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Abstract

Extended Nomological Deductive Reasoning (eNDR) is a novel Explainable Al framework that integrates causal
domain knowledge with deductive logic to deliver transparent, trustworthy predictions in dynamic, high-stakes
environments. Building on the original NDR model, eNDR handles continuous data, uncertainty, and real-time
inference by expressing domain laws as continuous functions, modeling conditions as constraints, and generating
explanations through differentiable reasoning and probabilistic integration. Early results show that eNDR
produces human-readable, domain-aligned explanations without sacrificing predictive performance, offering a
pathway toward Al systems that are both accurate and interpretable across domains such as healthcare, finance,
and criminal justice.

1. Context and Motivation for the Research

The integration of Explainable AI (XAI) into machine learning (ML) has become crucial due to growing
demands for transparency, fairness, and trust, especially in high-stakes areas like healthcare, finance,
autonomous systems, and criminal justice. As a matter of fact, many high-performing ML models,
such as deep learning architectures, lack interpretability, raising concerns about their decision-making
processes.

However, most current XAI methods struggle to produce explanations that are both human-
understandable and aligned with domain knowledge. This research builds on the previously proposed
Nomological Deductive Reasoning (NDR) framework, which combines deductive logic with causal
domain knowledge to improve interpretability, accuracy, and trust. At its core, the Nomological
Deductive Knowledge Representation (NDKR) allows Al systems to use structured knowledge bases,
enabling predictions supported by clear, logically consistent explanations.

The initial NDR approach was limited to static data. This research aims to extend it (eNDR) to handle
continuous data, uncertainty, and complex real-world conditions, leading to more generalizable, robust,
transparent and accountable explainable Al model.

2. Key Related Work

The field of Explainable AI (XAI) has produced over 200 techniques aimed at improving model trans-
parency. Popular model-agnostic methods like LIME and SHAP offer post hoc explanations by ap-
proximating black-box decision boundaries but often lack domain-specific reasoning, limiting their
effectiveness in expert-driven fields.

Inherently interpretable models—such as decision trees and rule-based systems—offer more
understandable outputs but typically sacrifice predictive performance, highlighting the persistent
trade-off between accuracy and interpretability in XAl
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A promising alternative is the Nomological Deductive Reasoning (NDR) framework, which balances
performance with explanatory depth by integrating deductive logic and causal domain knowledge
through the Nomological Deductive Knowledge Representation (NDKR). Inspired by Hempel’s covering
law model, NDR aims to provide logically structured, cognitively satisfying explanations.

Originally proposed by Hakizimana and Ledezma Espino, NDR was limited to static, deterministic
settings. To address real-world complexity, the extended version—eNDR—introduces probabilistic
reasoning, continuous data handling, and real-time inference, making it more applicable to dynamic,
high-stakes domains like healthcare, finance, and criminal justice.

3. Research Questions, Hypothesis, and Objectives

3.1. Research Questions
This research will explore the following key questions:

1. How can the Nomological Deductive Reasoning (NDR) framework be extended to handle continu-
ous data and domain-specific uncertainty while preserving the interpretability and trustworthiness
of the Al model’s explanations?

2. How can the integration of structured knowledge and causal reasoning improve the transparency
and explainability of Al systems in high-stakes applications?

3.2. Hypothesis

By modeling the Nomological Deductive Reasoning approach through the expression of laws as contin-
uous functions; conditions as constraints on data instances; predictions as a function of data instances,
laws, and conditions; and explanation as an integral summing over all possible laws and conditions
capturing the cumulative effect of how they interact with the data, the NDR framework can handle con-
tinuous data and complex real-world scenarios. In addition, using probabilistic settings and considering
the prediction task as an optimization process can enhance the interpretability and transparency of
NDR-based predictions in domains with complex data and uncertainty.

3.3. Objectives

1. To extend the NDR framework to accommodate continuous data and uncertainty through ad-
vanced mathematical methods like calculus and optimization techniques.

2. To test the effectiveness of the extended NDR framework in generating human-comprehensible
explanations that are aligned with domain-specific knowledge.

3. To evaluate the performance of Al models using the NDR framework in real-world applications,
such as healthcare, finance, or criminal justice.

4. Research Approach, Methods, and Rationale for Testing the
Hypothesis

The research approach is structured around the extension of the Nomological Deductive Reasoning
(NDR) framework.The inclusion of probabilistic models and uncertainty quantification within NDR
allows the system to account for variations in the input data and make robust, well-grounded predictions
even in the face of noise or uncertainty, enhancing both the model’s reliability and its interpretability
when making decisions on complex data.



