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Abstract
The interpretability of machine learning (ML) models is critical in medical applications, particularly in diagnosing
and classifying oral lesions. Traditional saliency maps highlight relevant features for classification, but typically
focus on a single predicted class. However, this approach can lead to inconsistencies, misinterpretations, and
an overwhelming number of comparisons in multi-class classification tasks. In this paper, we introduce a novel
multi-class saliency map that integrates feature importance across all possible classifications, accounting for class
assignment probabilities to enhance explainability. As an early demonstration of its performance, we report the
results obtained with a dataset of 224 oral lesion images labeled by medical experts. Using deep learning models
based on Vision Transformers (BEiT) and interpretability techniques such as LIME, we construct a unified saliency
representation that highlights discriminative features across all classes and effectively eliminates misleading areas
while emphasizing truly relevant regions for classification. These early results demonstrate improved clarity in
feature attribution, supporting more reliable and interpretable AI-driven diagnostics in oral healthcare.
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1. Introduction

The interpretability of machine-learning (ML) models is a must-have property nowadays, especially
in application contexts where the results of such models have to be communicated to the general
audience. Interpretability refers to the ability to understand and explain how a model makes decisions,
which is often achieved by highlighting the features that have contributed most to that decision. This
has become particularly critical with the advent of complex (hence, less transparent) computational
structures like transformers [1]. Also, interpretability is going to become a distinctive feature that may
have a commercial value [2]. A well-developed tool for interpretability is represented by saliency maps,
which assign importance scores to pixels (in images) or features (in structured data) based on their
contribution to the final output [3]. However, saliency maps are traditionally provided for a single class,
typically the most likely class, i.e., the one that is assigned by the classifier to the instance at hand. For
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example, in a dog vs. cat classifier, if the model predicts dog, the saliency map will highlight the features
that contributed to the dog class. Examples of this approach are [4] and [5]. Some methods generate a
separate saliency map for each possible class to help understand which parts of the image contribute
to different class scores. In the simple example just mentioned, such an approach would generate one
map showing features contributing to dog and another map showing features contributing to cat. An
example of such an approach is the paper by Shimoda [6].

However, such an approach has significant shortcomings. First, it does not provide a comprehensive
view of the relevance of features. Some features may be relevant for one class but not for another,
showing a lack of consistency. Simple logical operations cannot remedy this shortcoming. For example,
taking the OR of the features deemed as relevant across the classes (i.e., simply listing the features that
are relevant for at least one class) could end up obtaining the whole set of features. Hence, our analysis
would not hold discriminative power. On the other hand, taking the AND of the features deemed relevant
across the classes (i.e., considering just the features that are relevant for all the classes) could return an
empty set. If we stick to the separate approach, we are then required to carry out multiple comparisons
across class-specific maps, with the number of comparisons to be carried out growing as the square of
the number of classes. This number would soon swamp our human capability to carry out comparisons.
Also, individual class-wise saliency maps might falsely suggest that features not highlighted for a
specific class are unimportant, making the whole procedure less robust to misinterpretation. We are
then in strong need of an overall map to ensure that all critical regions are accounted for.

In this paper, we tackle that issue by proposing a multi-class saliency map that exploits an
explainability-based approach to account for all the single-class saliency maps. This multi-class saliency
map also accounts for the different relevance of output classes through their assignment probability.
We test our proposal by applying it to a dataset made of real pictures of oral lesions, labelled by a team
of medical experts. The dataset has been collected specifically for this purpose. We show that our
multi-class approach allows us to correctly identify the most relevant areas in the picture while ruling
out some patently non-relevant areas that appeared instead as relevant in some single-class maps.

Our paper is organized as follows. After briefly reviewing the literature in Section 2, we describe our
multi-class saliency map in Section 3 and show the early results of its application in Section 4.

