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Abstract

The comprehensibility of solutions is critical in Al-supported decision-making processes, particularly in the
healthcare sector, where the outcomes of Al techniques must be explained to clinicians to enable informed and
reliable decisions. Various approaches have been proposed to address this challenge, primarily by identifying
the most influential features in complex models, such as deep neural networks. However, such approaches
may oversimplify models, potentially overlooking intricate relationships between clinical, genetic, or other
variables. In this paper, we present a rule-based method for deriving diagnostic models from historical patient
data. Alongside the rule-generation engine, we introduce a method to assess the impact of each feature on a
diagnosis. Additionally, an interactive, intelligent interface generates dashboards that enable users to explore
their Explainable Al models and extract meaningful insights. To demonstrate the effectiveness of our approach,
we discuss different applications, including a use case involving Acute Myeloid Leukemia data.
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1. Introduction

The use of Explainable AI (XAI) in medical data analysis pipelines represents a transformative approach
to enhancing both the accuracy and trustworthiness of healthcare diagnostics and treatment planning
[1, 2]. In fact, the increasing complexity of Al algorithms often renders them opaque, making it difficult
for healthcare professionals to understand the reasoning behind their predictions. XAI addresses
this challenge by providing transparency and interpretability, which may foster greater confidence in
Al-supported medical decisions.

XAI methods in healthcare typically focus on generating human-interpretable explanations for Al
predictions. These methods include feature importance analysis, rule-based models, and counterfactual
explanations. By making Al more interpretable, XAI improves clinical decision-making, increasing trust
among healthcare professionals, and enhancing patient safety. Furthermore, regulatory frameworks,
such as the EU’s General Data Protection Regulation (GDPR) and the AI Act, underline the need for
explainability, making XAI an essential factor in the adoption of Al-supported systems within the
healthcare sector.

A crucial aspect of XAl in healthcare is the design of user interfaces that effectively communicate
Al-generated insights to medical practitioners by incorporating visualizations, interactive elements,
and natural language explanations to enhance interpretability [3]. One common approach involves the
visualization of feature relevance [4, 5], where graphical representations highlight which factors (e.g.,
biomarkers, imaging features, or patient history) contributed most to a model’s decision. For instance,
heatmaps in medical imaging can indicate the regions that influenced a classification, aiding radiologists
in validating Al-generated diagnoses. Also interactive dashboards allow users to explore Al outputs
dynamically, by setting adjustable parameters and performing scenario-based and what-if analysis.
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Notable examples include platforms such as NEAR [6], which present personalized disease risk scores
and their contributing factors through intuitive and clinically oriented visualizations. Additionally,
natural language explanations have been introduced to make Al recommendations more accessible to
non-experts [7, 8, 9]. Instead of displaying raw probabilities, XAl-enhanced systems generate human-
readable justifications, explaining why a particular diagnosis or treatment plan is suggested. This
approach is especially beneficial in patient-facing applications, where understanding Al decisions can
empower individuals to take an active role in their healthcare.

In this paper, we propose a machine learning and visualization tool that combines the effectiveness
and explanatory power of rule-based systems with the simplicity and immediacy of feature-based
visualizations. The proposed approach employs data-driven rules to forecast disease onset in patients,
highlighting the complex relations behind the predictions. Moreover, the contribution of each feature to
the diagnosis is computed based on the rules. For each patient, a risk score is calculated and decomposed
into the contribution of each feature. All this information—the rules, feature relevance, diagnosis, and
the contribution of each feature to the diagnosis—is presented in an interactive user interface. The
manuscript is structured as follows: Sec. 2 describes the algorithm to generate the rules and determine
feature relevance from the data; Sec. 3 presents the tools used to display the results to the end user;
Sec. 4 introduces some applications where the approach has been tested; Sec. 5 describes the dashboard
developed to visualize the results; and Sec. 6 summarizes the contribution of the presented tools for the
XAI community.

