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Abstract

Differentiating multiple sclerosis (MS) from ischemic stroke lesions on MRI remains a clinical challenge due to their
similar appearances as white matter hyperintensities. We propose a radiomics-based machine learning framework
that integrates multi-level explainable AI (XAI) techniques to support transparent and clinically meaningful
lesion classification. Radiomic features are extracted from standardized MRI scans and used to train multiple
classifiers, with Random Forest achieving the best performance (accuracy: 91.24%, F1: 86.54%). The framework
incorporates four complementary explanation layers: global insights using SHAP, local interpretability via LIME,
counterfactual reasoning with DiCE, and clinical narrative generation using GPT-based language models. This
layered approach enhances interpretability at both dataset and lesion levels, enabling clinicians to understand,
trust, and act upon model outputs. A radiologist who reviewed the results found the explanations helpful and
confirmed that the overall analysis was clinically meaningful. Our results demonstrate the value of combining
radiomics and advanced XAI techniques for differential diagnosis of brain lesions.
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1. Introduction and Related Work

Differentiating multiple sclerosis (MS) from ischemic stroke lesions on magnetic resonance imaging
(MRI) is a complex diagnostic task due to their overlapping appearance as white matter hyperintensities
(WMHs). MS is a chronic inflammatory disease marked by demyelination, while ischemic lesions arise
from vascular occlusion and subsequent tissue damage. Despite their distinct pathologies, both appear
similar on common MRI sequences like FLAIR, complicating manual diagnosis and often requiring
expert interpretation [1].

Radiomics offers a quantitative approach to analyze lesion characteristics by extracting texture,
shape, and intensity-based features from medical images [2]. These features, when used with machine
learning models, have shown promise in identifying subtle differences between MS and ischemic lesions.
However, such models often behave like "black boxes," with limited transparency in how they make
decisions, which restricts their adoption in clinical workflows.

Explainable AI (XAI) techniques have developed to tackle this issue by making model decisions
interpretable. SHapley Additive exPlanations (SHAP) [3] and Local Interpretable Model-Agnostic Expla-
nations (LIME) [4] are widely used to understand feature contributions at both global and local levels. In
neuroimaging, these methods have been applied to improve the transparency of disease classifiers. For
instance, Eitel et al. [5] used relevance propagation to explain CNN-based MS classification. Basu et al.
[6] and Lopatina et al. [7] have explored similar approaches using clinical and imaging data. Leite et al.
[8] demonstrated the use of texture features and SVM to distinguish between MS and ischemic lesions,
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achieving notable accuracy on a small private dataset. Castillo et al. [9] used wavelet-transformed
radiomics and machine learning to differentiate lesion types, but lacked interpretability mechanisms.
Vuong et al. [10] proposed Radiomics Feature Activation Maps to enhance the interpretability of ra-
diomic signatures by spatially localizing the regions contributing most to model predictions. Their
method enables visual attribution of radiomic features at the voxel level, improving transparency and
clinical trust in radiomics-based models.

In contrast to previous work, our study proposes a multi-level XAI framework that integrates four
layers of interpretability: (1) SHAP for global feature importance, (2) LIME for local explanations,
(3) DiCE for counterfactual reasoning, and (4) GPT-generated clinical narratives for human-aligned
interpretation. This layered approach supports both technical transparency and clinical relevance. We
evaluate the method using lesion-wise radiomic features extracted from two public datasets—MSSEG
(for MS) and ISLES (for stroke)—and compare multiple classifiers, identifying Random Forest as the
best-performing model. To the best of our knowledge, this is the first radiomic framework to combine
SHAP, LIME, counterfactual explanations, and language-based narratives for transparent brain lesion
classification.

2. Materials and Methods

2.1. Dataset Description

This study utilizes two publicly available MRI datasets for lesion segmentation and classification. The
first is the ISLES 2022 dataset [11], which includes diffusion-weighted and FLAIR images from 250
ischemic stroke cases collected across multiple centers in Europe. The second is the MSSEG 2016 dataset
[12], containing T2-FLAIR MRI scans from 53 patients diagnosed with multiple sclerosis. Lesions in
both datasets were manually segmented by clinical experts, providing high-quality annotations for
radiomic analysis. In total, 13489 2D images were extracted: 6281 from multiple sclerosis patients and
7208 from ischemic stroke patients. We randomly split the cases into 70% training, 15% validation, and
15% testing sets, ensuring that images from the same patient appear in only one set.

