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Abstract

Evaluating Explainable AI (XAI) methods, particularly local feature attributions on tabular data, is hindered
by a lack of standardised benchmarks and objective metrics. This research introduces a novel technique to
address this gap. We propose a methodology for generating synthetic ground-truth datasets with known feature-
target relationships, enabling objective evaluation. The proposed solution includes the Explainability Fidelity
Assessor (XFA) to quantify interpretation faithfulness (completeness, conciseness, sensitivity) and the Optimum
Explainability Score (OPS) to assess objective explanation quality (simplicity, completeness). Preliminary results
using LIME and Anchor demonstrate the ability to compare XAI methods objectively. This work contributes to
the creation of XAI groundtruth datasets and the development of novel evaluation metrics (XFA, OPS), aiming to
enhance the reliability and comparability of local XAI methods.

1. Context and Motivation

Machine learning (ML) models are increasingly deployed in critical domains, yet complex models often
function as black boxes, hindering understanding of their decision-making processes. Explainable
Artificial Intelligence (XAI) aims to address this by providing insights into model behaviour [1]. Under-
standing how a model makes a prediction is crucial for debugging, building trust, ensuring fairness,
promoting accountability, and enabling user interaction [2, 3]. For instance, in healthcare, knowing
which patient features drive a high-risk prediction is vital for clinical decision-making [4].

Despite the proliferation of XAl methods, evaluating their effectiveness remains a significant challenge
[3]. Akey problem is the lack of standardised benchmark datasets with known ground truth, particularly
for evaluating local explanations (explanations for individual predictions). Without such datasets,
comparing different XAl techniques objectively is difficult. Furthermore, there’s no universally accepted
definition or framework for assessing explanation quality, leading to inconsistency and concerns
about generalisability [5, 6]. The field often conflates inherent model interpretability with post-hoc
explainability as in [7, 8]. It sometimes relies on subjective human evaluations [9], which, however, are
costly, difficult to scale, and prone to bias [2].

This research tackles these challenges by proposing a novel technique for evaluating local feature
attributions of XAI methods applied to tabular, cross-sectional data for binary classification. The core
contributions are: (1) The introduction of the first synthetic ground-truth datasets specifically designed
for local XAI evaluation, providing an objective basis for assessment. (2) A novel evaluation framework
comprising the Explainability Fidelity Assessor (XFA) for measuring faithfulness to the ground truth,
and the Optimum Explainability Score (OPS) for assessing objective explanation characteristics like
simplicity and completeness. By providing standardised datasets and objective metrics, this work aims
to improve the reliability, comparability, and trustworthiness of XAI methods.

CEUR-WS.org/Vol-4017/paper_41.pdf

Late-breaking work, Demos and Doctoral Consortium, colocated with The 3rd World Conference on eXplainable Artificial
Intelligence: July 09-11, 2025, Istanbul, Turkey

Q d15127673@mytudublin.ie (K. Moustafa)

&} https://www linkedin.com/in/karimmoustafa/ (K. Moustafa)

@ 0000-0002-8636-9946 (K. Moustafa)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5Y

CEUR
E Workshop
Proceedings


mailto:d15127673@mytudublin.ie
https://www.linkedin.com/in/karimmoustafa/
https://orcid.org/0000-0002-8636-9946
https://creativecommons.org/licenses/by/4.0/deed.en

2. Key Related Work

The need for transparency in complex ML models has driven the development of numerous XAI
techniques [10]. These methods can be categorised along several dimensions:

« Applicability: Model-specific (tailored to specific architectures, e.g., activation analysis in CNNs
[11]) versus model-agnostic (treat model as black-box, e.g., LIME [12], SHAP [13], Anchor [14]).
This work focuses on model-agnostic methods due to their flexibility.

+ Scope: Global (overall model behaviour) versus local (individual predictions). This research
targets local explanations explicitly.

« Stage: Intrinsic (inherently simple models like decision trees [15]) versus post-hoc (techniques
applied after training complex models). Our focus is on evaluating post-hoc methods for black-box
models.

« Output Form: Explanations can be feature importance scores, rules, counterfactuals, visuali-
sations [16]. This work primarily targets methods that produce feature importance scores or
similar quantifiable outputs.

Evaluating XAI methods is crucial but challenging [3]. Existing evaluation approaches often fall into
categories proposed by Doshi-Velez and Kim [3]:

« Human-grounded: Uses user studies to assess understanding, trust, satisfaction [2]. Pro: Direct
human insight. Con: Subjective, costly, hard to scale/generalise.