2. Logic Learning Machine: an algorithm for data-driven rule
generation

Rule-based models are very powerful to explain why a decision was suggested by an Al system. The
simplest way to define a rule is by combining a premise and a consequence: IF <premise> THEN
<consequence>. The premise contains the conjunction of some conditions about the inputs while the
consequence contains the output of the system, i.e. the quantity to be predicted. This could be an
example of rule:

IF X = {A, B} AND Y < 10 THEN Output = C

As the example shows, conditions could involve both categorical variables (i.e. for which an ordering
cannot be imposed) and numerical attributes. Also, the output could be categorical (in this case the
problem is referred to as classification) or numerical (regression), even if in this paper we only consider
the first case. Several approaches have been proposed in literature to generate rules from data. The most
popular technique is Decision Tree, that iteratively divides the dataset in smaller subsets. This divide-
and-conquer approach provides an easy-to-understand classification, but the classification accuracy is
usually poor. For this reason, ensemble approaches, such as Random Forests, aim at combining several
rule set to achieve a richer and more accurate model of the system. In general, rules could be disjoint
(like in Decision Trees) or overlapping (like in Random Forests). Overlapping rules have been proven
[10] to allow a more accurate classification and to better highlight the most relevant features for the
classification. In this paper, we focus on Logic Learning Machine (LLM) [11], a method capable of
generating accurate overlapping rules. The approach of LLM [12] consists in transforming the data
into a Boolean domain where a Boolean function for each output value is reconstructed starting from a
portion of its truth table with a method described in [13]. The rules are therefore created through four
steps: (a) Discretization; (b) Latticization or Binarization; (c) Synthesis of Positive Boolean functions; (d)
Rule generation.

Step (c) constitutes the core of the approach and requires proper algorithms to build a Boolean
function that maximizes the accuracy of the model. As a matter of fact, the Boolean function should
avoid overfitting, i.e. excessive adherence of the model to the experimental data, and underfitting, i.e.
poor effectiveness in describing the available data. To reach this goal, the Shadow Clustering algorithm
[13] is usually adopted for Boolean function reconstruction: it makes use of several metrics aimed at



maximizing the ability of the rule to describe the data as well as at minimizing its complexity (i.e. the
number of conditions it includes).

2.1. Evaluating the quality of rules

Rules can be characterized by different metrics that measure their effectiveness in describing the training
set. Each rule is said to cover an example x if its premise matches x. The examples covered by a rule
are called positive, while those not covered are called negative. A true positive is a positive example
whose output matches the output of the rule, whereas the output of a false positive differs from that of
the rule. Similarly, true negative and false negative cases can be defined. The simplest indicators for a
rule are covering (or true positive rate) and error (or false positive rate), which account for the fraction of
cases correctly and incorrectly described by the rule, respectively. The balance between covering and
error is crucial to ensure that rules are general and effective in describing the data. LLM allows for the
calibration of the amount of error in a rule, and usually, permitting a small amount of error is beneficial
for the quality of the rules.

In addition to these rule-related indicators, metrics for each condition can also be introduced. In
particular, we can compute how covering and error change when the studied condition is removed.
Since removing a condition corresponds to eliminating a constraint, covering and error usually increase
(or remain unchanged). The increase in error, in particular, is a strong indicator of how important the
condition is within the rule. If the error increases significantly, the condition cannot be eliminated
without heavily affecting the quality of the rule and is therefore essential. Conversely, a small increase
in error corresponds to a condition that could be removed without causing significant damage. Let
AE,(c) be the increase of error in rule r after removing condition c.

2.2. Computing the relevance of features

The importance of conditions in a rule can, in turn, be used to compute the relevance of attributes
associated with each condition. By summing AE,(c) over all the rules and all the conditions associated
with attribute x;, the absolute relevance R(x;) of x; is computed. If the sum is limited to the rules whose
output class is y, the relative relevance R,(x;) is computed.