2.2. Preprocessing Pipeline

All MRI volumes were converted into 2D slices along axial, coronal, and sagittal planes. The following
preprocessing steps were applied to each slice:

« Bias Field Correction: N4 bias correction was applied to reduce intensity non-uniformities.

« Intensity Normalization: Pixel intensities were scaled to the [0, 255] range using min—max
normalization.

+ Denoising: Non-local means filtering [13] was used to suppress noise while preserving texture.

« Mask Alignment: Lesion masks were resampled to match MRI dimensions where needed.

« Brain Region Cropping: Slices with low brain content were excluded; valid slices were cropped
to brain region with margin.

+ Resizing and Padding: All slices and masks were resized to 224 x 224 pixels with padding where
necessary.

2.3. Radiomic Feature Extraction and Selection

Radiomic features were extracted on a per-lesion basis using the PyRadiomics library [14] with default
parameters. Each lesion was treated as a separate connected component, resulting in the extraction
of 90 quantitative features covering intensity, texture, and structural characteristics. Diagnostic and
non-informative metadata were excluded, and missing values were imputed using a mean-based strategy.
Feature selection was performed exclusively on the training set to prevent information leakage. A
univariate ANOVA F-test was applied using SelectKBest (method from scikit-learn python library),



selecting the top 20 features based on their statistical significance with respect to the lesion class (MS
vs. Ischemic). The selected features were then applied to the validation and test sets. These features
span multiple radiomic families, including first-order intensity features, gray-level co-occurrence
matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level size zone matrix (GLSZM), gray-level
dependence matrix (GLDM), and neighborhood gray-tone difference matrix (NGTDM).

2.4. Classification Models

We evaluated three classifiers: Random Forest (RF), Logistic Regression (LR), and Support Vector
Machine (SVM). Each model was optimized using RandomizedSearchCV (method from scikit-learn
python library) on a combined training and validation set with a predefined split. Hyperparameters
were selected based on F1-score. The final models were retrained on the full training+validation set and
evaluated on the held-out test set.

2.5. Multi-Level Explainability Framework

To ensure transparency and clinical relevance, the proposed framework integrates four complementary
XAl strategies:

+ Global Explanations (SHAP): SHAP values [3] were computed for the Random Forest model to
rank feature importance across the test set.

+ Local Explanations (LIME): For individual lesion predictions, LIME [4] provided local feature
attribution.

« Counterfactuals (DiCE): We employed the DiCE framework [15] to generate counterfactual
examples that would alter the model’s prediction, identifying minimal changes required to flip
class.

« Clinical Narratives (GPT): LIME outputs (feature names, values, and contribution direction)
were passed into a structured GPT-40 prompt to generate clinician-friendly narratives. The prompt
instructed GPT to summarize the predicted lesion type (MS or ischemic stroke), explain the most
influential features supporting the prediction, discuss features contradicting the alternative
diagnosis, and conclude with the primary reason for the prediction. The explanations avoided
technical jargon, used real-world MRI interpretations, and followed a concise, bolded structure
for readability.

This layered approach supports both technical and human-aligned interpretability, enhancing trans-
parency and trust in the Al-assisted diagnosis process.

3. Results and Discussion

We evaluated three classifiers on the test set and analyzed the interpretability of the best-performing
model using SHAP, LIME, DiCE, and GPT-based narratives.
Classification Performance

Table 1 shows that Random Forest achieved the highest F1-score and accuracy, making it the final model
for interpretation.

