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Abstract
My PhD research focuses on developing a highly accurate and explainable multi-output virtual metrology system
for semiconductor manufacturing. Using machine learning, we predict the physical properties of metal layers
from process parameters captured by production equipment sensors. Key contributions include a model-agnostic
explanatory method based on projective operators, providing insights into the most influential features for
multi-output predictions.
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1. Introduction

The rising demand for digitalization and decarbonization has led to the increasing production of chips
(9.2 billion chips by Infineon Technologies AG in 2023 [1]), highlighting the need for faster, more
reliable, and efficient semiconductor manufacturing with minimal waste. It is not always possible to
fully inspect products during manufacturing due to the destructive nature of some testing techniques [2].
The industry relies on random sampling and inspection, which does not ensure comprehensive quality
control of products or optimal yields. With the growing use of artificial intelligence (AI), there is
potential to predict product properties using data from existing monitoring systems. Key industry
research questions include: Which process control signals are necessary for accurate prediction of product
properties? Which machine learning pipeline performs best, and what metrics should be used to evaluate
its performance?

Virtual metrology (VM), introduced in 2005 in the semiconductor manufacturing industry [3], involves
estimating a product’s quality directly from production process data, using supervised or unsupervised
machine learning (ML) algorithms [4], without physically measuring it [2], thereby reducing production
times and costs.

Following previous efforts in this direction [2], we focus on creating a VM system to predict the
properties of a thin film produced in the physical vapor deposition (PVD) process. PVD is one of the
main steps in the production process, used to create thin metal layers by depositing metal vapor onto a
substrate [5]. The important physical properties of the film, such as thickness and resistance, depend on
process parameters like deposition time, power, voltage, electrical current, temperature, and pressure.
After production, these properties are measured at 17 points. We aim to predict both properties at all 17
points simultaneously, requiring the use of methods suitable for predicting multiple variables.

We observe that the mean values of measured thickness and resistance exhibit an oscillatory pattern
over time, influenced by factors such as equipment maintenance. To account for these variations, we
aim to develop a predictive model using historical data to forecast future mean and standard deviation
values of both resistance and thickness simultaneously. This approach will enable a more accurate
assessment of process stability and facilitate proactive adjustments in semiconductor manufacturing.

Existing explainability techniques are largely designed for single-output scenarios, making their
direct application to multi-output predictions challenging. To address this, I introduce a model-agnostic
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explanatory approach based on projective operators, which effectively captures the dependencies
between input features and multiple correlated outputs. This method ensures interpretability by
identifying the most influential process parameters and their contribution to the predicted film properties,
thereby improving trust and transparency in VM systems for semiconductor manufacturing.

2. Related Work

Virtual Metrology (VM) plays a crucial role in semiconductor manufacturing by estimating product
quality from process data without direct physical measurements [6]. The increasing complexity of
semiconductor processes has led to the adoption of machine learning (ML) techniques, both supervised
and unsupervised, to improve VM accuracy [4, 7]. With the expansion of deep learning, research has
focused on enhancing VM systems using neural networks [8, 9]. However, traditional VM methods
often rely on single-output predictions, despite the fact that many semiconductor processes involve
multiple interrelated quality variables that should be modeled simultaneously.

Multi-output learning has gained attention in recent years as a more effective approach for predicting
multiple dependent target variables. Multi-input multi-output (MIMO) prediction is a machine learning
paradigm that focuses on predicting multiple outputs simultaneously for a given instance [10]. This
paradigm encompasses various techniques such as multi-label learning, multi-dimensional learning,
and multi-target regression, all of which aim to leverage interdependencies among outputs to improve
prediction performance [11]. While multi-output approaches are well explored in fields such as health-
care [12], environmental science [13], and air quality forecasting [14], they remain underutilized in
semiconductor VM modeling [15].

A few studies have incorporated multi-output learning into VM. Choi et al.[15] proposed a convo-
lutional neural network (CNN)-based multivariate VM model using multi-sensor data to model an
etching process, demonstrating the advantages of joint prediction. Similarly, Yamaguchi et al.[16]
introduced a multi-target regression method combining Random Linear Target Combinations with
Principal Component Analysis (PCA). These approaches highlight the potential of multi-output learning
in semiconductor applications but remain limited in scope and application.

In VM systems, sensors record large volumes of redundant and non-informative signals, neces-
sitating the use of feature selection and dimensionality reduction techniques [17, 18, 19]. Feature
selection is crucial for improving model efficiency and interpretability, especially in high-dimensional
settings. According to a recent literature review [2], PCA remains the most commonly utilized convex
dimensionality reduction method in semiconductor VM. More recent methods, such as the ProjSe
algorithm [20], utilize projection operators to perform variable selection in multi-output learning tasks,
offering scalability and the ability to capture nonlinear dependencies.

