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Abstract
Explainable artificial intelligence (XAI) methods provide insights into machine learning models by making their
decision processes more transparent for humans. Ideally, such transparency enables users to trust the AI to
an appropriate extent, with understanding both its capabilities and limitations for the given task. However,
evaluations of XAI methods rarely assess their impact on users’ perceived trust alignment with actual model
capabilities. In fact, a recent survey reveals that 80% of published work introducing an XAI method does
not include user studies. To bridge this gap, we introduce SkinSplain, a web-based framework designed for
measuring users’ perceived trust in AI systems when interacting with both numerical and visual interpretability
cues. SkinSplain allows users to provide inputs to a machine learning model and observe its explanations for
predictions. Crucially, users then self-report their level of trust in the model’s predictions. These trust scores
facilitate further analysis in user studies. Given the increased popularity of AI-based skin lesion analyzers, we
employ SkinSplain in a user study to examine how explanation methods influence trust in AI-driven medical
diagnostics. The source code is available at https://github.com/Ti-Kat/SkinSplain.
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1. Introduction

It is challenging to understand and explain the factors contributing to an AI systems prediction. In a
recent example, Winkler et al. found that markings by standard surgical ink markers in skin lesion
images lead to significant changes in AI predictions [1]. That is due to biases in the training data,
where some artefacts of medical doctors in the images correlate with high risks of the skin lesion being
malignant. Such biases in the training data can cause the AI system to fail when employed on real-world
data.

Trust is widely recognised as a central variable explaining user’s resistance or over-reliance in
automated systems [2]. Here, we consider trust from a strictly psychological perspective [3], derived
from interpersonal trust [4], which was translated into trust in automation [2] and therefore synthetic
relationships [5]. Further, trust calibration in AI refers to the alignment between a user’s trust in an AI
system and the system’s actual capabilities. It involves preventing overtrust, where users blindly use
an incapable AI system, and undertrust, where users refuse to use the AI system, despite the system’s

Late-breaking work, Demos and Doctoral Consortium, colocated with the 3rdWorld Conference on eXplainable Artificial Intelligence:
July 09–11, 2025, Istanbul, Turkey
∗Corresponding author.
∗∗Work done while at Research Center Trustworthy Data Science and Security.
†
These authors contributed equally.
Envelope-Open tim.katzke@tu-dortmund.de (T. Katzke); mustafa.yalciner@tu-dortmund.de (M. Yalçıner); jan.corazza@tu-dortmund.de
(J. Corazza); alfio.ventura@uni-due.de (A. Ventura); tim-moritz.buendert@kit.edu (T. Bündert)
GLOBE https://corazza.github.io/ (J. Corazza); https://rc-trust.ai/about/scientists/alfio-ventura (A. Ventura)
Orcid 0009-0000-0154-7735 (T. Katzke); 0009-0005-6240-7062 (M. Yalçıner); 0009-0000-1342-0117 (J. Corazza);
0000-0003-1639-8001 (A. Ventura); 0009-0000-7228-6106 (T. Bündert); 0000-0002-5409-6875 (E. Müller)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

https://github.com/Ti-Kat/SkinSplain
mailto:tim.katzke@tu-dortmund.de
mailto:mustafa.yalciner@tu-dortmund.de
mailto:jan.corazza@tu-dortmund.de
mailto:alfio.ventura@uni-due.de
mailto:tim-moritz.buendert@kit.edu
https://corazza.github.io/
https://rc-trust.ai/about/scientists/alfio-ventura
https://orcid.org/0009-0000-0154-7735
https://orcid.org/0009-0005-6240-7062
https://orcid.org/0009-0000-1342-0117
https://orcid.org/0000-0003-1639-8001
https://orcid.org/0009-0000-7228-6106
https://orcid.org/0000-0002-5409-6875
https://creativecommons.org/licenses/by/4.0/deed.en


reliability [6]. Proper trust calibration ensures users’ confidence matches the AI’s performance, leading
to more effective decision-making and collaboration [6]. Accordingly, we understand trust-calibration as
an alignment problem between subjective trust perception of the human and objective trustworthiness
of the technical system [6, 2, 7].

Demonstrating to AI system users that they can control and evaluate the quality of input data on
which AI predictions are performed can significantly enhance their ability to calibrate trust towards
such systems [6, 8]. For example, allowing users to interact with the AI system and explore its behaviour
on various inputs can help users build a nuanced understanding of when AI predictions are trustworthy
and when human oversight is required. This, in turn, allows them to discern how manipulations to
input data influence and may enhance the performance and trustworthiness of AI predictions.