2. Related literature

Various machine-learning techniques have been applied to tasks related to oral cancer. Still, most of the
works focus on Support Vector Machines, Artificial Neural Networks and Linear Regression, reaching
87.71% of published works until 2022[7]. The theme of explainability has been investigated in very few
papers. In this section, we review the most relevant literature on the diagnosis of oral cancer through
an ML approach, highlighting those papers where explainability has been sought after. A survey of
the literature dealing with deep learning applications in the broader field of maxillofacial diseases is
contained [8]. It highlights the lack of explainability as one of the major challenges. A more recent
survey focusing on oral cancer is contained in [9], where again the explainability issue is highlighted.

We can now examine the small set of papers that use some form of ML explainability method instead.
Wu et al. in [10] used Random Forest, Linear Discriminant Analysis (LDA), and Logistic Regression
classifiers applied to various numerical and categorical features obtained by a public patient data registry.
Shapley values were employed to extract the most relevant features. Rai et al. in [11] trained a CNN
with input at the same time a picture and a microscope image. In parallel, image features are extracted
from both the data sources and then passed to a classification layer for a cancerous vs non-cancerous
classification. Duran-Sierra et al. in [12] use features extracted from maFLIM images, classifying each
pixel by using either Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA),
Support Vector Machines (SVM), and Logistic Regression (LOGREG). Then they apply a threshold over
the probability map obtained by the output of the classifiers for the single pixels.

Some papers employ explainable techniques, mainly through the use of heatmaps. Cimino et al.
presented a method to combine Convolutional Neural Networks with Case-Based Reasoning (CBR),



modifying the model architecture to get a measure of similarity to previous cases, and also exploiting
saliency maps generated by GradCAM++ [13]. Again, a Grad-CAM technique was applied in [14]
to explain oral cancer predictions with two machine learning models. Explainability is achieved by
generating heatmaps that highlight image regions that are most influential in classification decisions.
The same technique, enhanced through the use of the guided attention inference network (GAIN), is
employed in [15] for oral cancer. An alternative approach is proposed in [16], where explainability
is achieved by presenting the closest training instances where a close alignment is obtained between
human-made decisions and the ML algorithm. This approach has been dubbed Informed Deep Learning
(IDL). Rather than achieving explainability by design, a post hoc approach is taken in [17], where SHAP
values are computed to explain the model’s predictions in screening for oral cancers as a function of
the patients’ features. Similarly, the System Usability Scale (SUS) and System Causability Scale (SCS)
are proposed in [18] to evaluate the explainability of ML-based diagnosis of oral tongue cancer.

3. Method

We want to address the problem of saliency maps for multi-class image classification. Most methods
return a saliency map for each class, representing the importance scores for the features relative to the
class (usually, the only one shown is the saliency map relative to the class returned by the classifier
for the input). Instead, we would like to show a saliency map over the features that incorporates the
contributions of each feature to all the classes. Let’s consider a set of images, as is typically the case in
most healthcare diagnostic tasks. We assume we will employ the raw intensity of pixels as the features.

We consider the classifier as a method returning a probability distribution over classes, namely the
probability 𝑝𝑐 that the instance at hand will be assigned class 𝑐, with the obvious constraint∑︁

𝑐∈𝐶
𝑝𝑐 = 1

We indicate the saliency map obtained by the method 𝑚 for the instance (input image) 𝑖 with respect
to the class 𝑐 by 𝑆𝑖,𝑚,𝑐. This is a single-class saliency map and is output by the explainability method of
choice. Our aim is to arrive at a saliency map that incorporates the contribution of each feature across
all the classes, i.e., the multi-class saliency map Δ𝑖,𝑚. Each saliency map is actually an 𝑁 -by-𝑀 matrix
of scores, where 𝑁 and 𝑀 are, respectively, the number of rows and the number of columns in the
image, with the combination of row and column identifying a specific pixel.

The passage from the single-class saliency maps 𝑆𝑖,𝑚,𝑐 to the multi-class saliency map Γ𝑖,𝑚 is
accomplished through a three-stage process:

1. Single-class saliency map probability-based weighting;
2. Difference-Sum computation of the multi-class saliency map;
3. Score normalization.

