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Abstract

Artificial Intelligence (AI) systems are increasingly relied upon in high-stakes domains such as healthcare, finance,
and autonomous driving, as well as in high-value commercial applications like luxury automotive design and
exclusive financial services, where decision-making must be both accurate and trustworthy. However, the opaque
nature of many AI models raises concerns about transparency and accountability, driving the development of
Explainable AI (XAI) techniques to foster trust. While these methods aim to improve interpretability, questions
persist regarding the reliability and certainty of these explanations, particularly under varying conditions and
sources of uncertainty. This underscores the need for robust trust measures to assess the validity and consistency
of Al-generated explanations across different contexts. Consequently, the question shifts from "Can I trust this
model?" to "To what extent can I trust the explanations and the reasoning behind the model’s decisions?"—emphasizing
the importance of reliable frameworks for explainability. To reliably quantify uncertainty in Al-generated
predictions, we integrate conformal prediction, a distribution-free, model-agnostic framework that constructs
prediction sets with statistically valid coverage guarantees, ensuring that the true outcome is included with a user-
specified probability. By adapting to different tasks and data distributions, conformal prediction provides a robust
foundation for uncertainty measurement and enables the generation of consistent, uncertainty-aware explanations
across varying conditions. We term this approach “uncertainty-aware explanations”, providing systematic methods
to assess the trustworthiness of Al insights in diverse contexts, including time series forecasting, classification,
and other data-driven tasks. By addressing the relationship between uncertainty and explainability, this work
aims to enhance the reliability of Al-driven decision-making in high-stakes environments.
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1. Context and Motivation

As Artificial Intelligence (AI) systems become increasingly complex, explaining their decisions becomes
more challenging, leading to concerns about trust and reliability. This has prompted the development
of Explainable AI (XAI) to enhance transparency by providing human-interpretable explanations for
Al-driven decisions. XAI methods produce different types of explanations depending on the task,
affecting their applicability across domains. For example, a practitioner analyzing ECG signals to assess
a patient’s risk of developing cardiac disease requires retrospective analysis to identify key time intervals
contributing to the prediction (time series forecasting) and to rank other influential factors such as diet,
weight, and physical activity (time series classification). Despite advancements in Explainable AT (XAI),
there is a lack of robust methods to quantify the uncertainty in Al-generated explanations, leading
to potential overreliance on explanations provided in critical domains. As a result, a critical question
arises: Can we trust these explanations, and if so, to what extent? This highlights the need for rigorous
evaluation frameworks to assess the reliability, consistency, and validity of Al-generated explanations
across various contexts [1].

Uncertainty quantification (UQ) plays a critical role in Al systems, as it provides a measure of
confidence in the model’s predictions, helping practitioners assess the reliability of outputs, especially
in high-stakes applications [2]. A promising approach to enhancing the reliability of Al-generated
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explanations is conformal prediction, a statistical framework that offers valid uncertainty quantification
with formal guarantees. In a classification task, conformal prediction provides a prediction set—a
collection of possible labels for a new instance—accompanied by a confidence level. Instead of assigning
a single label, the model offers a set of labels guaranteed to contain the true label with a specified
probability, such as 90%. This enables practitioners to understand both the model’s most likely prediction
and the associated uncertainty, leading to more informed and reliable decision-making. By producing
prediction sets that adapt to the uncertainty present in the data, conformal prediction offers well-
calibrated measures of confidence and paves the way for reliable uncertainty-aware explanations [3].

Uncertainty-aware explanations in XAl enhance interpretability by revealing both the reasoning
behind a model’s outputs and the confidence in those outputs. In this work, they are defined as
explanations that capture how variations in uncertainty influence the trustworthiness of predictions.
For example, in financial risk assessment, such an explanation might show that a loan applicant’s risk
score is less reliable due to missing income data, with uncertainty rising by 30% compared to complete
cases. This approach supports practitioners in evaluating the robustness of Al insights and making
informed decisions under uncertainty:.

The lack of uncertainty-aware explanations in Al can cause major issues, especially in high-stakes
areas like healthcare and autonomous driving [4, 5]. For instance, without uncertainty quantification,
a healthcare model may overestimate a patient’s risk, leading to incorrect diagnoses due to incorrect
reasoning, or an autonomous vehicle may make decisions without knowing the level of uncertainty,
increasing accident risk. By integrating conformal prediction, we can generate explanations that not
only identify key features but also quantify the confidence in these attributions, ensuring more reliable
and transparent Al decision-making across applications.

