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Abstract
Regulatory requirements, such as the recently published EU AI Act, emphasize the need to explain machine
learning models. Nonetheless, the limits of any given explanation have to be taken into account. From Psychology
research it is known, that the human working memory capacity is limited. For this reason, any explanation
must not be too complex. In this work, explanation groves are presented as a model agnostic tool to control the
complexity of an explanation while simultanously maximizing the obtained degree of explanation. Explanation
groves do result, if the degree of explanation is maximized over the search space of all sets of if-then rules of
prespecified size. A user-friendly implementation of explanation groves is given in the R package xgrove. Its
use is demonstrated for a random forest model trained on the Boston housing data. Explanation groves not
only provide an easily understandable explanation but can be further used to analyze the trade-off between the
obtained degree of explanation and its corresponding complexity.
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1. Introduction

Regulatory requirements, such as the recently published EU AI Act [1], emphasize the need to explain
of machine learning models. A general process (TAX4CS) that links requirements of the different
model stakeholders to existing methdology from the field of XAI in order to ensure transparent and
auditable machine learning models in industry is proposed by [2]. Nonetheless, the limits of any given
explanation have to be taken into account. From Psychology research it is known, that the human
working memory capacity is limited (cf. e.g. [3, 4]). For this reason, any explanation must not be
too complex. In this work, explanation groves are presented as a model agnostic tool to control the
complexity of an explanation while simultanously maximizing the obtained degree of explanation.

In [5] explainable boosting machines are proposed which provide interpretable glassbox models based
on the idea of generalized additive models. In contrast to this, the approach presented in this paper is
dedicated to black box explanation and an explanation based on a set of additive weighted interpretable
rules is derived. For random forest models, [6] and [7] aim to find the most representative tree (MRT)
in a forest providing a set of interpretable rules. Further, in [8] the appropriateness of the resulting
explanation is analyzed and it is worked out, that explanations can be improved by considering not
only one single tree but a small number of representative trees, called groves, to explain forests. Note
that for decision trees, a model simplification is obtained by pruning. Different strategies of pruning are
investigated in [9]. Unlike MRTs, explanation groves proposed in this work, are model agnostic. It is
shown that explanation groves do result, if the degree of explanation is maximized over the search space
of all sets of if-then rules of prespecified size. For this purpose, a measure for the degree of explanation
is required which is described in section 2 and proposed in [10]. A user-friendly implementation of
explanation groves is given in the R package xgrove [11]. In section 3, its use is demonstrated: The
method is applied to a random forest model trained on the Boston housing data. Explanation groves

Late-breaking work, Demos and Doctoral Consortium, colocated with The 3d World Conference on eXplainable Artificial Intelligence:
July 09–11, 2025, Istanbul, Turkey
$ gero.szepannek@hochschule-stralsund.de (G. Szepannek)
� https://www.hochschule-stralsund.de/ws/personal-an-der-fakultaet-fuer-wirtschaft/szepannek-gero/ (G. Szepannek)
� 0000-0001-8456-1283 (G. Szepannek)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:gero.szepannek@hochschule-stralsund.de
https://www.hochschule-stralsund.de/ws/personal-an-der-fakultaet-fuer-wirtschaft/szepannek-gero/
https://orcid.org/0000-0001-8456-1283
https://creativecommons.org/licenses/by/4.0/deed.en


not only provide an easily understandable explanation but can be further used to analyze the trade-off
between the obtained degree of explanation and its corresponding complexity.

2. Explanation Groves

2.1. Measuring Explainability

In order to find the best explanation it has to be defined what characterizes a good explanation is. In
literature, several concepts are proposed to analyze this (cf. e.g. [12]). For the purpose of this work the
metric proposed in [13] is used: An explanation 𝑋𝐴𝐼(𝑥) is appropriate if it is close to the model of
interest 𝑓(𝑥) for any value of 𝑥. According to [13] this can be summarized by the expected squared
difference:

𝐸𝑆𝐷(𝑋𝐴𝐼) =

∫︁
(𝑓(𝑋)−𝑋𝐴𝐼(𝑋))2 𝑑𝑃 (𝑋) (1)

and a measure to quantify the appropriateness of an explanation is given by the degree of explanation:

ϒ = 1− 𝐸𝑆𝐷(𝑋𝐴𝐼)

𝐸𝑆𝐷0
(2)

where 𝐸𝑆𝐷0 is the 𝐸𝑆𝐷 based on 𝑋𝐴𝐼(𝑥) = 𝑐,∀𝑥 being the constant average prediction 𝑐 :=
𝐸(𝑓(𝑋)). By construction, ϒ is similar to the 𝑅2 coefficient of determination for regression problems
and can be thus interpreted in a similar way: For a good explanation 𝐸𝑆𝐷(𝑋𝐴𝐼) will be close to 0
and thus the closer ϒ is to the value of one the better the explanation.