Despite advances in multi-output learning and feature selection, there remains a critical gap in the
explainability of multi-output models. Interpretability methods such as SHAP [21] and LIME [22]
have been widely applied in single-output scenarios but are not inherently designed for multi-output
predictions. To the best of our knowledge, no dedicated explainability methods for multi-output models
currently exist in the literature, underscoring the need for further research in this area.

3. Methodology

3.1. Data Collection and Preprocessing

The first step in my PhD research involved preprocessing data collected from a semiconductor manu-
facturing facility to prepare a dataset for a multi-output prediction task. The dataset was collected from
16 chambers of six Physical Vapor Deposition (PVD) machines at the Infineon Technologies AG fab
between 2021 and 2023. It includes process parameter data captured by sensors during the production
process, along with post-process measurement data.



After the PVD procedure, wafers with thin films undergo measurements at 17 points, where three key
physical properties are recorded: resistivity, resistance, and thickness. The raw data contained duplicates,
missing values, outliers, and uninformative features, requiring a preprocessing phase to ensure data
quality and model reliability. The following preprocessing steps were applied:

• Removal of constant and uninformative features to reduce redundancy.
• Removal of duplicated features to avoid introducing unnecessary correlations.
• Outlier removal based on domain knowledge, ensuring that only physically meaningful values

are retained.
• Replacement of missing values with the median to preserve the data distribution.

After preprocessing, the final dataset consists of 3,598 products and 122 columns, where 104
columns represent process parameters (features), and 51 columns correspond to wafer physical
properties measured post-PVD.

3.2. Feature Selection

We use feature selection and importance algorithm ProjSe[20] to select and rank process parameters
that are the most important for the prediction of resistivity, resistance, and thickness of the wafer. ProjSe
is the state-of-the-art approach for variable selection for multi-output learning problems based on
projection operators and their algebra. The method uses a kernel-based representation to capture
complex relationships between variables. The algorithm chooses iteratively the input variable that has
the highest correlation with the outputs while being as uncorrelated as possible with the inputs already
selected. This ensures each new variable adds relevant information to the prediction model without
redundancy.

3.3. Prediction Models

The next step after selecting features is to choose the best prediction model. Following the previous
work [3] and the thorough data analysis, we use four regression models for multiple output prediction:
Linear Regressor (LR) [23], K Neighbors Regressor (KNN) [24], Random Forest Regressor (RFR) and
Decision Tree Regressor (DTR) [25]. In the interest of maintaining a fair comparison, we assessed the
models in their default configurations.

3.4. Explanatory Method

The proposed framework for interpreting MIMO predictions, ProjEx, is based on projective operator
algebra and provide local and global explanations of behavior ML models. Local explanations focus
on understanding individual predictions by analyzing the specific features which influence a single
prediction output, providing insights into why a model made a particular decision for a given input [26].
Global explanations aim to provide an overarching understanding of the model’s behavior across all
predictions, analyzing the model’s overall structure and feature importance to identify patterns that
apply to the entire dataset [27].

The ProjEx explanation for a MIMO prediction output yî for input vector xi, is defined as a tuple
{xi,yp,Elocal,Eglobal} where Elocal provides impacts of current input to the output. Eglobal reveal
the model’s overall patterns and rules it follows to make predictions across the entire dataset.

ProjSe [20] is applied to select the features most correlated with the predicted target variables. For
each selected feature xs ∈ Xs , we find the projection of the vector xs onto the plane spanned by
the predicted variables yp ∈ Yp. The projection xsproj of a xs onto the plane spanned by yp is given
by: xsproj = Yp(Yp

⊤Yp)
−1Yp

⊤xs. We calculate the correlation coefficient 𝜌 between xs and xsproj

using: 𝜌 =
xs·xsproj

‖xs‖‖xsproj‖ . These correlation coefficients provide a global explanation of the model by
indicating the influence of features on the predicted targets through the projection coefficients. To
assess the impact of each feature value of the observed input vector xi on the predicted variables, we
calculate xE vectors by scaling the selected feature with the correlation coefficient: xE = xs · 𝜌.