However, this type of controllability is underexplored in the literature focusing on Explainable
AI and trust in AI. In fact, a recent survey highlights that only one in five papers proposing a new
XAI method conducts any form of user survey [9]. This highlights two problems in the current XAI
research. First, new explainability methods are usually not evaluated on real user studies. Therefore,
it remains unclear, which XAI method actually help calibrate users’s trust in the AI model. Secondly,
it remains underexplored how a user’s ability to interact with the AI and select inputs for which the
system performs well or poorly impacts the trust calibration. More specifically, recent reviews on trust
calibration [6], trust in AI [10, 11, 12] as well as the “unified and practical user-centric framework for
explainable artificial intelligence” [13], and experimental studies [14] do not address how explaining the
role of human-controlled inputs in enhancing the performance of technical systems may help develop
calibrated trust. Therefore, current literature falls short in guiding users of technical systems on how to
achieve a collaborative performance that exceeds the capabilities of either humans or technical systems
operating independently.

To close this gap, we design the web application SkinSplain. SkinSplain is a framework designed for
aiding the explainability of an AI system by allowing the user to explore the system’s behaviour on
various inputs and understand model behaviour with the visual explainers. This interactive approach
enables the user to investigate the nuances in the model’s predictive performance, while being supported
with explainers that facilitate model understanding. Crucially, the user can then report a trust score for
each of the inputs, allowing for a subsequent analysis in a broader user study.

We demonstrate the use of SkinSplain practically and employ our framework in a preregistered
study on skin cancer detection 1. More specifically, we investigate whether (1) explaining how the AI
model generates predictions and (2) showing inputs for which the AI systems’ predictive performance
deteriorates, leads to more calibrated trust in the AI system among laypeople.

2. Related Work

Whether layperson or expert, anyone who wants to evaluate new information with an established AI
system must provide input data. Such highly interactive AI systems, which depend on high-quality user-
controlled input, are relatively new. For example, large language models like ChatGPT and image-based
applications like Foodvisor 2 are used in everyday life, and generate outputs based on whatever input is
given. We were specifically inspired by skin cancer detection and prevention due to its high practical
relevance [15, 16], current developments [17, 18, 19] and strong data availability [20]. SkinVision 3 and
FotoFinder 4 are commercially available, clinically validated, regulated and certified applications that
provide an AI prediction based on a photo of a skin lesion. This is done, for example, by automating the
quantification of the ABCD rule [21] (Asymmetry, Border, Color, Diameter), by displaying the image
areas that are particularly important for the prediction, or by assigning a score that indicates the overall
risk.

1https://aspredicted.org/2ryf-7y88.pdf
2https://www.foodvisor.io/en/
3https://www.skinvision.com/
4https://www.fotofinder.de/en/
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Currently, research on human controllability in such systems remains limited compared to more rigid,
less interactive AI systems with low human-controllable aspects —as seen, for example, in AI-assisted
decision-making [22, 23, 24]. A user’s perceived control is essential in determining the user’s intention
to use a technical system [8], a stepping stone to actual usage experience [25, 26]. Thus, perceived
control is also essential for optimal trust calibration that results from extensive usage experience.
Theoretical considerations on trust in automation [2] emphasize that understanding the functionalities,
strengths, weaknesses, and limitations of technical systems is crucial for trust calibration. This leads
to an understanding when the technical system should and should not be used [7]. However, an
understanding of the limitations —an understanding of the human-controllable elements of prediction
quality— could lead to behavior fostering improved performance and trustworthiness in all situations
and go beyond the general decision of usage. In fact, a series of studies [8] indicate that participants
were more willing to use an imperfect algorithm if they could control it slightly. To summarize,
emphasizing user controllability ensures that users obtain necessary learning experiences for long-term
trust calibration [8, 25, 26], ultimately fostering an appropriate level of trust in technical systems over
time [2].

3. The SkinSplain Framework

SkinSplain is a web-based framework that delivers real-time, interactive explanations of a classifier’s
decisions, enabling users to select and manipulate inputs while observing the immediate impact on both
model output and explanation quality. SkinSplain integrates mechanisms for participants to provide
self-reported trust measures directly within the interface. These perceived trust values may serve
as valuable ground truth for assessing user confidence, allowing researchers to compare subjective
evaluations with objective trust metrics, such as model predictive performance. As an application
domain, SkinSplain focuses on skin lesion classification, where images are categorized as benign or
malignant. This application not only underscores the practical relevance of the framework but also
highlights the importance of aligning explainability with both user trust and empirical performance
measures to ensure reliable and interpretable AI systems.