Table 1

Performance comparison on the test set. Best values in bold.
Model Accuracy Precision Recall F1-Score
SVM 90.83% 95.3% 77.79% 85.66%
Logistic Regression 90.23% 95.5% 75.81% 84.52%

Random Forest 91.24% 94.21% 80.02% 86.54%




Global Interpretability (SHAP)

SHAP values were computed to explain the contribution of each radiomic feature across the dataset.
Figure 1 shows that texture features like glcm_Idmn and firstorder_Skewness were consistently
important.
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Figure 1: SHAP summary plot for Random Forest classifier showing globally important features.

Local Interpretability (LIME + GPT Narratives)

LIME provided per-lesion explanations, and GPT transformed these into clinical narratives. Figure 2
illustrates a case predicted as MS. High uniformity and low contrast were influential, supporting the
MS diagnosis. In contrast, Figure 3 shows a predicted ischemic lesion. High skewness and entropy
supported the prediction, indicating structural heterogeneity.

Counterfactual Reasoning with DiCE

To simulate alternative diagnostic scenarios and examine model robustness, we used DiCE to generate
counterfactual examples. These identify minimal, actionable changes to radiomic features that would
result in a different prediction outcome. This approach enhances transparency by answering the
question: "What would need to change for the lesion to be classified differently?"

Figure 4 shows a counterfactual explanation for a lesion originally classified as MS. DiCE suggests that
reducing the mean intensity (original_firstorder_Mean) from 97.45 to 31.60, and increasing the
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Predicted Diagnosis: MS (Multiple Sclerosis) — Lesion 3

Prediction Probability: 97%

Key Features Supporting MS:

*High Gray Level Run Emphasis (1.70): Indicates concentrated areas with high signal intensity runs, commonly seen in MS plaques
due to demyelination and chronic inflammation.

*High Gray Level Zone Emphasis (2.50): Reflects large, homogeneously intense regions, consistent with typical MS lesion appearance
in FLAIR MRI.

*Gray Level Variance (0.18): Low heterogeneity in gray levels suggests uniform lesion intensity, a hallmark of MS plaques.

*Low Gray Level Zone Emphasis (0.62): Reflects reduced presence of darker, ischemia-associated zones, favoring MS.

*Short Run Low Gray Level Emphasis (0.36): Indicates less fragmented low-signal areas, again pointing toward uniform MS lesions.
*First-order Median Intensity (116.00): Falls within the expected range for MS lesions, indicating moderately hyperintense signal.
Why Ischemic Stroke is Unlikely:

*Autocorrelation (1.67): Below typical ischemic levels; ischemic lesions often show higher internal texture correlation.

«Joint Average (1.27) & Sum Average (2.55): These GLCM features are lower than typical ischemic values, indicating less internal
gray-level co-occurrence and spread.

*NGTDM Complexity (0.25): Much lower than expected in ischemic strokes, which usually present with more complex and
heterogeneous textures.

Conclusion:

Lesion 3 is classified as MS primarily due to its homogeneous intensity, lack of low-gray regions, and texture simplicity, which are
characteristic of chronic demyelinating lesions rather than ischemic damage.

Figure 2: LIME explanation and GPT narrative for an MS lesion. Radiomic features suggest homogeneity typical
of demyelinating plaques.

original_glszm_SmallAreaHighGrayLevelEmphasis from 0.14 to 33.46, would be sufficient to
flip the prediction to ischemic. These feature adjustments reflect plausible variations in lesion brightness
and structural homogeneity that align with known imaging patterns of ischemic pathology. This layer
of "what-if" analysis enables clinicians to explore how small radiomic shifts could affect classification
outcomes, making the model more interpretable and clinically interactive. Although DiCE successfully
generated plausible counterfactual examples, interpreting the proposed feature modifications requires
clinical expertise, as some radiomic changes may not correspond directly to observable anatomical
changes.
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Predicted Diagnosis: Ischemic Stroke — Lesion 1

Prediction Probability: 87%

Key Features Supporting Ischemic Stroke:

*High Gray Level Zone Emphasis (7.80): Indicates large, bright uniform regions—typical of acute/subacute infarcts with well-
demarcated necrotic tissue.

*Short Run Low Gray Level Emphasis (0.12): Suggests a lack of short, low-intensity textures—supporting ischemia, where lesions tend
to be sharply defined and not mottled.