2.2. Finding the Best Explanation

Based on the previous quantification of the appropriateness of an explanation, one can try to find the
best explanation of by stagewise maximization of ϒ. For this purpose, an iterative approach can be
used. Let

𝑋𝐴𝐼(𝑚)(𝑥)

be the explanation after the 𝑚𝑡ℎ iteration, 𝑚 ∈ N. The ESD from the previous section measures the
squared loss between the model’s predictions and its explanation. As in gradient boosting theory [14] a
greedy approach to minimizing the loss function is obtained by iteratively updating 𝑋𝐴𝐼(𝑚−1)(𝑥) into
the direction of the steepest descent:

−𝜕𝐿(𝑓(𝑥𝑖), 𝑋𝐴𝐼(𝑥𝑖))

𝜕𝑋𝐴𝐼(𝑥𝑖)

⃒⃒⃒⃒
⃒
𝑋𝐴𝐼(𝑥𝑖)=𝑋𝐴𝐼(𝑚−1)(𝑥𝑖)

= −𝜕(𝑓(𝑥𝑖)−𝑋𝐴𝐼(𝑥𝑖))
2

𝜕𝑋𝐴𝐼(𝑥𝑖)

⃒⃒⃒⃒
⃒
𝑋𝐴𝐼(𝑥𝑖)=𝑋𝐴𝐼(𝑚−1)(𝑥𝑖)

= 2(𝑓(𝑥𝑖)−𝑋𝐴𝐼(𝑚−1)(𝑥𝑖))

= : 𝑦𝑖 (3)

i.e. by iteratively fitting the pseudo-residuals 𝑦𝑖 between model and current explanation after stage
(𝑚 − 1) to the data, where 𝑖 = 1, ..., 𝑁 denotes the observation index. The optimal model-agnostic
rule-based explanation is then given by the sum over a set of weighted rules, which can be written as:
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Figure 1: Simple example of explaining an artificial model f(x) = sin(x) by a set of 2 (left) and 65 (right) rules.

𝑋𝐴𝐼(𝑚)(𝑥) = 𝑋𝐴𝐼(𝑚−1)(𝑥)

+ 𝛾𝑚+ 1(𝑥∈𝑅(𝑚))

+ 𝛾𝑚− 1(𝑥/∈𝑅(𝑚)). (4)

Here, 1(𝑥∈𝑅(𝑚)) denotes the indicator function that returns 1 if rule 𝑅(𝑚) holds for 𝑥 and 0 otherwise.
𝑅(𝑚) is a rule of the form 𝑋𝑗 ≤ 𝑎 in variable 𝑋𝑗 for numeric variables or 𝑋𝑗 ∈ 𝒜 with 𝒜 ⊂ |𝑋𝑗 | for
categorical variables. 𝛾𝑚 is a weight that describes how the explanation changes, if rule 𝑅(𝑚) holds.
For this purpose, 𝑅(𝑚), 𝛾𝑚+ and 𝛾𝑚− can be computed simultaneously by fitting a gradient boosting
model using squared loss and decision trees of depth one (stumps) to the predictions 𝑓(𝑥𝑖) of the model
of interest [15].

Note that the resulting optimal explanation 𝑋𝐴𝐼(𝑥) consists of a set of rules and corresponding
weights {(𝑅(𝑚), 𝛾𝑚+, 𝛾𝑚−)} and thus represents a rule-based explanation as opposed to example-based
explanations. For a comparison of both approaches for model explanation cf. e.g. [16]. The complexity
of the resulting explanation is given by the number of rules and can be controlled by the number of
iterations 𝑚.