Figure 1: An overview of the SkinsPlain user interface. It consists of an area for image selection and augmentation
by the user (left side), real-time analysis results of the selected image based on XAI methodologies (right side)
and an input option for the user trust in these analysis results (bottom).



3.1. User Interface

The SkinSplain user interface, as shown in Figure 1, is divided into three sections.

Left Side (User-Controlled Input Selection) The left side of the interface provides users with direct
control over the input selection, while also displaying the current input image along with additional
metadata below. Users may load a new image from the ISIC skin lesion dataset [20] by clicking the
“New Image” button. Prior to selection, they can apply filters based on demographic attributes. Multiple
available drop-down menus correspond to categorical filters, such as age, diagnosis, sex, or lesion
location. For instance, selecting the “Body location” filter reveals options like “torso” or “hand”. To
emulate realistic variations in image quality, users can also adjust brightness, blur, and rotation via
interactive sliders, with changes immediately reflected on the screen. This functionality not only
ensures that the input data covers varying real-world conditions, but also allows the users to have more
influence over the input characteristics — a crucial factor in calibrating trust.

Still, to ensure ethical and responsible use, SkinsPlain is limited to publicly available ISIC data
and does not support user-uploaded images. This restriction helps mitigate privacy risks and ethical
concerns associated with applying an uncertified AI system to real user-provided medical images [27].

Right Side (XAI Analysis) Once the user clicks “Analyse Image”, the results of one more more
XAI methods are displayed on the right side of the interface within seconds, providing transparent
communication of the model’s internal decision-making processes. This transparency is essential for
users to assess how self-controlled input adjustments affect model predictions. We briefly outline the
currently integrated XAI methods below, and give a motivation and detailed explanations in Section 3.2.

• Melanoma Score – Prediction for the current input as benign or malignant on a scale of 1 to 10.
• Reliability Score – Assesses the reliability of the model’s prediction for the given input.
• Visual Explanation – Highlights image regions most significant on the prediction.
• Similar Images – Displays the most similar represented images from both classes.

Bottom (Measuring Users Perceived Trust) After reviewing the XAI analysis results, users can
submit their perceived trust in the model’s prediction via a slider at the bottom. The compilation and
evaluation of these perceived trust scores provide the necessary user trust self-report for systematic
user trust calibration analyses. For the demo, we opted for a simple, one-dimensional measurement of
trust perception. The basic SkinsPlain framework is designed for repeated presentation of inputs. We
recommended limiting self-report measures within the framework to avoid overburdening participants
and keep them motivated. These measurements become valid because of the repeated measures design.
We recommend incorporating the SkinsPlain framework into a larger survey akin to our preregistered
study if complex state and trait self-report measures are pursued.

3.2. AI Model and XAI Technologies

(a) Original image (b) Baseline (c) Blur + Brightened (d) Blur + Darkened

Figure 2: Comparison of a benign skin lesion (a) with visual explanations via Integrated Gradients saliency
maps for the original image (b) and after applying gaussian blur with increased (c) and lowered (d) brightness.



This section outlines the AI model and associated XAI techniques employed in our framework.

AI Model Foundation: Skin Lesion Classification Given that our image data is based on the
ISIC Challenge datasets, we referenced the winning solution from the 2020 ISIC Challenge [28] in
developing our skin lesion classifier AI model. The solution employed an ensemble of convolutional
neural networks (CNNs), based predominantly on the EfficientNet architecture. Since individual models
in the ensemble performed nearly as well as the full ensemble, we opted for a simpler, single-model
approach, based one a more recent variant of that architecture, to facilitate the application of standard
XAI methods. Specifically, we fine-tuned an EfficientNetV2-S model [29] , pre-trained on ImageNet,
for binary classification using images from the “Nevus” and “Melanoma” classes from a subset of the
ISIC datasets, while deliberately excluding metadata such as demographic attributes. Our skin lesion
classifier achieves an AUC-ROC of 0.9548 on an unseen test set drawn from the 2018 ISIC data.