2. Background

2.1. Model-Agnostic and Post-hoc Explainability

Post-hoc explainability refers to techniques applied after a machine learning model has been trained,
aiming to interpret its predictions without altering the underlying model structure [6]. These methods
are particularly valuable in high-stakes domains such as healthcare and finance, where understanding
the rationale behind predictions is crucial for trust and accountability [7]. Post-hoc approaches include
feature importance methods, surrogate models, and visualization techniques, which help uncover the
decision-making process of complex models like deep neural networks or ensemble methods [8].

Model-agnostic explainability, a subset of post-hoc methods, is designed to be applicable to any
machine learning model, regardless of its architecture or complexity [6]. There are two approaches:
global explainability for overall patterns and local explainability for individual predictions. Techniques
such as LIME (Local Interpretable Model-agnostic Explanations) [8] and SHAP (SHapley Additive
exPlanations) [9] are prominent examples. LIME approximates the behavior of a model locally by
creating interpretable surrogate models, while SHAP leverages game theory to attribute prediction
outcomes to individual features. These methods provide flexibility and transparency, making them
widely adopted in practice.

The growing demand for explainability stems from regulatory requirements, such as the European
Union’s General Data Protection Regulation (GDPR), which emphasizes the right to explanation [10].
Additionally, model-agnostic methods enable practitioners to maintain high predictive performance
while ensuring interpretability, bridging the gap between accuracy and transparency [11].

2.2. Uncertainty Quantification and Conformal Prediction

Uncertainty quantification (UQ) is a fundamental aspect of machine learning that focuses on measuring
and interpreting the uncertainty associated with model predictions. This is particularly critical in high-
stakes applications such as healthcare, autonomous systems, and financial forecasting, where decisions
based on overconfident predictions can lead to severe consequences [12]. UQ methods aim to provide



probabilistic estimates, confidence intervals, or prediction intervals to convey the reliability of model
outputs. These techniques can be broadly categorized into Bayesian approaches, ensemble methods,
and evidential deep learning [13, 14]. For example, Bayesian neural networks quantify uncertainty by
modeling distributions over model parameters, while ensemble methods leverage multiple models to
estimate predictive variance [15].

Conformal prediction is a model-agnostic, non-parametric framework for uncertainty quantification
(UQ) that provides valid confidence intervals without strong distributional assumptions [16]. Relying
on the weaker exchangeability assumption rather than i.i.d., it calibrates prediction sets or intervals
using a hold-out validation set to guarantee user-specified coverage (e.g., 95%) [17]. It applies to any
model, including black-box architectures, and has recently been extended to time-series forecasting and
high-dimensional data [18].

2.2.1. Mathematical Formulation of Conformal Prediction

Let D = {(zi, y;)};_, denote a dataset, where x; represents the input features and y; represents the
corresponding true label or value. Conformal prediction works as follows:

1. Nonconformity Measure: A nonconformity measure s(x,y) quantifies how unusual a pair
(x,y) is with respect to the model’s predictions. For example, in regression, s(x,y) could be the
absolute residual |y — §|, where 7 is the model’s prediction.

2. Calibration Set: A hold-out calibration set Dy = {(x;, y;) }/*, is used to compute nonconfor-
mity scores s; = s(x;,y;) for each point in the calibration set.

3. Prediction Interval Construction: For a new input %y, the conformal prediction framework
constructs a prediction interval C(Zyew) such that:

C($new) = {y : 5($neway) < QOé}a

where ¢, is the (1 — «)-th quantile of the nonconformity scores {s;}!" ;. This ensures that the
interval C(Zpew) covers the true label yyew with probability 1 — av (« is user-specified error rate).

2.2.2. Key Metrics in Conformal Prediction

1. Coverage: Coverage measures the proportion of true labels that fall within the prediction
intervals or sets. For a dataset D, the empirical coverage is defined as:

1 n
Coverage = - ;H(yl € C(zi)), (1)

where () is the indicator function. A well-calibrated conformal prediction framework ensures
that the empirical coverage is approximately 1 — «.

2. Set Size: Set size measures the size of the prediction sets or intervals. For classification tasks,
it is the number of labels in the prediction set, and for regression tasks, it is the width of the
prediction interval. Smaller set sizes indicate more precise predictions, while larger set sizes
reflect higher uncertainty.

2.2.3. Integration and Advantages of Conformal Prediction

Integrating UQ and conformal prediction into machine learning pipelines improves decision-making by
offering insights into prediction reliability, crucial in safety-critical applications where overconfidence
can lead to catastrophic outcomes [19]. In healthcare, conformal prediction provides confidence intervals
for patient outcomes, aiding clinicians in making informed decisions. In autonomous systems, UQ
assesses prediction reliability in dynamic environments.