« Application-grounded: Evaluates XAl impact on task performance in a specific domain [17].
Pro: Realistic context. Con: It is hard to isolate XAI impact; findings may not generalise.

« Function-grounded: Uses proxy metrics like fidelity, stability, robustness [18, 19]. Pro: Objective,
automatable. Con: Metrics may not reflect true human interpretability.

Recent efforts have included developing benchmark datasets, primarily for NLP, based on human
annotations [20], which inherit subjectivity and lack generalizability to other domains, such as tabular
data. Significant gaps remain in XAl evaluation [21, 22]. There is:

+ Lack of Consensus and Generic Metrics: No agreed-upon definition of "good” explanation or
standard metrics applicable across different XAI methods [5].

« Confusion between Interpretability and Explainability: Over-reliance on subjective human
evaluation obscures the need for objective assessment of explanation fidelity.

« Limited Comparability: Difficulty in comparing different XAI algorithms (macro-level) or
tuning parameters within an algorithm (micro-level) due to a lack of standard benchmarks.

+ Lack of Holistic Local Evaluation: No unified way to aggregate performance across different
local instances and evaluation aspects.

This research directly addresses the need for objective, generic metrics and standardised ground-truth
benchmarks for local feature attributions of XAI methods on tabular data.

3. Research Questions and Objectives

This research aims to develop an objective benchmarking technique for evaluating local feature attribu-
tion explanations methods for binary classification on tabular cross-sectional data. The central research
question is:

Can an XAI evaluation benchmarking technique—based on (1) a synthetic ground-truth dataset, (2)
explainability fidelity assessment, and (3) optimum local explainability assessment—effectively evaluate
the feature attribution performance of local XAI methods for binary classification?



Literature Approach —

Y

Ad-hoc or
Subjective
Evaluation
Methods

ML Model y'y
Local XAl
| Explanations
A
N S
Proposed Technique RN

Benchmarking
Ground-Truth
Datasets

Overall
Evaluation

Explainability Fidelity
Assessor (XFA)

Al Method

ML Model

Local XAl
Explanations

Figure 1: Proposed Technique Components vs. Literature Approaches.

3 Y
Optimum Explainability
Score (OPS)

4. Research Approach, Methods, and Rationale

To address the identified gaps and research questions, we propose a novel evaluation technique focused
on objective assessment using synthetic ground truth. The proposed solution workflow, contrasted
with typical literature approaches, is shown in Figure 1. It separates the generation of ground truth
from the evaluation of fidelity (XFA) and objective explanation characteristics (OPS).

4.1. Synthetic Ground-truth Datasets Creation

Rationale: The lack of objective ground truth is a major impediment to XAI evaluation. Synthetic
datasets allow us to precisely control the underlying feature-target relationships. Method: We generate
datasets where the binary target variable is determined by predefined 'Relationship Rules’ (RRs) applied
to specific subsets of features. These rules encompass linear and non-linear regression-based functions,
as well as distance-based clustering structures. Table 2 shows the summary of the RRs used in dataset
generation.

The process involves:

1. Dataset Pool Creation: Generate datasets covering combinations of 2-12 RRs. Each dataset (10k
instances, 48 features) uses multivariate normal distribution features. Instances are stratified, and
labels are generated per stratum using the assigned RR. Crucially, instance-level metadata (the
ground truth specifying which features and rules generated the label) is stored.

2. Dataset Selection: Train a standard ML model (e.g., RandomForest) on each dataset of the 4082
datasets created in the previous step, as a (80/20 split). Select 11 datasets representing the Oth to
100th percentiles of model performance (e.g., AUC), ensuring a range of complexities (Table 1).
These selected datasets form the benchmark suite.

This provides the first benchmark suite with known instance-level ground truth for local XAI evaluation
on tabular data.



Table 1
Selected Datasets Complexity Scale (Examples).

‘ RRs Combination Used ‘ Complexity Scale ‘
(1,3) 1 (Lowest Complexity)
1,5,6,11,12) 3
(1,2,3,5,6,8,9,10, 11, 12) 7
(5,6,7,9,10) 11 (Highest Complexity)

... (11 datasets selected in total)

Table 2
Summary of Relationship Rules (RRs) for Synthetic Dataset Generation
RRID Type Basis / Key Characteristic Description Summary # Feat.