Numerical AI-Trustworthiness Metrics: Melanoma and Reliability Scores The Melanoma Score
offers an intuitive measure of the classifier’s confidence, where a value of 0 indicates high confidence in
benign classification and 10 indicates high confidence in malignancy. This is based on the classifier’s
single-neuron output, passed through a sigmoid activation function. The displayed melanoma score is
obtained by linearly mapping the logit to a scale ranging from 0 to 10. Quantified on the same scale,
the Reliability Score indicates how closely an input image aligns with the training data distribution.
In essence, the further an input deviates from what the model is accustomed to, the less reliable its
predictions become. Providing users with a quantitative measure of this reliability is crucial for informed
decision-making. To that end, we calculate these scores for each input using a layer-wise variant of the
Deep k-Nearest Neighbors [30] algorithm. This identifies the 𝑘-nearest neighbors from the training set
within each layer of the skin lesion classifier, and computes a score that quantifies the consistency of
the latent behavior of the input as it is processed by the model. By reducing complex model outputs to
simple numerical indicators indicating objective trustworthiness— consistent in scale with the selectable
levels of subjective perceived trust — these scores facilitate trust calibration, and enable users to quickly
gauge the certainty and reliability of the current prediction. Long term, trust calibration for the given AI
model and domain (here skin cancer detection) emerges, which may be transferred to similar technology.

Visual Interpretability: SaliencyMaps and Similar Images Saliency Maps serve as a visual tool to
highlight the most influential features that affect the classifier’s decision. These influential features are
often determined by analyzing how changes in the input impact the model’s output [31]. We employ the
Integrated Gradients method [32] on a transparent version of the base image for its robust estimation
of feature importance, while also applying Gaussian noise to the output image to further smooth the
results. This method is included to enhance interpretability by transparently communicating which
input regions drive the classifier’s output, and how this may change under diverse image manipulations.
An example of this is visualized in Figure 2. Here it can be observed, that by increasing or decreasing
the brightness, the model focuses either more or less on irrelevant image artifacts outside the actual
skin lesion area. To communicate the behavior of the skin lesion classifier based on another visual
cue, we also optionally display Similar Images from the training dataset with respect to the internally
learned representation of the currently analysed image. This is performed for both a true melanoma
and a true benign image. More precisely, these most similar images are determined by identifying the
single nearest neighbors of either class in the representation space of the classifiers penultimate layer
based on eudclidean distance. This motivated by the goal of highlighting similarities and distinctions
between supposedly similar images with drastically different implications in a high-stakes environment.

4. Trust Calibration with SkinSplain

We now briefly outline potential research applications of SkinSplain for user trust calibration.



Evaluating XAI through User Interaction SkinSplain enables real-time, interactive exploration of
model predictions alongside their corresponding explainability outputs, allowing study participants
to investigate how input quality influences outcomes and to understand their role in a collaborative
prediction process. Adding survey questions to the XAI-setup allows for repeated assessment of
participant perceptions, facilitating interdisciplinary research, especially on trust calibration with its
deep perceptional-technical nature [6, 2, 7]. Moreover, SkinSplain allows for the evaluation of various
XAI methods, whether using a subset of the provided methods, or substituting alternative approaches,
to systematically assess their impact on perceived user trust. When interactivity is not essential, the
interface can be configured for fixed, survey-based studies (as shown in Figure 3 and advertised in our
preregistration), offering a controlled environment for online experiments with XAI.

Balancing Perceived Trust and Objective Trustworthiness In our framework, user trust is
shaped both by interactive, controllable inputs and by the interpretability cues presented. Trust
calibration involves balancing this trust—that is, how much perceived user trust is attributed to the
AI—with objective measures of the system’s performance (e.g., accuracy or reliability) that indicate the
trustworthiness of the system and howmuch trust should be placed into it. SkinSplain supports assessing
both measures; self-reported trust measures can be obtained in flexible user studies that investigate the
role of human controllable inputs and the influence of XAImethods on trust in conjunctionwith objective
model performance. This provides the necessary data to systematically analyse trust calibration [6, 2, 7].

Figure 3: Example stimuli for a static case study, along with potential questions to evaluate user trust.

5. Discussion and Outlook

We introduced SkinSplain, a web application framework designed to investigate how XAI methods
affect user behavior and trust perceptions. Our work demonstrates its use in user studies examining
trust in a skin cancer classifier, where participants evaluated visual explainers and reliability measures.
Although our current implementation targets the skin cancer domain, our framework is inherently
domain-agnostic. Moreover, its components can be easily replaced to support user studies across diverse
subsets of XAI methods. Looking ahead, we plan to extend our research with non-static user studies
that exploit SkinSplain’s interactive capabilities to further explore the influence of XAI on user behavior,
ultimately contributing to the development of more trustworthy AI systems.
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