4. Results

Minimal subset of relevant features. Using a linear kernel to select features with ProjSe relevant to
predicting 18 output variables, we identified the 18 most important features for prediction. Three of these
18 features coincided with the ones chosen by experts, and four were statistical metrics of the selected
features. We compared the prediction results of the least-squares regression model [28] using features
selected by ProjSe with those selected randomly. Prediction accuracy is measured using Pearson corre-

lation between actual 𝑌 and predicted outputs 𝑌𝑝: 𝜌𝑌,𝑌𝑝 =
Cov(𝑌,𝑌𝑝)
𝜎𝑌 𝜎𝑌𝑝

=
∑︀𝑛

𝑖=1(𝑦𝑖−𝑦)(𝑦𝑝𝑖−𝑦𝑝)√∑︀𝑛
𝑖=1(𝑦𝑖−𝑦)2

√∑︀𝑛
𝑖=1(𝑦𝑝𝑖−𝑦𝑝)

2

and iteratively recalculated as features are added.
Fig. 1 demonstrates how the number of selected features enhances prediction accuracy compared to

random selection. The projective operator-based selection yields higher Pearson correlation coefficients,
indicating a correlation between selected features and outputs. After 14 features, the cumulative
correlation does not increase. The 14 top-ranked features have a high correlation with the output
variables and minimal correlation with each other.

Evaluation of prediction models. In the second experiment, we evaluate the performance of
prediction models concerning selected features. The performances of prediction algorithms LR, KNN,
FRF, and DTR are evaluated on three datasets: DS1 - dataset consisted of all process parameters (104
feature values), DS2 - dataset of features selected by experts (10 feature values) and DS3 - a dataset of
features selected by ProjSe (18 feature values). We employed 10-fold cross-validation to evaluate model
performance across various data subsets comprehensively and utilized a suite of performance metrics,
including MSE, MAE, MAPE, RMSE, and R-squared score.

Results are given in Table 1. There is no difference between the datasets, which implies that ProjSe
selected enough informative features. For all datasets, the best performance has DTR, but RFR demon-
strates comparable results. Our results confirm the findings in earlier work [29]. It shows that there is
no significant difference among datasets, implying that the subset of features selected by ProjSe contains
enough informative features and is almost equally informative as the subset selected by experts.

Evaluation of explanatory method. The proposed explanatory method has been evaluated on
real-world dataset from semiconductor industry and two additional publicly available datasets. Results
demonstrate high effectiveness in terms of explanation stability, complexity, and effective complexity.
Proposed method outperforms KernelSHAP, LIME, SHAP and TreeInterpreter in computation time, while
the introduced stability index and correlation are comparable. To evaluate the effectiveness and user
satisfaction of ProjEx, we conducted a user study. The study was designed following recommendations
for metrics on explanation satisfaction [30].

Stability and computation time w.r.t. prediction model. ProjEx was applied to explain predictions
from CNN and tree-based models across three datasets. Table 2 summarizes the stability indices,

Figure 1: The blue line shows how prediction accuracy changes when variables are added randomly, whereas
the orange line demonstrates the performance when variables are chosen using the projective selection method.



Table 1
Performance Metrics for Predictive Models

Dataset Model MSE MAE MAPE (%) RMSE R2 Score
DS1 LR 62.74 2.82 6.3 · 1014 3.96 0.26
DS1 DTR 37.68 1.22 0.28 1.45 0.90
DS1 KNN 65.41 1.53 0.34 1.91 0.84
DS1 RFR 37.69 1.22 0.28 1.45 0.90
DS2 LR 72.14 3.01 9.1 · 1014 4.33 0.10
DS2 DTR 37.68 1.22 0.28 1.45 0.90
DS2 KNN 54.76 1.41 0.32 1.74 0.86
DS2 RFR 37.70 1.22 0.28 1.45 0.90
DS3 LR 76.68 3.12 7.5 · 1014 4.42 0.16
DS3 DTR 37.68 1.22 0.28 1.45 0.90
DS3 KNN 65.41 1.53 0.34 1.91 0.84
DS3 RFR 37.70 1.22 0.28 1.44 0.90

correlation and computation time calculated within 5 folds, across the models for each dataset.
The stability index of ProjSe remains generally high with only slight variation across models, while the

correlation exhibits significant differences. ProjSe achieves the highest stability indices with XGBoost for
scm1d and pvd, and demonstrates the best performance with CNN for osales. In terms of correlation,
ProjSe excels with CNN on scm1d and osales, whereas XGBoost outperforms other models on pvd. All
models exhibit comparable and minimal computation times, highlighting the computational efficiency
of ProjSe.

Comparison of stability and efficiency of ProjEx against xAI methods. A RFR was used as the
predictive model for comparisons ProjEx with KernelSHAP, LIME, SHAP, and TreeInterpreter. Since
these methods are not natively designed for explaining multi-output models, they were adapted to select
the most influential features for each of the 12 output variables in the osales dataset. Stability was
evaluated by measuring consistency across the 5 folds for each output variable independently. While
stability indices were generally high for all methods, assessing stability across all output variables in each
fold revealed lower scores due to the methods’ limited ability to account for inter-variable interactions.
As shown in Table 3, ProjEx achieved competitive stability indices (0.81) but lower correlations (0.26),
reflecting its distinct approach to feature importance computation. It significantly outperformed all
methods in computation time, requiring only 1.87 seconds compared to LIME’s 1,267.76 seconds.