4.1. Expressing Laws (L) as Continuous Functions

In our initial development of NDR framework, we have assumed the following:

Laws (L)
Let L represent the set of laws or rules governing a certain real-world domain (e.g., healthcare diagnosis,
bank credit score, traffic code for mobility applications, criminal justice, etc.). These laws are formalized
as logical statements or principles that provide the foundation for reasoning in the system. Each law
L; € L corresponds to a specific rule or law within the system.

Example (in medical settings):

« Lj: “If a patient has high blood pressure and is over 60 years old, then they are at a high risk of
cardiovascular disease.”

« Lo: “If a treatment is an ACE inhibitor, it lowers blood pressure.”

Conditions (C)
Let C denote the set of antecedents or conditions that must hold true in order for a law to be applicable
to a particular data instance. Each condition C; € C'is a prerequisite that must be satisfied for the
corresponding law to be activated or relevant.

Example (in medical settings):

« (: “Patient has high blood pressure.”
« (y: “Patient is over 60 years old.”

Data Instances (D)
Let D = {d1,do,...,d;} represent the set of input data fed into the Al system. Each d; € D represents
a specific data sample.

Example (in medical settings):

« dj: A data sample where the patient has high blood pressure and is 65 years old.
« dg: A data sample where the patient has normal blood pressure and is 45 years old.

Hypothesis or Prediction (H)
Let H = {h1, ho, ..., hy} represent the set of predictions or outcomes generated by the Al model. Each
h; € H corresponds to a specific prediction for the instance d;.

Example (in medical settings):

« hy: “The patient is at high risk for cardiovascular disease.”
« ho: “The patient is not at high risk for cardiovascular disease.”

Formalized Deductive Inference
The key goal of the NDR framework is to use deductive reasoning to formalize how the Al model
generates a prediction h; based on the combination of conditions C' and laws L applied to the input d;.

Vd; € D, Hhisuchthat(Cl/\Cg/\---/\Cn/\Ll/\Lg/\-~-/\Lm)l—hi
Where:

« d; € D is an input data instance.

« C1,Cs,...,C, are the conditions (e.g., patient characteristics like age, blood pressure).
o L1,Lo,..., L, are the domain laws (e.g., risk relationships).

+ |- denotes deductive reasoning leading to prediction h;.



Formalized Explanation Generation
Once we have the laws, conditions, and input data, the explanation E; for the prediction h; can be

expressed as:

E; = f(L,C,d;) = h;
Where:

+ Ej is the explanation for prediction h;.
« f is the function describing how L, C, and d; combine to produce h;.

« = indicates the logical flow from input to prediction.

In this research, the first step is to model the domain laws as continuous functions. These laws
describe relationships between input variables and outcomes or predictions, and can be formalized as
continuous functions that capture gradual changes in dynamic systems or continuous data. For example,
in the medical domain:

L; :R" - R, L;(x) = some relationship between conditions

Example:
BloodPressure - Age
La(z) = 1 &
+ Age
This equation models how the interaction between a patient’s blood pressure and age influences

cardiovascular risk.

, where x = [BloodPressure, Age]

4.2. Conditions (C) as Constraints on Data Instances

Conditions are modeled as constraints that must hold true for the corresponding laws to be applicable.

These are represented as indicator functions:

Cj(z) =

1 if condition j holds true for instance x
0 otherwise

Example (in medical settings):

0 otherwise

1 if blood pressure is high
R Cl($) _{ P g

This ensures that the system only applies relevant laws when the conditions are satisfied.

4.3. Data Instances (D) and Their Continuous Representation

Data instances z are treated as vectors in an n-dimensional space, representing different entities in the
real world. For example, in healthcare, the vector

x = (BloodPressure, Age, . . .)

could represent a particular patient’s characteristics. The data set D is formalized as:

reDCR"”

Each z represents an instance with n features that are used in the model.



4.4. Hypothesis or Prediction (H) as a Function of Data

The Al model generates a prediction h; as a function of the data instances, laws, and conditions. This
can be represented as:

hl(l‘) = f(Ll,LQ, e ,Lm,C’l,Cg, e ,Cn,x)

Where f is a function that maps input data to a prediction. This function can take various forms,
such as linear, non-linear, or other suitable formulations depending on the model’s complexity.

