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Abstract

Explainable Artificial Intelligence (XAI) aims to enhance trust, transparency, and accountability in Al systems,
but disagreement between explanation methods remains a critical challenge. This thesis tackles the disagreement
problem faced by ensemble explanation strategies to provide coherent, robust, and faithful explanations. For fea-
ture attribution explainers (RQ1), we propose AGREE, a robustness-based framework that aggregates explanations
by weighting them according to robustness. To extend this approach to image data, we propose a region-based
method for enhancing robustness and interpretability using human-interpretable regions and showcase its ability
in a neonatal pain classification task. Such approaches were found to improve the interpretability and consistency
of explanations. For counterfactual explanations (RQ2), we develop GeneticMCF and EnsembleMCF to minimise
disagreement while balancing proximity and sparsity. Ongoing work involves using NSGA-II to strike a better
balance between agreement and diversity. Finally, for RQ3, we propose using Case-Based Reasoning (CBR) to
integrate feature attribution and counterfactual explanations. This work advances XAI by offering systematic
methods to reconcile disparate explanations, improving robustness, interpretability, and coherence.
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1. Introduction

1.1. Explainable Artificial Intelligence (XAl) Paradigms

Transparent Artificial Intelligence (AI) has gained increasing importance due to concerns over account-
ability, trust, and compliance with regulations such as the General Data Protection Regulation (GDPR),
which grants individuals the ‘right to an explanation’ [1]. Explainable AI (XAI) aims to address these
concerns by enhancing the interpretability of complex Al decision-making processes, thereby fostering
trust and enabling effective oversight [2].

Common XAI paradigms include feature attribution, semi-factual, and counterfactual explanations.
Feature attribution methods identify influential features contributing to model predictions and include
SHAP [3], Layerwise Relevance Propagation (LRP) [4], Integrated Gradients [5], Guided Backpropaga-
tion (GBP) [6], and Vanilla Gradients [7]. These methods fall into perturbation-based, gradient-based,
and decomposition-based approaches. Perturbation-based methods like Kernel SHAP approximate
Shapley values through local perturbations, while gradient-based methods (e.g., Integrated Gradients)
leverage gradients to determine importance. Decomposition-based methods like LRP redistribute the
model’s output backward, preserving relevance through the network’s structure.

Semi-factual explanations explore scenarios where substantial changes to input features yield the
same prediction, helping to examine a model’s decision boundaries [8]. In contrast, counterfactual
explanations describe minimal modifications that alter the outcome, closely aligning with human ‘what-
if” reasoning [9]. These explanations are particularly useful for generating actionable recommendations
in domains like healthcare and finance. WachterCF [10], one of the earliest methods, uses an optimisation
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algorithm to minimise distance between the original instance and the counterfactual, focusing on
proximity and validity without considering diversity.

Subsequent methods have expanded this foundation by introducing additional objectives to enhance
counterfactual quality. DiCE [11] employs an optimisation-based approach to generate diverse counter-
factuals that maximise proximity and validity, enabling users to explore various scenarios. NICE [12]
focuses on identifying nearest unlike neighbours to maintain high validity and coverage near decision
boundaries. DisCERN [13] integrates neighbourhood-based counterfactual generation with feature
attribution, producing ordered, actionable recommendations by prioritising features based on their
importance.

While an abundance of XAI methods have been proposed in the literature, a standardised approach
for evaluating their quality remains lacking. The Co-12 framework attempts to unify these evaluation
efforts by defining desirable properties that explanations should satisfy. The following section discusses
existing evaluation metrics and how they relate to the Co-12 framework.

1.2. Desirable XAl Properties and Their Related Evaluation Metrics

The Co-12 framework [14] consolidates various desirable explanation properties such as Correctness
(whether the explanation accurately reflects the inner workings of the model), Consistency (how
deterministic the explanation is), and Completeness (how well the explanation describes the model).
Sensitivity and Infidelity, proposed by [15], are two metrics commonly used to evaluate these properties.
Sensitivity measures the robustness of explanations under slight variations, while Infidelity assesses
how accurately the explanation represents the model’s decision-making process.

