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Abstract
In this paper, we present a Graphical User Interface (GUI) for IFAC, a selective classification model that refrains
from making decisions in case they are uncertain or unfair. Since IFAC makes use of explainable-by-design
methods to detect potentially unfair decisions, our GUI visualizes these explanations to let users understand the
reason for abstention. We demonstrate how users can interpret the explanations, allowing them to contextualize,
validate, and challenge the detected bias patterns.
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1. Introduction

Ensuring fairness in automated decision-making (ADM) systems has been a longstanding challenge,
particularly in high-stakes domains such as hiring and lending. The goal is to design classifiers that do
not discriminate based on demographic group membership, and do not perpetuate their training data’s
bias against vulnerable population groups, like women or people of color.

Initial efforts to build fair systems often focused on group fairness metrics, such as demographic
parity, optimizing models to satisfy these constraints while maintaining predictive accuracy [1, 2].
However, recent research has highlighted the limitations of this approach: blindly optimizing for a
predefined fairness metric can obscure the real-world impact on individual decision subjects and fail
to capture the nuances of how unfair decisions are made and corrected [3, 4, 5]. A more effective
strategy is to first analyze how discrimination manifests in a specific decision-making task before
directly addressing the bias where it occurs [5]. To implement such an approach successfully, human
experts with ethical training and appropriate domain knowledge must be actively involved in bias audits
and decision reviews. This call is also echoed by emerging AI regulations, mandating that AI-driven
decision-making processes remain overseeable, interpretable, and subject to human intervention.

One possible approach to enable human oversight is given by the recently proposed selective classifi-
cation framework IFAC [6]. Just like any selective classifier IFAC can abstain from predictions in case
they are uncertain, but additionally, IFAC also abstains from making potentially unfair predictions. By
making use of explainable-by-design techniques to uncover potential cases of unfairness, a human-in-
the-loop can review these instances and their explanation, to make more well-informed decisions on
them. In this paper, we present a GUI behind this selective classification framework. We highlight the
methods behind the discrimination discovery and show how the interface can assist users in further
understanding and addressing a classifier’s discriminatory behavior.

2. Background & General Intuition

Our GUI visualizes the instances whose original predictions were rejected by IFAC, due to uncertainty or
unfairness. For instances that got rejected for the latter reason, users can view an explanation of why the
original prediction was deemed as unfair. This explanation consists of a global part, displaying which
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Figure 1: Basic Intuition behind IFAC’s rejection mechanism

larger at-risk subgroup an instance was a part of, and a local part, showing an individual discrimination
analysis for the instance. In this section, we describe the basic intuition behind the rejection framework
and both types of fairness analysis. To do so we make use of the folktables dataset as our running
example. This dataset contains sensitive information about peoples’ gender and race, as well as some
neutral characteristics, like their occupation and working hours. The associated task is to predict a
person’s income level (high vs. low). Classification models developed for this task typically favour the
group of white men. They have higher positive decision rates and make fewer False Negatives and more
False Positives for this group compared to other demographics.

2.1. Selective Classification

We describe a dataset as a triplet (L,S, 𝑌 ), where L represents the legally-grounded features and
takes values in ℒ ⊆ R𝑑𝑙 ; S refers to the sensitive attributes and takes values in 𝒮 ⊆ R𝑑𝑠 ; 𝑌 is the
binary target variable, with domain 𝒴 = {0, 1}. We use X to describe the pair of legally grounded
and sensitive features (L,S). Hence, in our running example, 𝑌 is the income level, that needs to be
predicted based on L, which includes features like education level and working hours, and S, which are
gender and race.