These methods align with the growing focus on transparency and robustness in Al, supported
by regulatory frameworks and industry standards [20]. Conformal prediction offers valid coverage



guarantees without distribution assumptions, is model-agnostic, and is applicable to various tasks,
including time-series forecasting and high-dimensional data, with recent extensions like split and
adaptive conformal prediction [18].

3. Related Work

Related work linking explainability and conformal prediction remains limited. [21] propose CON-
FIDERAL, refining rule-based classifiers by combining conformal prediction with explainable ML for
improved reliability. [22] introduces CONFINE, a framework for interpretable neural networks with
robust uncertainty estimates. [23] explores oracle coaching to generate valid, efficient conformal classi-
fiers optimized for specific test sets. [24] compares frequentist, Bayesian, and conformal uncertainty
estimation, highlighting conformal methods for trustworthy confidence sets in model explanations.
[25] apply XAI to cardiovascular risk prediction in COPD patients, comparing counterfactual methods
and proposing counterfactual conformity for validation. [26] presents a conformal prediction-based
framework for interpreting unsupervised node representations in graphs. Most relevant to this PhD
is Calibrated Explanations (CE) [27], which provides stable, model-agnostic local feature importance
maps with uncertainty quantification via Venn-Abers predictors [28]. In contrast, this work uses a
perturbation-based, post-hoc, model-agnostic approach with classical conformal prediction, tailored
to specific tasks and analyzing how predictive uncertainty shifts under varying calibration sets and
systematic noise.

4. Research Questions and Objectives

Following research questions (RQ) have been proposed for this research:

1. How can uncertainty in Al-predictions be effectively quantified to enhance trust and reliability
in decision-making?

2. Which evaluation measures are needed to assess the validity/performance of conformal prediction,
and how can we leverage them to produce uncertainty-aware explanations?

3. How do uncertainty-aware explanations generated by our proposed frameworks enhance decision-
making and compare to conventional explainers across diverse real-world scenarios?

To address RQ1, we begin by quantifying uncertainty in Al predictions using the flexible framework
of conformal prediction. In classification tasks, this involves prediction sets with varying confidence levels,
while in regression, it involves prediction intervals around outputs. Additionally, scalar uncertainty
measures—such as variance from ensembles, dropout, input perturbations, or adversarial modifica-
tions—provide adaptable, task-specific metrics [29]. This phase identifies the most suitable uncertainty
quantification methods across different tasks.

For RQ2, we extend conformal prediction to evaluate and communicate uncertainty in Al-generated
explanations across tasks like classification, time series forecasting, and clustering. A key property of
conformal prediction is that its coverage, while guaranteed on average (Equation 1), varies with calibra-
tion sets. We will explore how perturbing training or calibration data affects uncertainty and model
performance, aiming to integrate these effects into reliable and transparent explanation frameworks.

Uncertainty metrics will be task-specific: in classification, we analyze prediction set size and coverage
(Section 2.2.2); in forecasting, we assess changes in confidence interval bounds (Equation 3). Perturbing
input features helps recalibrate models and track shifts in uncertainty. We also explore both local and
global explainability.

In RQ3, we compare our uncertainty-aware explanation frameworks with SHAP, LIME, Saliency
Maps, and Integrated Gradients. Effectiveness is tested via ablation of the top-ranked feature or segment;
robustness by varying conformal prediction confidence levels; and faithfulness by comparison with
inherently explainable models. These evaluations integrate uncertainty to enhance transparency and
reliability.



5. Research Approach, Methods, and Rationale for Testing the
Hypothesis

This research aims to develop task-specific uncertainty-aware explanations within a conformal predic-
tion framework. Using a modular approach for classification, forecasting, and other tasks, it systemati-
cally measures and explains feature or segment contributions to predictive uncertainty.

5.1. Approach and Methods

For each task (e.g., classification, regression, time-series forecasting), the conformal prediction frame-
work is tailored to produce prediction sets or intervals that quantify uncertainty, ensuring task-specific
validity and interpretability [17].

Classification Tasks Given an input z and error rate « € (0, 1), the prediction set is:
Clz) ={y € V| s(z,y) = Ta}, 2)

where ) is the label set, s(z,y) is a conformity score, and 7, is a threshold ensuring coverage of 1 — a.