Proximity, Sparsity, and Diversity are all important properties when evaluating counterfactual
explanations. Proximity measures the similarity between the query and the generated counterfactual,
making the proposed changes more actionable and realistic, which aligns with the Co-12 property of
Connectedness. Sparsity measures the number of features that need to be modified, contributing to the
Co-12 property of Compactness by favouring simpler and more interpretable explanations. Diversity,
on the other hand, refers to generating multiple valid and distinct counterfactuals to provide users
with a range of options for recourse, allowing them to select the most suitable pathway according to
their needs and constraints. This aligns with the Co-12 property of Context, as it broadens the scope of
interpretability by presenting a variety of feasible actions rather than a single solution.

Among these properties, Coherence is particularly relevant to this work, as it concerns the alignment
of explanations from different sources. Agreement, a key aspect of coherence, measures how well
different explainers align in their feature attributions or recommended changes. However, when
coherence is compromised due to conflicting insights from various explainers, the ‘Disagreement
Problem’ emerges.

1.3. The Disagreement Problem in XAl

The ‘Disagreement Problem’ [16] occurs when different explainers produce conflicting insights about
feature importance, their relative rankings, or the recommended changes needed to alter outcomes.
For instance, factual explainers like SHAP and LRP may provide contradictory explanations about
which features are most influential, while counterfactual explainers may suggest different, sometimes
opposing, actions to achieve the same desired outcome. Figure 1 illustrates the extent of disagreement
among multiple feature attribution explainers the breast cancer dataset. Furthermore, while diversity
in counterfactual explanations is often desirable for providing multiple pathways to achieve a desired
outcome, it can be exploited for ‘fairwashing’ by selectively presenting favourable explanations that
conceal biased decision-making [17].

This inconsistency undermines trust in Al systems, making it challenging to reach a consensus on
which insights are reliable. Therefore, it is essential to develop methods that can unify explainer outputs
and mitigate disagreements. In this paper, we address the Disagreement Problem by investigating how
to combine different feature attribution and counterfactual explainers to produce consistent, accurate,
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Figure 1: Example of the disagreement between an ensemble of 6 feature attribution explainers regarding the
most important features for a breast cancer diagnosis.

and trustworthy explanations. Our approach focuses on evaluating explainer contributions using
metrics such as robustness for factual explainers, and proximity, sparsity, and validity for counterfactual
explainers. By aggregating explanations in a principled manner, we aim to provide a coherent and
reliable interpretation of model decisions.

2. Related Work

The disagreement problem in XAI has recently gained attention as various explainers often produce
conflicting insights. Krishna et al. [16] were the first to empirically study this problem, revealing
that machine-learning practitioners struggled to resolve discrepancies and often resorted to subjective
preferences such as choosing the most recent or preferred explainer. They also introduced methods for
quantifying disagreement by comparing top-k feature sets across explainers.

Building on these metrics, Roy et al. [18] proposed filtering explanations by reporting only the top-k
features with shared attribution signs to reduce disagreement. In contrast, Schwarzschild et al. [19]
addressed the problem preemptively by introducing a “consensus loss” during model training, aimed at
promoting coherence among downstream explainers. Laberge et al. [20] suggested that disagreement
arises from differing assumptions about feature interactions, proposing regional explanations based
on an ‘FD-tree’ to partition the feature space and enhance consensus. Ensemble techniques have also
been applied to XAI to enhance explanation quality. For example, [21] combine SHapley Additive
exPlanations (SHAP) [3] and Grad-CAM++ [22] through a stacking approach, resulting in explanations
that are more consistent and better aligned with user expectations.