1 Regression  Linear, y = f(x;) Monotonic single variable 1
2 Regression  Linear, y = f(x;, x,) Monotonic two variables 2
3 Regression  Non-linear, y = f(x%, x,, x3) Weighted non-linear combination 3
4 Regression  Hastie (Spheres), y = f(¥ x?) Concentric spheres 2
5 Regression  Hastie (Spheres), y = f(3 x?) Concentric spheres 5
6 Regression  Hastie (Chi-squared), y = f(3, x/-z) Threshold on sum of squares 10
7 Regression  Friedman 1 (Non-linear) Based on sin, (x — ¢)?, linear terms 5
8 Regression  Friedman 2 (Non-linear) Simulates circuit impedance 4
9 Regression  Friedman 3 (Non-linear) Simulates circuit phase shift (arctan) 4
10 Distance MADELON (Hypercube) Clusters at hypercube vertices 4
11 Distance Gaussian Blobs Two isotropic Gaussian clusters 6
12 Distance Moons Two interleaving half-circles 2

4.2. Explainability Fidelity Assessor (XFA)

Rationale: To objectively measure how faithfully an XAl method’s explanation reflects the true underly-
ing reasons (ground truth) for a prediction. Method: XFA compares the features identified as important
by an XAI method (for a given instance) against the ground truth features from the dataset metadata
for that instance (Figure 2). It computes three instance-level metrics, which are then averaged across
the test set:

« Completeness (IF-Recall): Percentage of ground truth features correctly identified by the XAI
method. (High recall = finds most true features).

« Conciseness (1 - IF-FPR): Inverse of the False Positive Rate. Percentage of features identified by
XAl that are actually in the ground truth. (High conciseness = identifies fewer incorrect features).

+ Sensitivity (IF-Sen): Agreement between the rank order of feature importance given by XAI
and the rank order in the ground truth (if applicable, e.g., based on coefficients).

The final XFA Score aggregates these metrics, weighted by dataset complexity, providing a single score
(0-100) for overall fidelity as shown in (Eq. 1).

n
XFA_Score = Z avg([1 — IF-FPR;], IF-Recall;, I F-Sen;)
i

*DatasetComplexity; « ComplexityScaler

4.3. Optimum Explainability Score (OPS)

Rationale: To evaluate objective properties of the explanation itself, namely its simplicity and its
coverage (completeness of application). Aim is to find the “sweet spot” between being informative and
being concise. Method: OPS considers two factors:

« Simplicity (C,4;): Average number of features (or explanation elements) included in the local
explanations across the dataset. Lower is simpler.
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« Completeness (V,,;): Percentage of instances for which the XAI method successfully gener-
ated an explanation meeting a predefined quality/confidence threshold (e.g., Anchor’s precision
threshold). Higher is better.

The OPS score (Eq. 2) measures the Euclidean distance from the ideal point (0 complexity, 100

OPS = \/(100 —Vya) +C2—1 (2)

4.4. Overall Score and Validation

The Overall Score combines XFA and OPS (normalised) via a weighted average, providing a holistic
evaluation as shown in (Eq.3 ), with user-adjustable weights (W}, W) enabling prioritisation of specific
evaluation aspects.

—ops
OverallScore = % (Wl XFA + (WZ e 100 100)) (3)

Validation Rationale: To ensure the proposed metrics (XFA, OPS) behave as expected and are sensitive
to changes in explanation quality. Validation Method:

+ XFA Validation: Systematically introduce controlled errors (missing features, extra features,
incorrect ranking) into the ground truth metadata at varying levels (0-100%). Assess if the XFA
score and its components show a monotonic decrease with increasing error levels and a strong
association (correlation) with the error level.



« OPS Validation: Generate explanation sets with varying controlled levels of complexity (Cy;)
and coverage (V,,;). Assess if the OPS score correctly ranks these explanation sets and correlates
with the deviation from the ideal (0 complexity, 100% coverage).

5. Preliminary Results and Contributions to Date

Progress has been achieved in developing the proposed XAl evaluation benchmarking framework:

+ A comprehensive literature review identified critical gaps in current XAl evaluation approaches.

+ The methodology for generating synthetic ground truth datasets was designed and implemented,
resulting in a benchmark suite of 11 datasets with varying, controllable complexity levels and
known instance-level ground truth.

« The Explainability Fidelity Assessor (XFA) component was designed and developed. Its core
properties (e.g., monotonicity, association with controlled error) were validated using the protocol
outlined in Section 4, confirming its suitability for objective fidelity assessment.

+ The Optimum Explainability Score (OPS) component for evaluating objective explanation charac-
teristics (simplicity, coverage) was designed, and its underlying mathematical properties (convex-
ity) were established.