2.3. Illustration

Figure 1 illustrates the aforementioned trade-off between complexity and appropriateness for expla-
nation groves of different size. For an artificial (unknown) model 𝑓(𝑥) = sin(𝑥) (grey dots) two
explanation groves of different size are computed: The explanation on the left graph consists of only
two rules (with a split at 𝜋) and is easy to understand. Although it captures the information that there
are positive values below 𝜋 and negative ones above, it is not close to the predictions of the model and
thus not appropriate but a too simple explanation. In contrast, in the right plot, a grove of 65 rules,
approximates the original model quite well (which is reflected by an ϒ = 0.99) but the corresponding
large set of rules will be difficult to understand for humans.

Although this example is artificial, oversimplified and takes into account for only one single variable
and not for the usual multivariate setting, it nicely illustrates the trade-off between adequacy and
complexity of different explanations. In practice, several groves with different numbers of rules 𝑚 can



Table 1
Coloumns of the Boston housing data.

Name Description

cmedv Corrected median value of owner-occupied homes in USD 1000’s.
lon Longitude of census tract.
lat Latitude of census tract.

crim Per capita crime rate by town.
zn Proportion of residential land zoned for lots over 25,000 sq.ft.

indus Proportion of non-retail business acres per town.
chas Charles River dummy variable (= 1 if tract bounds river; 0 otherwise).
nox Nitric oxides concentration (parts per 10 million).
rm Average number of rooms per dwelling.
age Proportion of owner-occupied units built prior to 1940.
dis Weighted distances to five Boston employment centers.
rad Index of accessibility to radial highways.
tax Full-value property-tax rate per USD 10,000.

ptratio Pupil-teacher ratio by town.
b 1000(𝐵 − 0.63)2 where B is the proportion of coloured people by town.

lstat Percentage of lower status of the population.

be computed in order to analyze whether there is an explanation that is both easy to understand and
appropriate.

Note that an explanation grove only denotes a surrogate model [cf. 17]. This means, it is only an
approximation which mimics the model under investigation but there is no guarantee that the identified
rules correctly describe the original model. In the example, a simple and understandable explanation
could be obtained if it would be known that the underlying function is of trigononetric type. Anyway, in
practice, the type of the underlying function is usually not known and a surrogate model can neverthless
help understanding a model’s behaviour. In that sense, one may refer to the famous quote of George
Box that ‘’all models are wrong but some are useful” [18].

3. Demonstration of the R Package xgrove

As it has been worked out before, the proposed methodology not only allows to find a set of rules of
fixed size that maximizes the appropriateness of the resulting explanation but, furthermore, by compar-
ing groves of different size, allows to analyze the trade-off between appropriateness and complexity.
Explanation groves are implemented in the R package xgrove which is available on CRAN [11]. Its
use is demonstrated to find an explanation for a random forest model that has been trained on the
Boston housing data [19]. The data can be accessed via the UCI machine learning benchmark repository
[20]. The data consist of median housing values (variable cmedv) from 506 census tracts in the suburbs
of Boston and the goal is to predict the housing prices based on 15 explanatory variables such as the
crime rate (crim), the average number of rooms (rm), the percentage of persons of lower status in the
population (lstat) or the weighted distances to five Boston employment centers (dis).

Initially, a random forest model is trained using the ranger implementation [21]. A random forest
has been chosen as an example here, as random forests turned out to perform good in many data
situations [cf. e.g. 22]. In addition, random forests are comparatively insensitive to the choice of the
hyperparameters [23, 24, 25]. For this reason, the default hyperparameters are used.

Note that explanation groves are model agnostic and the same code can be run for arbitrary models.
As a default, it is presumed that the call predict(model, data) returns the desired predictions 𝑓(𝑥)
of the model to be analyzed (here: rf). It is possibile to define user-specific predict functions as it is
done here by the function pf.