While these approaches address the disagreement problem primarily for feature attribution explainers,
Brughmans et al. [17] focus on counterfactual explanations, conducting a large-scale empirical study
involving 40 datasets, 12 explanation-generating methods, and two black-box models, resulting in
over 192,000 explanations. Their findings highlight significant disagreement between methods, which
can be exploited for fairwashing by selecting explanations that obscure biased decisions. The study
suggests that disagreement is predominantly influenced by dataset characteristics and the choice of
counterfactual algorithm.

Although existing approaches have made progress in mitigating the disagreement problem, they
primarily focus on aligning explanations without evaluating their quality within the ensemble. Our
work addresses this gap by assessing explanation quality using metrics such as robustness, proximity,
sparsity, and validity to reconcile disagreements. However, this will require improving existing metrics



like sensitivity, which often rely on noise-based samples that can be out-of-distribution and skew
robustness measurements. To address this, we employ a nearest-neighbour-based perturbation method
to generate more realistic samples, ensuring a fairer and more accurate evaluation of explanation
robustness. Additionally, we propose that case-based reasoning [23] and optimisation algorithms, such
as genetic algorithms [24] and NSGA-II [25], are well-suited to this problem. Case-based reasoning
provides a structured way of comparing new explanations to previously encountered cases, enabling
the identification of explanations that are most consistent with past successful cases. Meanwhile, opti-
misation algorithms such as NSGA-II allow us to balance competing objectives like diversity, agreement,
and proximity, providing a systematic way to aggregate and reconcile conflicting explanations.

3. Research Questions

We are interested in alleviating the disagreement problem for both feature-attribution and counterfactual
explainers. This is important because resolving disagreement between these methods can provide end-
users with clearer, more consistent explanations, ultimately enhancing their trust and understanding of
Al systems. Accordingly, we pose the following research questions (RQs):

RQ1 (Answered): Can the link between robustness and disagreement be exploited by means of aggre-
gation to increase the alignment between, and faithfulness of, feature attribution explanations in
XAI?

RQ2 (Partially Answered): What measures can be implemented to find an optimal agreement-diversity
trade-off and minimise the disagreement between counterfactual XAI explainers, so that fairwash-
ing is mitigated and end-users can build stronger mental models of automated decision-making
systems?

RQ3 (Pending Investigation): How can the disagreement between feature attribution and counterfactual
explanations in XAl be quantified and reconciled to leverage their complementary strengths for
improved interpretability?

RQ1 has been thoroughly addressed, and the findings are expected to be disseminated soon. Regarding
RQ2, significant progress has been made by framing the problem as an optimisation task. While initial
findings using a single-objective genetic algorithm were promising, a multi-objective approach has
now been implemented in an attempt to balance competing metrics more effectively. Evaluation of this
approach is planned for the near future. RQ3 remains unexplored at this stage.

4. Methods

4.1. AGREE — Robust Ensemble Feature Attribution Explanations (RQ1)

To address feature attribution disagreement (RQ1), we introduce AGREE (Aggregation for Robust
Explanation Experiences). Our previous work [26] proposed AGREE by aggregating explanations
based on agreement using case alignment, a new metric where agreement is calculated by comparing
explanations within neighbourhoods of similar instances. This approach aimed to capture agreement
by aligning explanations that produced similar feature attributions for neighbouring cases. While
this approach effectively captured agreement between local explanations, it only indirectly captured
robustness, limiting its ability to weight explanations according to quality, making it less reliable.

To overcome this, we now aggregate explanations using a robustness metric that relies on generating
perturbations along a specific path between the instance being explained and its Most Distant Neighbour
(MDN, see [8]) — the instance of the same class closest to the Nearest Unlike Neighbour (NUN). This
robustness assessment involves comparing similarity curves between the original instance and its
perturbations against their corresponding explanations, using two metrics: Robustness Area for area
difference and Fréchet Similarity for curve trajectory similarity. The scores are then combined and



normalised to weight explainers by their robustness, ensuring that more robust explanations contribute
more significantly to the aggregated explanation, thereby improving reliability and consensus.