As already hinted, we envisage starting with a set of single-class saliency maps 𝑆𝑖,𝑚,𝑐 (𝑐 ∈ 𝐶)
provided by the explainability method of choice (e.g., LIME). For each class, the matrix 𝑆𝑖,𝑚,𝑐 is made
of the scores 𝑠(𝑗,𝑘)𝑖,𝑚,𝑐. For each class, we also assume that the score 𝑠

(𝑗,𝑘)
𝑖,𝑚,𝑐 will be positive if the feature,

i.e., the pixel (𝑗, 𝑘), increases the probability that the instance 𝑖 is assigned to the class 𝑐. It will be
negative in the reverse case when that pixel (𝑗, 𝑘) decreases that probability. However, we would also
like scores to reflect the contribution of the feature to the actual classification. In a multi-class context,
the class assigned to the instance is the one exhibiting the highest probability. Hence, we wish the score
to reflect not just a probability increase of a given class but also the actual contribution of the feature
towards shifting the classification decision towards that class. Since classification decisions are based
on the assignment probability, we wish the feature score to be higher when the assignment probability
is higher. On the other hand, if the assignment probability is low, that means that the feature (with a
negative score) has really contributed to moving the classification decision away from that class. We
can incorporate the influence of the assignment probability by properly weighting the saliency map
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(a) Weighting functions with 𝛼 = 4
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Figure 1: Class assignment probability curves

scores. We just need two weights 𝑤+
𝑖,𝑐 and 𝑤−

𝑖,𝑐 for negative and positive scores, respectively. As to the
functional relationship between the weights and the class assignment probability, we have opted for
the following sigmoidal shape, where 𝛼 is a calibration parameter:

𝑤+
𝑖,𝑐 =

2

1 + ( 1
𝑝𝑐

− 1)𝛼

𝑤−
𝑖,𝑐 = 2− 2

1 + ( 1
𝑝𝑐

− 1)𝛼

(1)

We show an example of those functions in Figure 1a when 𝛼 = 4. The impact of the coefficient 𝛼
can be seen in Figure 1b, where we see that 𝛼 = 1 gives rise to a linear weighting function.

For a given instance and class, the weights do not depend on the pixel, i.e., they are the same for all
the pixels in the image. Hence, they serve to alter the ranking relationship between scores pertaining
to different classes. However, the weight choice (i.e., 𝑤+

𝑖,𝑐 or 𝑤−
𝑖,𝑐) depends on the score sign. We form

then an intermediate single-class saliency map 𝑆𝑖
𝑖,𝑚,𝑐 whose elements are

𝑠′𝑗,𝑘𝑖,𝑚,𝑐 =

{︃
𝑠𝑗,𝑘𝑖,𝑚,𝑐 × 𝑤+

𝑖,𝑐 if 𝑠𝑗,𝑘𝑖,𝑚,𝑐 > 0

𝑠𝑗,𝑘𝑖,𝑚,𝑐 × 𝑤−
𝑖,𝑐 if 𝑠𝑗,𝑘𝑖,𝑚,𝑐 < 0

(2)

We can now move to derive a multi-class saliency map based on several single-class saliency maps.
We rely on the assumption that the most discriminative features are those that exhibit the largest
differences in scores across classes. If a feature has the same score for all the classes, it is of no help in
deciding the final class assignment. For example, a feature whose scores are -1 for the class 𝑐1 and 1
for the class 𝑐2 should be considered much more discriminative than a feature with scores -0.1 and 0.1,
respectively. Based on the pairwise differences in scores across classes, we can build the multi-class
saliency map Δ𝑖,𝑚, whose elements 𝛿𝑗,𝑘𝑖,𝑚 are the sum of all the pairwise differences (hence the name
difference-sum saliency map)

𝛿𝑗,𝑘𝑖,𝑚 =
∑︁

𝑐1,𝑐2∈𝐶 | 𝑐1 ̸=𝑐2

|𝑠′𝑗,𝑘𝑖,𝑚,𝑐1
− 𝑠′𝑗,𝑘𝑖,𝑚,𝑐2

|

Since weighting and differencing may have altered the score range possibly present in the explain-
ability method, the resulting scores after weighting and differences would lie in an undefined range.
In order to work with a specified range for convenience, we can proceed to normalize the scores by
constraining them to be within the [−1, 1] range.