To find a mapping between the feature space of X and 𝒴 , we can learn a classification model ℎ(x),
minimizing some empirical risk function. To prevent ℎ from discriminating based on features in S
and to increase its predictive accuracy, the selective classification framework behind IFAC proposes to
learn some abstention mechanism over its predictions. We denote the selective function, determining
which of ℎs predictions are kept as 𝑔. In the case of IFAC, 𝑔 considers the fairness and uncertainty of
predictions. IFAC measures uncertainty through the prediction probability 𝑣(x) = 𝑃 (𝑌 = 𝑦|X = x)
outputted by ℎ for predicted label ℎ(x) = 𝑦. Depending on whether the predictions are considered
fair/unfair and certain/uncertain, there are four different scenarios that IFAC must deal with, as shown
in Figure 1. The easiest case is when a prediction is both deemed fair and certain, in which case the
prediction can be kept. Predictions that are fair yet uncertain get rejected, in line with the classical
selective classification framework. In the case of prediction unfairness, there are two scenarios: if
a prediction is both unfair and uncertain, and hence there are double reasons to doubt ℎ’s original
decision, a fairness intervention is performed and ℎ’s original label is flipped. In case the prediction is
unfair yet certain, human expertise is required to assess this prediction, and IFAC rejects it.

To prevent IFAC from rejecting all predictions, a user-defined coverage parameter determines the
minimum amount of predictions that should be made. Additionally, IFAC takes a fairness-weight
parameter, that denotes the ratio of rejections that can be made out of unfairness concerns, and how
much room should be left for rejecting (fair but) uncertain predictions. These parameters serve to
tune two separate thresholds - t_fair_certain and t_unfair_certain - that respectively determine at
which prediction probabilities fair and unfair predictions should be viewed as certain/uncertain, to
consequentially keep, reject, or intervene on the predictions. For full details behind tuning these
parameters we refer to the original paper behind IFAC [6]

2.2. At-Risk Subgroups

The first step in IFACs fairness assessment is identifying population subgroups at risk of discrimination
by a classifier ℎ, for which the methodology of discriminatory association rule mining is adopted [7].



Let us assume access to a dataset of realizations, 𝒟, that consists of the features X = (L,S)

• A specific realization of a single feature ⊂ X is called an item.
• An itemset, denoted by 𝐼 , is a combination of multiple items, that can be decomposed into (𝐼𝐿, 𝐼𝑆)

where 𝐼𝐿 is an itemset consisting of only legally grounded features, and 𝐼𝑆 one consisting of only
sensitive features

• A transaction, denoted by 𝑇 , represents an itemset corresponding to one instance in 𝒟, where
each feature is assigned exactly one value.

• We say 𝑇 verifies itemset (𝐼𝐿, 𝐼𝑆) if (𝐼𝐿, 𝐼𝑆) ⊆ 𝑇 .

For example, in the folktables dataset, consider the feature race. A specific realization,
such as (race=Black), is an item. An itemset is a combination of multiple items, such as
(race=Black, education=Masters) and can be decomposed into 𝐼𝑆 = (race=Black) and 𝐼𝐿 =
(education=Masters) One single row from the dataset can be called a transaction.

To learn associations between the data’s features and the decision outcome in 𝒟 we can extract
decision rules of the form (𝐼𝐿, 𝐼𝑆) → 𝑌 . The support of a decision rule regarding 𝒟 is calculated as

𝑠𝑢𝑝𝑝𝒟 ((𝐼𝐿, 𝐼𝑆) → 𝑌 ) = 𝑠𝑢𝑝𝑝𝒟((𝐼𝐿, 𝐼𝑆), 𝑌 ) with 𝑠𝑢𝑝𝑝𝒟(𝐼) =
|{𝑇 ∈ 𝒟 : 𝐼 ⊆ 𝑇}|

|𝒟|

, where || is the cardinality operator. Further, the confidence of a rule is defined as

𝑐𝑜𝑛𝑓𝒟((𝐼𝐿, 𝐼𝑆) → 𝑌 ) =
𝑠𝑢𝑝𝑝𝒟((𝐼𝐿, 𝐼𝑆), 𝑌 )

𝑠𝑢𝑝𝑝𝒟((𝐼𝐿, 𝐼𝑆))

Finally, IFAC assesses how problematic a decision rule is by measuring the impact of the sensitive
features in 𝐼𝑆 on 𝑌 , through the Selective Lift (slift) [7]. In this paper, we use the definition of slift by
difference, which measures how the confidence of a rule decreases when negating its sensitive part.