Demonstrating Framework Utility: XFA Use Case To illustrate the practical application and
capabilities of our framework, we conducted an initial case study using the XFA component and the
synthetic datasets. This involved comparing two widely recognised local, model-agnostic explanation
methods: LIME [12] and Anchor [14]. The process involved generating explanations from both methods
for instances in our benchmark datasets and evaluating their fidelity using XFA against the known
ground truth (see Figure 4 for the workflow).

-
7 .

’ Dataset 1 v S ————— 3
nterpretations ] : Explainability Fidelity :
L Assessor i
Dataset 1 ] (XFA) Fcccoccocooo -
nierpretations 1) i . i ~

L)

L

L)

!

]

1

1

1

' .
Benchmarking ! Dataset n
Ground-Truth ! nizrpratations

Datasets

Ground-Truth iy
Datasets Y

Explainability Fidelity
Completensss Rate

--------

Explainability Fidelity
Concisensss Rate

~
[n]
i
50
5
Y
E
&

Benchmarking
Ground-Truth
Datasets Metadata

Explainability Fidelity
Sensitivity Rate

--------

Figure 4: XFA use case process for comparing LIME and Anchor.

Qualitative Insights from the Use Case: This preliminary application demonstrated that the XFA
framework successfully enables:

« Objective Quantitative Comparison: The framework provided distinct quantitative fidelity
scores for LIME and Anchor based on metrics assessing completeness (finding true features),
conciseness (avoiding false positives), and sensitivity (ranking features correctly) versus ground
truth.

+ Analysis of Fidelity Profiles: The comparison highlighted nuanced differences in how these
methods perform. For example, it allows for the analysis of trade-offs, such as potential differences
in achieving high recall versus maintaining high conciseness in the generated explanations.

« Assessment of Complexity Impact: The experiments using datasets of varying complexity
indicated that the fidelity of explanations can be influenced by the complexity of the underlying
data-generating process, and the framework allows for observing these effects.



+ Highlighting Areas for Improvement: The overall assessment suggested that while current
methods provide valuable insights, there is measurable variance in their fidelity and potential
scope for enhancing the faithfulness of local explanations produced by these methods.

These initial results validate the core components of our framework and demonstrate its potential to
provide objective, nuanced, and comparable evaluations of local XAI methods, addressing a significant
gap identified in the literature. Further experiments involving the OPS component and additional XAI
methods are planned as outlined in Section 6.

6. Expected Next Research Steps and Final Contribution

The next steps focus on completing the evaluation of the benchmarking framework and expanding its
application:

« OPS Module Evaluation: Rigorously evaluate the OPS metric using the validation protocol (Sec
4), assessing its sensitivity and ranking ability using simulated explanation sets and applying it to
outputs from LIME, Anchor, and potentially SHAP.

« Extended XAI Method Experiments: Apply the full framework (Datasets, XFA, OPS, Overall
Score) to evaluate additional state-of-the-art local XAI methods (e.g., SHAP) to provide a broader
comparative analysis.

+ Publications: Disseminate the findings related to the synthetic datasets, XFA, and OPS through
publications in relevant peer-reviewed journals and conferences.

« Thesis Completion: Structure and write the PhD thesis, incorporating the benchmarking
framework design, evaluations, experiments, use cases, and conclusions.

The expected final contributions of this research are significant:

1. A Clear Distinction between Explanation Fidelity and Presentation: By focusing on
objective fidelity assessment separate from user perception, we provide a foundation for evaluating
the core accuracy of XAI methods.

2. Novel Evaluation benchmarking technique for Tabular Data: The first benchmarking
technique specifically for local, feature attribution XAI on tabular binary classification, addressing
key limitations of prior work.

3. Standardised Synthetic Ground Truth Datasets: A publicly available benchmark suite en-
abling objective, reproducible evaluation and comparison of local XAI methods.

4. Explainability Fidelity Assessor (XFA): A novel, quantitative, multi-faceted metric (complete-
ness, conciseness, sensitivity) for assessing explanation faithfulness against ground truth.

5. Optimum Explainability Score (OPS): A novel metric quantifying objective explanation char-
acteristics (simplicity, coverage) to guide tuning towards optimal explainability.

6. Advancement of XAI Evaluation Methodology: Providing a systematic approach that incor-
porates objective metrics, enables comparisons, and addresses the challenges of evaluating local
explanations, ultimately fostering the development of more robust, reliable, and comparable XAI
methods.

While this work focuses on tabular binary classification, the underlying principles of using synthetic
ground truth and objective metrics could potentially be adapted for other tasks (e.g., regression, multi-
class) in future research.
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