Evaluation of explainability methods using Quantus. The CNN model was explained on all three
datasets, with ProjEx, KernelSHAP, LIME, and SHAP and explanations are evaluated by Quantus metrics:

Dataset Metric CNN DecisionTree RandomForest XGBoost

osales Index 0.86 0.81 0.81 0.81
Correlations 0.90 0.28 0.26 0.24
Time (s) 0.01 0.01 0.01 0.01

pvd Index 0.82 0.81 0.83 0.84
Correlations 0.76 0.48 0.25 0.87
Time (s) 0.01 0.01 0.01 0.01

scm1d Index 0.84 0.80 0.83 0.87
Correlations 0.85 0.74 0.79 0.79
Time (s) 0.02 0.03 0.02 0.02

Table 2
Performance metrics for different models across datasets.

Metric KernelSHAP LIME ProjEx SHAP TreeInterpreter

Index 0.91 0.88 0.81 0.91 0.92
Correlations 0.67 0.34 0.26 0.80 0.80
Time (s) 609.02 1,267.76 1.87 12.24 15.65

Table 3
Comparison of stability indices, correlation, and computation times across explainability methods.



complexity and effective complexity. Quantus requires three inputs for evaluation: the test dataset array,
the target values predicted by the model being explained, and an array of ranked features or feature
importance scores provided by the explainability method for each sample. We adapted KernelSHAP,
LIME,and SHAP for multi-output regression settings using the following strategies: Ten random
samples from the test dataset were used as the evaluation set for Kernel SHAP. Separate explainers
were instantiated for each target variable using a wrapper function to generate predictions specific to
individual targets. For LimeTabularExplainer, a subset of 100 random test samples was selected to
compute normalized feature attributions separately for each target variable. A subset of 100 random
test samples was used as the evaluation dataset, while the entire test dataset served as background
data to compute feature attributions for each target variable using SHAP’s DeepExplainer. We
calculated complexity and effective complexity for each output variable individually and then averaged
values across all target variables. For ProjEx, evaluation metrics are computed directly, as it provides
explanations for all target variables simultaneously.

The results are summarized in Table 4. ProjEx exhibits significantly lower complexity and effective
complexity across all datasets then KernelSHAP, LIME, and SHAP, showcasing its superior computa-
tional efficiency and interpretability. This efficiency is particularly relevant for large-scale multi-output
prediction tasks, where traditional explainability methods often struggle with scalability and computa-
tional demands.

User study. To evaluate the effectiveness and user satisfaction of the ProjEx we conducted a user
study. The study was designed based on recommendations for metrics on Explanation Satisfaction [30].

There were 80 participants in total, 57 of whom reported having prior experience with AI. Participants
were offered explanations using the proposed ProjEx explanation method. The ages of the participants
ranged from 18 to 36 years, with 47.5% identified as female and 51.3% as male. All participants were
volunteers and had a minimum educational level of high school completion. To evaluate the explanations
provided, participants were asked to rate the explanation using a 5-point Likert Explanation Satisfaction
Scale [30], The overall mean satisfaction score was 3.25, with a mode of 3.0. For participants with prior
AI experience, the mean satisfaction score was 3.27, also with a mode of 3.0.

5. Future Work

For future work, we plan to develop a scalable and effective feature selection method that performs
well across various output dimensions. While ProjSe [20] works well for around 20 outputs, it struggles
with fewer, and I aim to address this limitation. Measurement data from production exhibit oscillatory
characteristics and time dependencies influenced by machine maintenance. To model these time series
patterns, we plan to propose a method based on Fourier transformation. Additionally, we will explore
projective operators and their algebra for explaining multivariate time series models. We aim to develop
responsible AI guidelines for the semiconductor industry, aligned with the EU AI Act, ensuring that
method design meets the requirements of high-stakes industrial applications, particularly in terms of
data privacy, model transparency, and interpretability for domain experts.

Dataset Metric KernelSHAP LIME ProjEx SHAP

osales Complexity ↓ 0.86 5.8 0.43 4.52
Effective Complexity ↓ 5.59 400 4.75 224.67

pvd Complexity ↓ 2.98 4.45 2.24 3.79
Effective Complexity ↓ 57.65 103 16.07 97.4

scm1d Complexity ↓ 4.38 5.44 2.55 5.15
Effective Complexity ↓ 136.23 279 16 279.78

Table 4
Comparison of metrics across datasets and explainability methods.
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