Additionally, it is possible to compute a relevance R%(x;) for each subset S; C X; of the domain of
x; by summing AE,(c) only for the conditions that contains S;. For categorical inputs this corresponds
to evaluate the relevance of each possible value, while for ordered variables, a relevance score can be

associated with every interval. Similarly also the relative relevance Rf}(xi) can be associated with each
subset of X;.

3. Rule visualization, evaluation and feature ranking

Understanding and interpreting the rules generated by AI models is crucial, especially in medical
applications where explainability is fundamental. The Rulex Platform® provides multiple tools to
visualize, evaluate, and manage rules, making it easier for users to explore the relationships between
variables and assess the impact of different conditions. In this work we show how four key components
can support stakeholders in making more informed decisions: the Feature Ranking, the Rule Viewer, the
Rule Manager, and Rulex Studio. These tools are currently used in several fields, such as logistics and
financial services, but here we focus specifically on the applications in healthcare problems.

Feature Ranking. The Feature Ranking tool provides a quantitative assessment of how different
input attributes contribute to the predictive model, directly leveraging the metrics introduced in Sec. 2.
Specifically, it utilizes the concept of error variation (AE,(c)) discussed in Sec. 2.2 to determine the
importance of each condition within a rule. By aggregating these variations across all rules, the

'https://www.rulex.ai/



system computes both the absolute relevance of an attribute—reflecting its overall impact on model
predictions—and the relative relevance, which quantifies its importance within a specific output class.

The Feature Ranking interface allows users to explore these computed relevance scores interactively.
Attributes can be sorted based on different criteria, such as their absolute importance or their specific
contribution to a given diagnosis. Additionally, for categorical variables, the tool evaluates the relevance
of individual values, while for numerical attributes, it highlights key threshold intervals that significantly
affect the model’s decision-making process.

Rule Viewer. The Rule Viewer provides an interactive environment for visually exploring rule-based
models, offering intuitive representations of extracted rules and their relationships with input attributes.
Figure 1 shows an example of the Rule Viewer applied to the Alzheimer’s Disease dataset presented in
Sec. 4.1.

The central rule chart constitutes the core visualization element. The outer circular ring represents
input attributes, sorted by their absolute relevance, with each segment corresponding to a specific
attribute. Attributes are colored and annotated to distinguish nominal (N), integer (I) and continuous
(C) types. Within this outer ring, circles represent individual rules, grouped according to the predicted
output class (e.g., Control or Sick). The size of each circle is proportional to the rule’s coverage, while
the hole in the center reflects the associated error rate. Hovering over any rule (as shown in the figure
for Rule #12) reveals its logical conditions, displays detailed metrics such as covering and error, and
highlights the corresponding attributes on the outer ring to visually link the rule to its defining features.

The interactive settings panel on the right-hand side enables users to dynamically adjust visualiza-
tion parameters, such as the number of attributes displayed, attribute sorting criteria, and relevance
thresholds.

Figure 1: Example of the Rule Viewer applied to Alzheimer’s Disease prediction. The left panel shows detailed
information for a specific rule (Rule #12), while the right panel provides interactive settings to dynamically adjust
visualization parameters.

Rule Manager. The Rule Manager task offers a structured interface for inspecting, refining, and
optimizing rule-based models. It is especially valuable when working with large rulesets that require
manual adjustments. The tool provides a spreadsheet-like environment where users can filter, sort, and
modify rules, adjusting conditions or output values as needed. Additionally, a history tracking feature
allows easy review and reversal of changes, ensuring flexibility and control over rule modifications.

Rulex Studio. Rulex Studio is an advanced visualization tool that enables users to create interactive
dashboards for analyzing Al-generated models. Unlike previous tasks, which focus primarily on rule
inspection and refinement, Rulex Studio provides a broader visualization framework, supporting data
exploration and model presentation. The main component of Rulex Studio is the View, a customizable
workspace where users can design graphical representations of their data. The platform includes
various options for adjusting layout configurations, importing views, and integrating plots. This
flexibility makes it an ideal tool for presenting explainable Al models to clinicians and other stakeholders.