𝑠𝑙𝑖𝑓𝑡𝒟 ((𝐼𝐿, 𝐼𝑆) → 𝑌 ) = 𝑐𝑜𝑛𝑓𝒟 ((𝐼𝐿, 𝐼𝑆) → 𝑌 )− 𝑐𝑜𝑛𝑓𝒟 ((𝐼𝐿,¬𝐼𝑆) → 𝑌 ) (1)

Computing 𝑐𝑜𝑛𝑓𝒟(𝐼𝐿,¬𝐼𝑆) → 𝑌 requires one to take the confidence of all the transactions that
verify 𝐼𝐿 but do not verify 𝐼𝑆 . If the slift of some rule exceeds some user-defined threshold, we can
describe the itemset (𝐼𝐿, 𝐼𝑆) as an at-risk subgroup of the data.

Example : Consider the decision rule (race = Black, education = Masters → income =
low) with a confidence of 0.9. If we find that the rule (¬race = Black, education = Masters
→ income = low) has a confidence of 0.3, the slift is 0.6. This relatively high measure can indicate
that the subgroup (race = Black, education = Masters) are at risk of discrimination.

2.3. Individual Discrimination

If an instance falls under any subgroup at risk of discrimination, IFAC also performs Situation Testing,
an explainable-by design method to determine fair treatment on a local level [8]. Given some individual
instance x𝑖, Situation Testing searches 𝒟 for its 𝑘 most similar instances from the favoured and non-
favoured group, which we denote respectively as 𝒦𝑟

𝑡𝑟 and 𝒦𝑛𝑟
𝑡𝑟 . Recall that in the folktables dataset we

see white men as favoured, and all other demographic groups as non-favoured. To define x𝑖’s individual
discrimination score, we compute the difference in positive decision ratios between 𝒦𝑟

𝑡𝑟 and 𝒦𝑛𝑟
𝑡𝑟 . Hence:

𝑑𝑖𝑠𝑐(x𝑖) =
|{𝑗 ∈ 𝒦𝑟

𝑡𝑟 : 𝑦𝑗 = 1}|
𝑘

− |{𝑗 ∈ 𝒦𝑛𝑟
𝑡𝑟 : 𝑦𝑗 = 1}|
𝑘

(2)

If this discrimination score exceeds some user defined threshold, x𝑖 is deemed to be treated unfairly.



3. Methodology

The GUI behind IFAC visualizes the instances in a decision task, their predictions, as well as IFACs deci-
sions to keep, reject or intervene on these predictions. In case IFAC rejects or intervenes on predictions
based on unfairness concerns, the GUI also visualizes the explanations behind these rejections; i.e. the
at-risk subgroups these instances belong to and the outcome of their individual discrimination analysis.

Currently, the GUI is only available as a prototype meant to explore the rejections of an IFAC
model trained on the folktables dataset. However, the platform is built to be extensible and flexible to
various classification tasks Before describing the (visual) components of the tool, we shortly outline
the classification model used for building this prototype and explain how we ran the global and local
discrimination analysis on it 1.

Classification Model After preprocessing the dataset, we split the initial dataset into a training part
(n=9600), two validation sets (val_1, val_2 both with n=3600) and a test set (n=1200).

For our classification model, we train a Random Forest Classifier using the default sklearn hyper-
parameters. The GUI visualizes the model’s predictions on the test set, while in the background both
val_1 and val_2 are used for the discrimination analysis as described in the next paragraphs.