To extend this work to image data, we build on Laberge et al’s findings that region-based explanations
reduce disagreement by simplifying feature interactions and improving alignment [20]. We applied
this approach using manually segmented images to analyse agreement at the region level, comparing
human-interpretable concepts rather than fine-grained pixels where disagreement is less meaningful.
This step, incorporated as a precursor to AGREE, aims to enhance interpretability, faithfulness, and
robustness of image-based ensemble explanations.

4.2. Minimising Disagreement with Meta-counterfactual Explanations (RQ2)

For RQ2, we propose ‘meta-counterfactuals’ (MCF) to address disagreement between counterfactual
explainers using optimisation techniques like Genetic Algorithms (GeneticMCF). Disagreement is
quantified by differences in the size and direction of actions recommended with respect to the query,
where size refers to the magnitude of change applied to each feature relative to the query (e.g., a salary
increase of $10,000) and direction refers to whether the change should increase, decrease, or remain
unchanged. This metric is integrated into the optimiser to minimise disagreement within diverse
explanations or between baseline explainers, reducing fairwashing’ and enhancing user interpretability.

Additionally, we introduce EnsembleMCF, which aggregates multiple baseline counterfactuals by
ranking them based on proximity, sparsity, and disagreement. This consensus-based approach improves
coherence and interpretability without compromising essential counterfactual properties. While Ensem-
bleMCEF establishes a coherent MCF, GeneticMCF offers further improvement by directly minimising
disagreement over a broader search space.

4.3. A Case-based Approach to Reduce Disagreement Between Feature Attribution
and Counterfactual Explainers (RQ3)

We propose to leverage Case-Based Reasoning (CBR) to reduce the disagreement between counterfactual
and feature attribution explainers (RQ3) by identifying feature attributions that are more likely to
support a given counterfactual explanation. A critical first step involves developing a suitable method
for measuring agreement between the two explanation types. The underlying idea is that similar past
cases demonstrating agreement between feature attribution and counterfactual explanations can guide
the formation of a likely consensus ensemble. A case in this context would consist of an instance, its
associated counterfactual explanation, the corresponding model prediction, and the feature attribution
explanations generated for that instance. While the feature attribution explanation will still need to be
generated on the model to ensure faithfulness, the use of CBR aims to reduce the overhead associated
with running and comparing every possible feature attribution method. Instead, by comparing against
past cases, we can prioritise those explainers most likely to produce compatible explanations, thereby
enhancing efficiency and promoting coherence.

5. Preliminary Findings

As discussed in Section 3, we have made substantial progress towards addressing RQs 1 and 2. While
work on the multi-objective approach is still ongoing, our preliminary results from the single-objective
approach, which remain unpublished, provide a partial answer to RQ2. A comprehensive overview of
the preliminary findings from each RQ follows:

5.1. Feature Attribution (RQ1)
5.1.1. Experiment 1: Perturbation Comparison

We evaluated AGREE’s robustness metric by comparing our nearest-neighbour-based perturbations
(anchored by the MDN) against noise-based methods commonly used in sensitivity analysis. Using a



randomly selected subset of 50 instances, we generated 100 perturbations per instance and assessed
their realism via the Wasserstein distance between the original and perturbed distributions. Results
showed that our approach produced more realistic samples, which should provide a fairer evaluation
and more accurate robustness estimation.

5.1.2. Experiment 2: Faithfulness Evaluation

We assessed the faithfulness of original and aggregated explanations using infidelity as the primary
metric. Several aggregation strategies were compared: selecting the most robust explanation (max),
mean, median, and our weighted average approach incorporating robustness weights. Weighted average
and mean consistently performed best, with similar performance when robustness scores were equal,
suggesting the choice between the two is trivial in such cases.