*Low Gray Level Zone Emphasis (0.31): Minimal presence of dark areas aligns with the uniform brightness of ischemic lesions.
*First-order Median (163.00), Root Mean Squared (170.14), and Mean Intensity (169.25): All indicate high signal intensity,
characteristic of ischemic tissue with edema or gliosis in FLAIR MRI.

Why MS is Unlikely:

«Joint Average (2.43): While elevated, it's less distinctive for MS compared to more specific texture patterns.
*Autocorrelation (6.15): Although relatively high, it does not offset the dominant ischemic characteristics.

*NGTDM Complexity (1.55): Moderate complexity, but not high enough to suggest the varied texture seen in MS plaques.
*Gray Level Variance (1.04): Suggests some heterogeneity but insufficient to match the typical diverse texture of MS lesions.
Conclusion:

Lesion 1 is classified as Ischemic Stroke due to its high uniform brightness, low texture fragmentation, and elevated mean
intensities, all of which are classic features of infarcts rather than demyelinating MS lesions.

Figure 3: LIME explanation and GPT narrative for an ischemic lesion, emphasizing irregular textural features.
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Figure 4: Counterfactual explanation generated by DiCE, showing feature changes required to flip prediction
from MS to ischemic.



Discussion

The combination of radiomics and multi-level XAl revealed consistent and interpretable patterns in
lesion classification. SHAP highlighted globally dominant features, while LIME showed per-lesion
factors contributing to predictions. DiCE further provided hypothetical scenarios for counter-diagnosis,
and GPT-based narratives completed the pipeline by offering concise, clinician-aligned explanations.
Together, these methods support not only technical validation but also clinical usability, making
the system suitable for diagnostic support in real-world settings. Each explanation modality brings
distinct strengths and limitations. SHAP provides both global and local feature attributions but can
be computationally intensive. LIME generates interpretable local explanations but may suffer from
instability across small perturbations. DiCE enables actionable counterfactuals but sometimes proposes
feature changes that may not correspond directly to plausible anatomical variations. GPT narratives
offer intuitive, clinician-friendly summaries, but they are prone to occasional hallucinations, especially
in ambiguous cases. Understanding these trade-offs is crucial for practical clinical adoption.

To assess the clinical relevance of the generated explanations, we shared the model outputs and
narratives with a practicing radiologist. The radiologist noted that the explainability provided was very
helpful and that the overall analysis made sense. However, broader evaluation is needed. Future work
will involve multi-expert validation with inter-rater agreement scoring and quantitative assessment of
explanation fidelity to strengthen the clinical robustness of the framework. Additionally, integrating
counterfactual outputs from DiCE into GPT-based narrative generation presents an exciting opportunity
to create "what-if" clinical explanations that can further enhance the usability of the system.

4. Conclusion

This study presents a radiomics-based classification framework for differentiating multiple sclerosis
and ischemic stroke lesions on MRI, enhanced with a multi-level explainable Al pipeline. Among the
evaluated classifiers, Random Forest achieved the best overall performance, with an accuracy of 91.2%
and an F1-score of 86.5%. Beyond predictive performance, the framework integrates global (SHAP), local
(LIME), counterfactual (DiCE), and natural language (GPT) explanations to provide transparent and
clinically meaningful insights. SHAP identified texture-based radiomic features as globally influential,
while LIME and GPT enabled per-lesion interpretability in clinician-friendly language. DiCE offered
hypothetical reasoning to explore how small changes in feature values could lead to different diagnoses.
Together, these methods create a robust and interpretable decision support system that bridges technical
and clinical domains. Future work will focus on experimenting with different radiomic extraction
parameters, such as varying angles, distances, and bin widths, to explore their impact on classification
and explainability. We also plan to expand this framework to include multi-modal MRI inputs, increase
sample diversity for better generalization, and integrate visual explanation methods, such as attention-
based heatmaps or Grad-CAM visualizations, to enhance clinical trustworthiness. Finally, fine-tuning
the narrative generation process using domain-specific language models will be explored. By combining
radiomics with layered explainability, this approach supports the safer, more transparent deployment
of Al tools in neuroimaging diagnostics.
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