The total number splits over all 500 trees in the forest sums up to 80331 which is, of course, far too
high to be interpretable. Instead, from Psychology research it is known that humans’ working memory



# load data
library(pdp)
data(boston)

# train model
library(ranger)
set.seed(42)
rf <- ranger(cmedv ~ ., data = boston)

# define predict function, if necessary
pf <- function(model, data) {

return(predict(model, data)$predictions)
}

# include library
library(xgrove)

# specify desired grove sizes
ntrees <- c(4, 8, 16, 32, 64, 128)

# remove target variable from data
data <- boston[, colnames(boston) != "cmedv"]

# compute groves of different size
xg <- xgrove(rf, data, ntrees, pfun = pf)

# visualize achieved degree of explanation vs. complexity
plot(xg)

# print rules of the grove with at maximum eight rules
xg$rules[["8"]]

Figure 2: R Code Demo of the xgrove package.

capacity is limited and restricted to a small number of items [3, 4].
Finally, explanation groves are computed using the function xgrove(), which requires three argu-

ments: the model, the data as well as the desired number of rules (ntrees). For this example, six
groves of different size are computed where the number of rules is successively doubled from four to
128. The target variable should not be used for the explanation. For this reason it is removed from the
data here.1 The additional pfun argument allows to define arbitrary predict functions and only needs
to be specified if predict(model, data) does not directly return the desired predictions (cf. above).

The resulting S3 object (xg) summarizes the achieved degree of explaination ϒ as well as the
corresponding number of rules for the different groves (cf. figure 3). In xg$groves, all groves are of
different size are stored as specified by the ntrees argument in the call. A similar, but more convenient
output is given by xg$rules where identical rules with no data points inbetween both splits are
aggregated. Thus, the resulting number of rules is smaller or equal than pre-specified. An example of a
resulting grove is given in table 2.

Figure 3 compares the appropriateness of the explanations given by groves of different size. This
figure can be created by calling the plot() method on the output object of the xgrove() call. It can
be easily seen that the degree of explanation gets better with an increasing number of rules. A value
of ϒ ∼ 0.9 is already obtained for less than 20 rules in this case. On the other hand, if a degree of the

1This is done automatically if the model contains a terms component if the remove.target argument is specified as TRUE
(default). Alternatively, this can be done manually as it is done here.
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Figure 3: Complexity (abscissa) vs. degree of explanation ϒ (ordinate): Groves of different size for a ranger
model on the Boston housing data.

Table 2
Explanation grove with six rules for a random forest model on the Boston housing data.

Variable Upper bound left Δ left Δ pright

Intercept 22.527 22.527
crim 9.33 0.474 -3.333
lon -71.04 0.791 -1.445

lstat 4.55 4.951 -0.472
lstat 14.44 2.656 -4.937
rm 6.84 -1.407 6.777
rm 7.44 -0.374 5.030

explanation of at least ϒ = 0.95 is required, more than 80 rules are needed. This, in turn, will be hard
to interpret.

The resulting grove is given in table 2 below for a grove of six rules. It can be easily seen, that the
predicted house prices decrease from 22.53 by 3.33 if the crime rate in a census tract is above 9.33 percent
and the model predicts slightly higher prices for more eastern census tracts (longitude > −71.04). A
comparatively strong increase of house prices is assigned to census tracts with small percentages of
persons with lower status (below 14.44 percent and even more if it is also below 4.55 percent). Finally,
also a strong effect can be seen for census tracts with a high average room number above 6.84 or even
above 7.44. Nonetheless, the degree of explanation given by these rules is only ϒ ∼ 0.836. Ideally,
there should exist a grove of few rules and a high degree of explanation (i.e. in the top left corner of the
previous graph). It is up to the user to decide whether this can be considered as sufficient here, but at
least, there should be awareness about the magnitude of the gap between the degree of explanation and
the true model’s responses.

4. Summary

Explanation groves are introduced as a model-agnostic tool to extract a set of understandable rules in
order to explain arbitrary machine learning models. An algorithm is proposed that allows to find the
best explanation by a prespecified number of rules.

The proposed method is available in the R package xgrove on CRAN. It is demonstrated how groves



of different size can be easily computed in order to explain arbitratry machine learning models. The
results consist in an set of understandable if-then rules. By increasing the number of rules, and thus the
complexity of the explanation, the appropriateness of the resulting explanation will improve but it is
well-known that human’s working memory capacity is limited. In consequence, by creating groves
of different size, explanation groves allow to analyze the trade-off between the appropriateness and
the complexity of an explanation. The observed trade-off between the degree of explanation and its
complexity should be taken into account whenever explainable machine learning is applied in practice.
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