At-Risk Subgroups The at-risk subgroups that are visualized in the GUI are extracted after applying
the initial random forest model on val_1. To display at-risk groups for each single-axis and intersectional
demographic group, we split val_1 according to each sensitive feature value and their combination. In
our case, using sensitive attributes race (black or white) and gender (male or female), we end up splitting
the data according to (race = white), (race = black), (sex = male), (sex = female),
(race = white, sex = male), (race = white, sex = female), (race = black, sex
= male), (race = black, sex = female). On the data belonging to each of these groups, we
seperately apply the apriori algorithm to mine decision rules of the form (𝐼𝐿, 𝐼𝑆) → 𝑌 , where 𝑌
represents the classifier’s ℎ decision outcome (i.e. people’s income) which is either high or low. Since
we assume the group of white men to be favoured, we only extract rules with 𝑌 = ℎ𝑖𝑔ℎ for them, while
for all other demographic groups that are potentially discriminated, we only select rules with 𝑌 = 𝑙𝑜𝑤.
Using equation 1, we compute the slift for each of the associations, and filter rules with 𝑠𝑙𝑖𝑓𝑡 > 0.4.
Further, we assess statistical significance with a Z-test and only retain rules with 𝑝 < 0.01

Situation Testing For all of the test instances that belong to one of the identified at-risk subgroups,
we also compute an individual discrimination score as described in section 2.3. To compute these scores,
we search val_2 for each instance’s top 5 nearest neighbors from both the favoured and non-favoured
group, and compute their difference in positive decision ratio. If an instance’s disc_score exceeds 0.2, we
view its prediction as unfair.

Learning Rejection Thresholds IFAC deems instances unfair if they fall under an at-risk subgroup
and if they are individually discriminated against. How many of these instances can then be rejected,
depends on the coverage, which we set at 0.8, meaning that 20% of the test-set instances can be rejected.
Moreover, we set IFAC’s fairness weight to 0.9, meaning that out of those rejected instances 90% should
get rejected out of unfairness concerns and the remainder should be rejected solely because of uncertainty.
Based on these two parameters we tune the two thresholds (t_fair_certain and t_unfair_certain) on the
val_2, such that

(ℎ, 𝑔)(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ℎ(x) if 𝐹𝑎𝑖𝑟(x) and 𝜐(x) => t_fair_certain
abstain if 𝐹𝑎𝑖𝑟(x) and 𝜐(x) < t_fair_certain
flip if ¬𝐹𝑎𝑖𝑟(x) and 𝜐(x) < t_unfair_certain
abstain if ¬𝐹𝑎𝑖𝑟(x) and 𝜐(x) >= t_unfair_certain

1for full information we refer to our github: https://github.com/daphnetje/IFAC_GUI

https://github.com/daphnetje/IFAC_GUI


2

1

Figure 2: The starting page: for each single-axis and intersectional demographic group some statistical infor-
mation, like the number of instances and positive decision ratio within the group, is displayed (1). For each
demographic group, also the at-risk subgroups are visualized in a slide carousel as seen in (2).

4. The Tool Through the Eyes of a User

Now that we have described all the theoretical background and methodology behind our GUI, we are
going to describe each of its components and how a user can interact with them.

4.1. Inspecting Single-Axis and Intersectional Demographic Groups

The first thing a user sees when opening the GUI are the different single-axis and intersectional groups
of the data, along with some statistical information and the at-risk subgroups, based on which IFAC
makes its rejections. In Figure 2 a fragment of this starting screen is visualized. Based on the statistical
information displayed, a user can quickly assess how the group of white men is being favoured for
this decision task, as their positive decision ratio is 44%, considerably higher than for white and black
women. The at-risk groups within each demographic group are displayed inside a slide carousel, that a
user can browse through to understand where the biggest fairness concerns lay. Here users can click on
a specific at-risk group, like for instance group #6 within white women. This group consists of white
women, with an associate degree, working more than 50 hours a week. As indicated by the confidence
measure, they receive a low-income prediction 100% of the time. This group could be of interest as
their high education level and amount of working hours, would intuitively be associated with high
incomes. This is further confirmed by the slift of 0.68, indicating that white men with the same degree
and working hours are only associated with a low income 32% of the time. In the next section, we
visualize the interface after a user has selected this at-risk group.
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Figure 3: The interface upon selecting a specific at-risk group to inspect. (1) The selected at-risk group is
highlighted in yellow. In Table (2) all instances belonging to the selected group are displayed, along with their
individual discrimination score, their associated prediction probabilities, and IFACs decision to reject or flip the
predictions. (3) Users can click on the magnifying glass to view the individual discrimination analysis