5.1.3. Experiment 3: Real-World Application

We applied AGREE to a real-world oil and gas dataset, evaluating both infidelity and disagreement
metrics. Results indicated that reducing disagreement can better help detect false alerts in anomaly
detection. The weighted average approach performed well, demonstrating the practicality and robust-
ness of AGREE in real-world applications. Overall, these findings highlight AGREE’s effectiveness in
improving explanation faithfulness and reducing disagreement, particularly in real-world use cases.

5.1.4. Experiment 4: Region-Based Explanation Comparison

We explored the potential of region-based explanations for neonatal pain assessment, where disagree-
ment is measured at the region level rather than pixel level [27]. By comparing explainers (Grad-CAM,
Integrated Gradients) against human attention heatmaps using predefined region masks, we found
that region-based explanations provide higher agreement and are more interpretable compared to
pixel-based methods, particularly for pain-related features (nose, mouth, between eyebrows). While this
experiment was not integrated with AGREE, it suggests that region-level aggregation could enhance
agreement and interpretability if incorporated in the future.

5.2. Counterfactual Methods (RQ2)
5.2.1. Experiment 1: Baseline Comparison

We evaluated meta-counterfactuals generated by EnsembleMCF and GeneticMCF against four baseline
explainers (DiCE, NICE, DisCERN, and WachterCF) across five health and finance datasets. Metrics used
include disagreement, proximity, and sparsity. EnsembleMCF achieved superior agreement without
compromising proximity or sparsity, while GeneticMCF improved proximity and sparsity but struggled
with disagreement. Results are based on 20 repeated trials with a 70-30 train-test split and pairwise
t-tests.

5.2.2. Experiment 2: Qualitative Analysis

We conducted a qualitative analysis to assess the plausibility, interpretability, and coherence of example
meta-counterfactuals. EnsembleMCF consistently provided coherent and interpretable explanations,
whereas GeneticMCF improved certain cases but often faced challenges due to the diversity-agreement
trade-off. The findings suggest that multi-objective approaches, such as NSGA-II [25], should be further
investigated to balance the competing objectives of agreement, proximity, and sparsity.

6. Conclusion and Next Steps

This work addresses the disagreement problem in XAI by developing ensemble explanation strate-
gies aimed at enhancing coherence, robustness, and faithfulness. For RQ1, we proposed AGREE, a



robustness-based aggregation framework that quantifies explanation stability via perturbations to
produce consensus explanations. This approach effectively improves faithfulness and alignment across
multiple feature attribution explainers, particularly when applied to region-based explanations. For
RQ2, we introduced meta-counterfactuals, developing GeneticMCF and EnsembleMCF to aggregate
counterfactual explanations, highlighting the importance of balancing diversity and agreement. Finally,
for RQ3, we proposed integrating feature attribution and counterfactual explanations using Case-Based
Reasoning to produce coherent multi-faceted explanations. The immediate next steps for this research

are:
« Multi-objective Meta-Counterfactual Generation (RQ2): Evaluate the effectiveness of the

multi-objective approach using an NSGA-II optimiser, incorporating a plausibility term to enhance
robustness. Ablation studies will be conducted to fine-tune parameters and assess the trade-off
between diversity and agreement.

+ Addressing Disagreement Between Feature Attribution and Counterfactual Explainers
(RQ3): Implement and assess the proposed CBR-guided system for integrating feature attribution
and counterfactual explanations. Evaluation will include comparing disagreement levels with
and without CBR guidance, as well as user studies to assess coherence and practical utility.

This work contributes to the field of XAI by providing a systematic framework for aggregating expla-
nations from different sources, improving robustness and coherence while mitigating the disagreement
problem. The introduction of robustness-weighted aggregation, meta-counterfactual generation, and
the proposed integration of feature attribution and counterfactual explanations form a comprehensive
approach to enhancing interpretability and reliability in XAL
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