4. Selected applications in healthcare problems

Medical Al applications must be designed to meet specific clinical needs, ensuring that predictive models
provide transparent, reliable, and actionable insights for healthcare professionals. In this study, we focus
on two case studies: Alzheimer’s disease and Acute Myeloid Leukemia (AML), both severe conditions
where early detection and prevention are crucial for improving patient outcomes. By applying our
rule-based approach to these diseases, we aim to demonstrate how interpretable predictive models can
support clinicians in identifying at-risk individuals and making informed decisions to enhance early
intervention strategies.

4.1. Alzheimer’s Disease

For Alzheimer’s disease, we used a dataset [14] consisting of health records from 2,149 patients aged 60
to 90, with 35 attributes covering demographics, lifestyle, medical, and cognitive factors. Key variables
included cognitive assessments like the Mini-Mental State Examination (MMSE) and Activities of Daily
Living (ADL) scores, as well as functional and behavioral indicators of cognitive decline. The dataset
included a binary Alzheimer’s diagnosis, enabling a classification task to distinguish between healthy
(Control) and at-risk (Sick) individuals.

To develop an interpretable predictive model, we applied LLM, conducting an extensive fine-tuning
of its parameters. We evaluated multiple configurations using a 70-30% training-test split, selecting the
optimal setup to balance accuracy and generalization. The final model produced 11 rules for the Control
class and 7 for the Sick class, with each rule containing between 1 and 15 conditions. The model’s
final performance, summarized in Table 1, demonstrated strong predictive capability, confirming the
effectiveness of rule-based learning for Alzheimer’s risk assessment.

Control Sick
Training 92.6% 93.9%
Test 90.6% 89.2%

Table 1
Classification performance of the Logic Learning Machine model on the Alzheimer’s dataset. Accuracy values
are reported for both the training and test sets, distinguishing between Control and Sick classes.

4.2. Acute Myeloid Leukemia

For Acute Myeloid Leukemia (AML), we utilized a dataset derived from the study by the Weizmann
Institute of Science [15], containing 497 patient records, of which only 83 corresponded to individuals
who later developed AML. The dataset included age, sex, and the Variant Allele Frequencies (VAF) of 22
genes, known to be associated with clonal hematopoiesis and leukemia onset.

This study is part of the broader SInISA project?, which aims to develop predictive screening methods
for hematological diseases through genetic and Al-driven analysis. Given the small dataset size and
the class imbalance, we conducted fine-tuning of Logic Learning Machine parameters using a 70-30%
training-test split, but classification performance was lower compared to the Alzheimer’s model. The
final model generated 40 rules, with 24 rules for the AML class and 16 for the Control class, each
containing up to 10 conditions. Despite the classification challenges, the extracted rules aligned with
findings from the Weizmann study, reinforcing the known biological patterns: mutations in certain
genes (e.g., DNMT3A, TET2, SRSF2, ASXL1, TP53) are commonly found in healthy aging individuals
but exceed a critical threshold in those likely to develop AML. This result supports the SInISA project’s
goal of identifying early genetic markers for leukemia risk, highlighting the potential of rule-based
models in predictive medicine.

*https://progettosinisa.it/



5. A Dashboard for prediction and model evaluation

To make the results of explainable models more accessible and clinically meaningful, we developed an
interactive dashboard using Rulex Studio, a flexible environment for building custom data visualizations.
The dashboard supports both model evaluation and in-depth exploration of individual predictions, with
the primary goal of providing transparent, patient-specific risk assessments.

A key innovation of our approach is the transition from binary classification to the computation
of a personalized disease risk. Based on the analysis of the Logic Learning Machine rule conditions
and feature relevance, each patient is assigned a percentage risk score that quantifies the likelihood of
disease onset. The following subsections illustrate the dashboard’s main functionalities, using examples
based on the Alzheimer’s use case.