4.5. Formalized Deductive Inference Using Differentiable Functions

To formalize the inference process, we use calculus to express how the prediction h;(x) changes with
respect to the input data x. The derivative of h;(z) with respect to x is computed as:

dhi(z) =~ OLj(x

This derivative represents how sensitive the prediction is to changes in the input features. The term
%ﬁ” represents how the laws L; change with respect to the input, and Cj(x) ensures that the law

applies only when the condition holds.

4.6. Formalized Explanation Generation As an Integration Task

The explanation F; for a prediction h; can be generated by integrating over the laws and conditions
that contributed to the prediction. This can be expressed as:

EZ-:/C/Lf(LC,x)deC

This integral sums over all possible laws and conditions, capturing the cumulative effect of how they
interact with the data. In a probabilistic setting, we can also use a Bayesian approach:

Ei:/LP(L|:n)dL

Where P(L | z) represents the posterior probability of law L given the data instance .

4.7. Formalized Deductive Inference as Optimization

In Al systems, particularly those utilizing machine learning, the inference process is often optimized
through a loss function. Hence, the optimization problem can be formalized as:

N
h; = arg min Zz; L(hi(x;0),y;)

Where L is the loss function (e.g., mean squared error), hi is the predicted outcome based on model
parameters 6, and y; is the true label. The parameters 6 represent the weights associated with the laws,
conditions, and other model components. We propose the architecture of the extended NDR framework
as per the illustration in Figure 1.
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Figure 1: Block diagram of the extended Nomological Deductive Reasoning (eNDR) framework.

4.8. eNDR Application Scenario

Let’s consider the task of predicting the likelihood of a heart attack or stroke based on various risk
factors. In this scenario, eNDR framework can be used to model causal relationships from cardiovascular
theories, linking the disease to various risks. eNDR then applies the deductive reasoning on complex
factors, handles uncertainty, and explains predictions based on the laws governing the medical domain
(e.g., age, cholesterol, smoking habits). Any black-box learning model can be used to extract features
from the dataset, and by eNDR the output is human-readable knowledge-based explanations.as captured
on figure 2.

Sample 1:
Model prediction: High risk of CVD (probability: 0.898)
True label: Has CVD
Beasoning based on medical domain laws:
1. Gender indicates male (activation: 0.871) which is risky according to medical laws

2. Rge (value: 56.0 years) is over the threshold 50 years (activation: 0.843) which is risky according to medical
laws

3. Max heart rate (value: 9E.0 bpm) is under the threshold 120 bpm (activation: 0.743) which is risky according
to medical laws

4. Cholestercl (walue: 203.0 mg/dl) is below the threshold 240 mg/dl ({activatiom: 0.031) and is not risky
according to medical laws

Figure 2: Sample output of eNDR human-readable knowledge-based explanations.

4.9. Metrics for Model Validation

To validate the extended NDR framework with a focus on complex data and uncertainty, a complex
health dataset (e.g., the Framingham Heart Study dataset) will be used. This dataset involves multiple
features with both causal relationships and uncertainty (due to missing data, variable progression, and



noise), which makes it an excellent candidate for demonstrating the effectiveness of eNDR in providing
transparent and interpretable explanations grounded in causal knowledge.

The key metrics will include prediction accuracy to measure the algorithmic performance, uncertainty
handling and rule coverage to measure its loyalty to Knowledge Base, as well as reasoning transparency
and user trust measurement to evaluate eNDR trustworthiness.

5. Preliminary Results and Contributions to Date

Preliminary results show that integrating domain-specific laws into machine learning models enhances
interpretability without compromising performance. Early tests in finance reveal that the NDR frame-
work produces explanations aligned with human reasoning, offering clear insights into decision-making.
Unlike methods such as Causal Inference, Neuro-Symbolic Reasoning, Knowledge Graphs, LIME, and
SHAP, which often cater to technical users, NDR focuses on intuitive, domain-grounded explanations,
which is key to trust in Al-powered solutions.

6. Expected Next Research Steps and Final Contribution to Knowledge

The next steps involve refining the NDR framework to handle larger, more complex datasets and
incorporate probabilistic reasoning to account for uncertainty in real-world data. We will also evaluate
the framework in additional domains, such as finance and criminal justice, to assess its generalizability.

The final contribution of this research will be a novel framework for Explainable Al that combines
deductive reasoning with domain-specific knowledge, offering a pathway for building more transparent
and trustworthy Al systems. This work will also provide insights into how structured knowledge and
causal reasoning can be embedded into machine learning models without compromising performance.
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