The model we use to test our method is based on the BEiT architecture presented by Bao et al. in [19],
that consists in a Vision Transformer pre-trained by using a masked image modeling approach tracing
the original task employed in BERT architecture. We use a model (named beit-base-patch16-224
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Figure 2: Examples of pictures for the four classes of oral lesions.

and released by Microsoft) pre-trained on ImageNet-21k (14 million images, 21,841 classes) at resolution
224x224, and fine-tuned on ImageNet 2012 (1 million images, 1,000 classes) at resolution 224x224.
Furthermore, we fine-tuned the model on the dataset illustrated in dataset composed of 224 pictures
representing different angles and framings of the inside of the mouth and including different kinds of
oral lesions, partitioned in 4 classes: Malignant-Cancer, Normal Mucosa, Premalignant, Reactive-Benign.
The images have been annotated by a team of doctors specialized in this type of lesions.

We rely on heatmaps produced by well-known explainability method (e.g. LIME), merging them in
order to represent an aggregation revealing a different information with respect to the single heatmaps.
Indeed the differences between two different heatmaps, associated with two different classes, would
represent the most discriminative areas, that should be independent from any class. In the experiments
we focused on LIME, presented by Ribeiro in [20].

4. Results

For the purpose of this work, we have collected a dataset composed of 224 pictures representing the
inside of the mouth as taken different angles and framings. The pictures show different kinds of oral
lesions, partitioned into four classes: Malignant-Cancer, Normal Mucosa, Premalignant, Reactive-Benign.
The images have been annotated by a team of doctors specialized in this type of lesions.

In Figure 2, we can see four examples pertaining to those classes. Those pictures differ significantly
in terms of viewing angle, distance, and lighting conditions, making the identification effort more
challenging. Figure 3a shows a Reactive/Benign lesion that is correctly classified by the model with
nearly five-nine accuracy (see Table 1a, which reports the class assignment probability for the four
classes). The most important part of the image is the excrescence on the patient’s tongue, framed at
the center of the picture. Green and red areas are the most important and the least important ones,
respectively, driving the decision in LIME towards that class or another class. In our method, the
green areas are the most discriminative ones, independent of the class, while the red areas are the least
discriminative and do not influence the decision. We set 𝛼 = 4. The pictures in Figure 3c through
Figure 3f show the single-class saliency maps, while Figure 3b shows the result obtained after applying
our multi-class approach. We see that the single-class maps for the wrong decisions differ greatly from
the single-class map for the right decision (Figure 3f). Our method allows us to recognize the areas that
matter most, while ruling out some areas in the top and bottom parts of the picture that are clearly not
relevant, as they mainly refer to the two black bands located there. Those areas appeared misleadingly
light-green in some single-saliency maps. Also, the single-class saliency maps failed to recognize the
excrescence as the most important element in the picture, as that area is totally coloured in red in
Figure 3d and Figure 3e, and partly red in Figure 3c. The latter observation highlights another relevant
shortcoming of that single-class saliency map, namely its lack of consistency across one image element:
the excrescence (which is a relatively homogeneous element) is assigned quite different colours, located
at the opposite end of the spectrum employed in the heatmap. Finally, the single-class saliency maps



(a) Original Image (b) Our multi-class
saliency map

(c) LIME heatmap for
Malignant-Cancer

(d) LIME heatmap for Nor-
mal Mucosa

(e) LIME heatmap for Pre-
malignant

(f) LIME heatmap for
Reactive-Benign

Figure 3: Heatmaps for a Reactive/Benign lesion testing case.