Regression Tasks For a predicted value §(z), the prediction interval is:
I(z) = [§(z) = 70, §(x) + 7a], (3)

ensuring the interval captures the true value with probability 1 — .

We assess feature or segment contributions to uncertainty by applying systematic perturbations and
measuring changes in Coverage and Set-size (Section 2.2.2). For classification, individual features are
perturbed and models recalibrated; for forecasting, PELT segmentation [30] is used, and perturbing
each segment reveals its impact on interval bounds (Equation 3). Comparisons with the unmodified
baseline identify the main sources of predictive uncertainty.

5.2. Rationale and Testing

The rationale for using conformal prediction for producing uncertainty-aware explanations is its ability
to provide reliable uncertainty estimates independent of data distribution. However, despite its robust
uncertainty quantification, conformal prediction often lacks systematic methods for explaining the
sources of uncertainty and adapting to various tasks.

We hypothesize that perturbing features or segments and examining their effect on uncertainty
metrics can yield meaningful, interpretable uncertainty-aware explanations. This is validated on diverse
datasets to ensure robustness and generalizability. Effectiveness is assessed through ablation studies,
where significant features or intervals are removed and performance is remeasured. We further evaluate
robustness by varying confidence levels (1 — «), as defined in Section 5.1, and faithfulness by comparing
our results to explanations from intrinsically interpretable models, verifying that they reflect genuine
uncertainty sources rather than artifacts of the method.

6. Results and Contributions to Date

In our research, we developed the global explainability framework ConformaSight [4], based on confor-
mal prediction, to address prediction set-type outputs across classifiers. The framework generates a
global feature importance table, making it easy for non-experts to identify factors affecting conformal
metrics like coverage and set-size. In effectiveness tests, selecting the top 7 features by each explainer
and retraining models resulted in a 0.7% improvement over SHAP and Permutation [31].

We contributed to Fast Calibrated Explanations (FCE) [5], which combines ConformaSight’s perturba-
tion techniques with Calibrated Explanations (CE) [27] to deliver rapid, uncertainty-aware explanations.



Applicable to classification and thresholded regression, FCE provides probabilistic outputs while preserv-
ing uncertainty quantification, achieving up to 19x faster regression, over 75x faster than calibrated
LIME, and 200 x faster than calibrated SHAP. Having developed uncertainty-aware explanations for
classification and regression tasks, we are now extending our research to time-series forecasting. We
present ConformaSegment, a segment-based explanation framework that identifies, segments, and
weights time-series intervals by their decision importance. In ablation studies on the most influential
segment, ConformaSegment outperformed Saliency Maps [32] with a 42% average R? gain and 25.73%
higher prediction interval coverage, and Integrated Gradients [33] with an 18% R? gain and 40.15%
higher coverage.
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Figure 1: ConformaSegment: Segment-based Feature Importance by using Electric Power Consumption Dataset.
Vertical dash-lines are the change points. Below rectangles between change points are the importance weights
[34].

In summary, the contributions up to date are as follows:

1. Leveraged conformal prediction to generate uncertainty-aware explanations for tabular
data classification (ConformaSight): We designed a framework to identify which features
contribute most to predictive uncertainty when subjected to significant perturbations, potentially
causing the model to make incorrect predictions. The framework shows how calibration set
perturbations influence prediction set outcomes, highlighting their impact on model performance.

2. Contributed FCE for rapid uncertainty-aware explanations for tabular data classification
and regression: We proposed a method designed for generating faster, uncertainty-aware
explanations by incorporating perturbation techniques from ConformaSight into the core elements
of CE. This method boosts computational efficiency for real-time use while preserving uncertainty
quantification in classification and probabilistic regression.

3. Extended conformal prediction to generate uncertainty-aware explanations for time-
series forecasting (ConformaSegment): We adapted our framework to time-series forecasting
tasks, focusing on identifying the most critical time segments that contribute to predictive
uncertainty, thereby influencing the accuracy of the forecasted values.

7. Expected Next Steps and Final Contribution to Knowledge

This PhD research aims to enhance trust in model decision-making by identifying key factors driving
significant changes in model uncertainty. We explore how conformal prediction, which provides
statistically guaranteed prediction sets with user-specified coverage, can be leveraged to generate
uncertainty-aware explanations. Our goal is to develop a family of post-hoc, model-agnostic frameworks
designed to produce reliable and interpretable explanations while advancing the transparency of
conformal prediction-based explainability methods. Next, we aim to extend these frameworks to
anomaly detection, synthetic data generation, and clustering, advancing transparent and generalizable
uncertainty-aware explainability.
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