4.2. Selecting an At-Risk Subgroup

Figure 3 shows the interface for the at-risk group of white women with an associate degree working
over 50 hours per week. The table lists 4 instances, all flagged as individually discriminated by IFAC.
One instance, highlighted in red, is suggested for a prediction flip due to its high discrimination score
(0.6) and uncertain prediction probability (0.52), while the other instances are rejected for having high
discrimination scores, yet high prediction certainties. Users can click the magnifying glass to view
additional details, helping them better assess the rejected predictions and potentially override them.
One interesting instance to inspect is, e.g., with id = 984: a married woman, aged between 50 and 59,
working in medical services. Since being a bit older, having a stable relationship and working in a secure
sector should correlate with higher incomes, a user might be surprised by their original low-income
prediction, and might want to view why IFAC rejected this it.

4.3. Checking Individual Discrimination

Figure 4 shows the interface after a user selects a rejected instance, revealing its individual discrimination
analysis. This instance has a discrimination score of 0.8—indicating an 80% difference in the positive
decision ratios between similar favoured and non-favoured instances. Two tables display these similar
instances separately, with orange-highlighted cells marking feature values that differ from the instance
in question.

Notably, most non-favoured instances differ in age from the selected instance, while some favoured
instances vary in age, workclass, and occupation. The visual highlights of these features, serve as
reminders that even highly similar instances may differ in meaningful ways, potentially affecting the
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Figure 4: Interface upon selecting an individual instance. In (1) the instance and its individual discrimination
score are displayed. In (2) and (3) respectively, the 5 most similar instances from the non-reference and reference
group are visualized in a table. Table cells marked in orange, indicate that the given instance differs in its feature
value , from the instance in question.

discrimination score.
Ultimately, this explanation behind IFAC’s rejection serves to assist humans expert in deciding

whether the evidence of discrimination is strong enough to override the original low-income prediction.
In this case, experts must decide whether high-income predictions for similar white men are justified by
differences in age and occupation or whether they indicate unfair treatment. At this point, they can also
seek additional details for the affected instance, such as their exact occupation within the healthcare
sector, to assess whether this should deserve a high income. These considerations, underscore the
essential role of human domain experts within the selective classification framework of IFAC. While
computational methods can effectively identify at-risk subgroups and potential individual discrimination,
these should be viewed as decision-support tools rather than definitive arbiters of fairness. Visualizing
IFAC’s rejected instances along with the explanations behind them, can guide experts into understanding
unfairness issues and making more just predictions.

5. Conclusion & Future Work

In this paper, we introduced a prototype-GUI, that visualizes instances that were rejected by the
selective classification algorithm IFAC. Behind all of IFACs unfairness-based rejections, it visualizes



the explanations of why predictions are seen as unfair, making use of explainable-by-design methods
of discriminatory association rule mining [7] and situation testing [8]. Through a practical scenario,
we demonstrated how the GUI assists users in reviewing rejected instances while underscoring the
indispensable role of human expertise in contextualizing, interpreting, and, when necessary, challenging
the underlying patterns of bias.

Despite its potential, the GUI remains a prototype with room for further development. First, the
current implementation is limited to a single decision task: income prediction on the folktables dataset.
To evaluate the practical usability of the tool and its impact in the real world, future iterations should
extend its functionality to support any classification task.

Additionally, the GUI currently serves only as a tool to view rejected predictions, without allowing
users to modify them or explore the impact of corrective actions. Incorporating an interactive inter-
vention feature, that enables users to adjust decisions and observe how fairness metrics evolve, would
transform the GUI into an active bias mitigation solution.
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