5.1. Personalized risk assessment

The central feature of the dashboard is the ability to compute and visualize a personalized disease risk
for each patient. The patient’s risk is calculated starting from a baseline risk, derived from the training
dataset. Each attribute of the patient contributes positively or negatively to this baseline, based on the
relevance of its specific value. These contributions are derived from the relevance analysis of Logic
Learning Machine at the condition level.

As illustrated in Fig. 2, the top-left panel shows the final risk score, with a visual indicator of how
far it deviates from the base value. Below, a radial contribution chart displays the impact of each
attribute, distinguishing between those increasing (red) and decreasing (green) the predicted risk. On
the right, a dual plot shows the cumulative effect of each variable, sorted by relevance: the upper
section tracks the progressive build-up of the final score, while the lower plot quantifies the individual
contributions of all features. This representation provides a clear explanation of both the prediction and
its underlying rationale. A similar strategy has been adopted in platforms such as NEAR [6], reinforcing
the importance of combining quantitative risk scores with intuitive, patient-specific visualizations.

Patient Overview

Patient Risk (%) Feature Analysis

40 60

=63= Cumulative Relevance
= Total Base Value
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Feature Risk Contribution
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Figure 2: Patient-specific risk analysis panel. The overview shows the final risk estimate (top-left), while the
radial chart (bottom-left) decomposes contributions by attribute. The right-hand plots show the cumulative
relevance and feature-wise impact relative to the base risk.

5.2. What-if scenarios and patient editing

Beyond evaluating existing patients, the dashboard allows users to manually edit or create new patient
profiles, enabling powerful “what-if” analysis. This feature is especially useful for exploring hypothetical
situations and assessing how changes in specific attributes influence the final risk of the disease.



Each time a variable is modified, the system instantly recalculates the overall risk and updates the
visual explanations, allowing users to quickly assess the impact of individual changes. This makes it
possible to simulate the effects of lifestyle or clinical interventions and to identify which variables drive
risk the most, supporting more informed and personalized prevention strategies.

5.3. Automated report generation

The dashboard also includes a report generation feature that produces a two-page summary for each
patient. This report consolidates all key insights: patient’s input data, predicted risk score, the contribu-
tion of individual features, and supporting visualizations such as risk indicator and feature contribution
chart. Each section of the report is accompanied by clear captions explaining how to interpret the
data, making it suitable for sharing with clinicians or for integration into broader diagnostic workflows.
Reports can be generated for patients in the dataset or for manually created profiles, supporting both
retrospective analysis and scenario testing.

5.4. Model summary and rule overview

While the main focus of the dashboard is on personalized patient analysis, it also includes a global
view summarizing the behavior and internal logic of the model. This view provides access to essential
evaluation metrics, such as feature ranking and rule visualization, which offer insight into how the
model generalizes across the dataset. The feature ranking panel highlights the attributes that most
influence the model’s predictions, computed using the relevance scores assigned by the Logic Learning
Machine. These scores reflect the importance of each feature value in shaping the classification rules
and, consequently, the calculated risk. The ranking can be customized and sorted according to different
criteria. The rule manager displays all the rules extracted by the model, color-coded by class and
organized by complexity and coverage. Users can filter rules based on the attributes they include,
inspect their logic, and visualize associated metrics such as covering and error.

Model qualty

Model Validity

\\\\\\\\\\\\\\\\
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Figure 3: Visualization of model performance and rule-based decision logic in the dashboard. The left panel
displays the Feature Ranking and confusion matrix, while the right panel shows the Rule Manager, where
extracted rules are color-coded by class and can be filtered based on attributes.

6. Contribution to XAl Community

This work presents tools to enhance transparency in Al-supported medical diagnosis. The rule-based
approach is essential to convey complex relations in a human-readable format. Nonetheless, effective Al
algorithms may not be sufficient to enhance trust among decision-makers. The approach proposed in
this work aims to overcome this limitation by providing both data-driven rules to support the diagnosis
and a user interface to enable stakeholders to utilize the derived insights. The combination of powerful
XAI algorithms and an interactive interface may ultimately foster users’ trust, as shown in the two case
studies presented.
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