for training and cross-validating
the RIPPER rule induction model, with the remaining 30% reserved for testing the ability of the
rule-based representation to replicate ProtoPNet’s behavior.

To further ensure the reliability of our rule induction process, we performed dynamic hyper-
parameter tuning using the Optuna framework [27] in conjunction with 5-fold cross validation.
Rather than setting rule induction hyperparameters (e.g., max_conditions, min_coverage,
prune_size, etc.) arbitrarily, Optuna systematically explores the search space of possible
values—leveraging TPE (Tree-structured Parzen Estimator) [28] to converge toward optimal
configurations.

We assessed the quality of the generated explanations with three metrics:

• Adherence: The percentage of cases where the RIPPER model’s predictions agree with
ProtoPNet on a hold-out test set.

• Accuracy: The RIPPERmodel’s prediction accuracy compared to ground truth labels and
ProtoPNet’s performance.

• Complexity: Measured by the total number of extracted rules and the average number
of conditions per rule.



These metrics were computed both overall and per class. ProtoPNet achieved a baseline
accuracy of 85.13% on the test set. Our evaluation focuses on whether the extracted rules
faithfully capture ProtoPNet’s internal reasoning while remaining interpretable for end users.

5. Results

Figure 1 shows examples of three separate rules extracted from the trained ProtoPNet using the
our approach. These rules offer a global explanation of how the model identifies classes based
on the presence or absence of specific prototypes. The accompanying miniature images depict
the actual prototype patches learned by ProtoPNet, illustrating the visual features associated
with each prototype.

By requiring certain prototypes to be present or absent, each rule provides insight into the
decision-making process. For example, one rule states:

IF Contains Prototype 78 AND Contains Prototype 77 AND NOT Contains Proto-
type 22 THEN class=7

This particular rule highlights the significance of certain plumage patterns (Prototypes 78
and 77), while simultaneously indicating the absence of another plumage patterns (Prototype 22)
for predicting the Black Billed Cuckoo. Collectively, the three rules in the figure illustrate
how a RIPPER-style surrogate can provide multiple, human-readable explanations for what a
ProtoPNet model has learned.

To assess the quality of these global explanations, we evaluated their adherence and accuracy
(see Section 4). Our approach achieved an adherence of 70.37% and a rule-based accuracy of
71.60%. Additionally, the method produced a total of 71 rules with an average of 2.42 conditions
per rule. These metrics demonstrate that this is a promising approach to effectively captures
key decision cues while maintaining interpretability. Overall, by integrating both the presence
and absence of prototypes, the approach extracts a comprehensive yet concise set of rules that
elucidate the model’s learned knowledge, thereby offering the potential to streamline analysis
and enhance human interpretability.

6. Conclusion

This paper describes an approach to bridge the gap between local, prototype-based explanations
and a global, rule-based perspective. By moving beyond single-image explanations, it reveals
common patterns that a model has learned, offering a high-level, comprehensible map of how
prototypes shape model decisions.

Future work will compare this strategy to established approaches such as decision trees and
concept bottleneck models, in order to further contextualize its performance and scalability.
Additionally, we plan to extend our evaluation framework by incorporating alignment with
domain expert knowledge, analyzing coverage and specificity, validating generalizability on
new or perturbed data, and conducting user studies to assess interpretability. We will also
investifgate modifications to the approach including different gating mechanisms, different rule
extraction algorithms, and the integration of human feedback into the rule building process.



Figure 1: Example of the rules extracted from a trained ProtoPNet model to provide a global explanation
of what it has learned. Each rule defines how the presence or absence of certain prototypes indicates
class membership.
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