Class Assignment Probability

Malignant/Cancer 5.36 · 10−6

Normal Mucosa 6.14 · 10−6

Premalignant 8.1 · 10−7

Reactive-Benign 0.999987

(a) Class Assignment Probability for the Reactive-
Benign case of Figure 3

Class Assignment Probability

Malignant/Cancer 9.309673 · 10−5

Normal Mucosa 0.29499677
Premalignant 4.163922 · 10−4

Reactive-Benign 0.70449376

(b) Class Assignment Probability for the case of
Figure 4

Table 1
Class Assignment Probabilities for the shown cases

share most areas, which are deemed relevant for all the classes. But this is quite contradictory, as an
area that is relevant to all the classes bears no discriminative power and is then relevant to no class.

We can now consider a second case, where the ground truth is again the Reactive/Benign case, but
some classification uncertainty is present that may influence the final output in the multi-class saliency
map, due to the weights depending on the class assignment probability (see Figure 1a). The original
picture is shown in Figure 4, where we can spot the big excrescence covering most of the central area
of the picture, with the usual black belts located in the top and bottom areas. The class assignment
probability values in Table 1b. While the correct class is identified with probability slightly larger than
70%, warranting correct classification under the majority rule, the Normal Mucosa decision takes nearly
all the remaining 30%. This heavy presence of a wrong decision may drive the multi-class saliency map
towards the single-class saliency map pertaining to that wrong classification.

We also consider the impact of the 𝛼 values, showing the results for 𝛼 in the [1,10] range. We see that
all maps recognize the excrescence as the most relevant area and also highlight the left part where the
excrescence is bigger. Finally, all maps correctly rule out the two black belts at the top and bottom of
the picture. As to the impact of 𝛼, we expect that impact to be less relevant as the assignment gets more
tilted towards one class (i.e., as the probability of a class approaches 1). Here, we are in an intermediate
situation, where the majority assignment probability is not close to 1, so that we expect a significant



(a) Original image (b) Multi-class
heatmap with
𝛼 = 1

(c) Multi-class
heatmap with
𝛼 = 4

(d) Multi-class
heatmap with
𝛼 = 7

(e) Multi-class
heatmap with
𝛼 = 10

Figure 4: Impact 𝛼 on multi-class saliency maps.

impact of 𝛼. Actually, we see a change as 𝛼 grows, with the saliency maps being shifted towards extreme
values, i.e., either dark green or dark red. In some cases, the shift turns some very-light-green areas into
orange ones so as to capsize a weak result. The movement towards extreme values is, however, quite
gradual, going through different shades of colour. The right choice about 𝛼 depends on how much we
are interested in a nuanced view of the discriminative areas with respect to how much we need to focus
only on the most discriminative factors in the image. There is not a general rule, and each case should
be analysed with respect to the planned use of the tool.

5. Conclusions

This study addresses a critical gap in explainable AI (XAI) for medical imaging, specifically in the
classification of oral lesions. By introducing a multi-class saliency map, we overcome the limitations of
traditional single-class interpretability methods, providing a more comprehensive and discriminative
feature representation. Our approach effectively integrates saliency across multiple classes, offering
improved clarity, reliability, and robustness in AI-driven diagnostics. The results demonstrate that
this method successfully eliminates misleading feature attributions and highlights clinically relevant
regions, making AI-assisted diagnosis more transparent and trustworthy for medical practitioners.

We can envisage some future areas of investigation to expand our work on the subject. In particular
we plan to expand the dataset to include a broader range of oral lesions and imaging conditions (e.g.,
different ethnicities, age groups, and lighting variations). Also, we wish to evaluate the performance of
our multi-class saliency approach against alternative interpretability methods. Finally, we would like to
explore the application of our multi-class saliency in real-world medical AI workflows.
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