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Abstract

The objective of this proposal is to bridge the gap between Deep Learning (DL) and System Dynamics (SD) by
developing an interpretable neural system dynamics framework. While DL excels at learning complex models
and making accurate predictions, it lacks interpretability and causal reliability. Traditional SD approaches, on
the other hand, provide transparency and causal insights but are limited in scalability and require extensive
domain knowledge. To overcome these limitations, this project introduces a Neural System Dynamics pipeline,
integrating Concept-Based Interpretability, Mechanistic Interpretability, and Causal Machine Learning. This
framework combines the predictive power of DL with the interpretability of traditional SD models, resulting in
both causal reliability and scalability. The efficacy of the proposed pipeline will be validated through real-world
applications of the EU-funded AutoMoTIF project, which is focused on autonomous multimodal transportation
systems. The long-term goal is to collect actionable insights that support the integration of explainability and
safety in autonomous systems.
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1. Context and Motivation

The field of System Dynamics (SD) has long focused on modeling complex systems that underpin many
application domains. In transportation logistics, for example, dynamical systems are used to model
supply chain operations, traffic congestion, fleet management, and urban mobility planning.

Traditional SD models rely on differential equations and expert-defined rules to represent the evolution
of a system over time. These models provide interpretable causal pathways and have long been valued
for their transparency and accountability. However, they are constrained by simplifying assumptions
that often fail to capture the full complexity of real-world systems and suffer from limited scalability as
the number of interacting variables increases.

Contemporary Deep Learning (DL) techniques offer a promising alternative to overcome the aforemen-
tioned limitations of traditional SD modeling. DL algorithms are indeed capable of learning automatically
the non-linear relationships that underpin dynamical systems’ behaviors from large-scale data [1],
thereby supporting the development of scalable and highly precise predictive models. Yet, these gains
do not come costless. Unlike traditional SD models, which involve concepts and inferential rules that are
easily understandable by their users, DL models operate as sort of “black boxes”, whose semantics and
the decision-making logic behind their outputs remain mostly incomprehensible to users. Furthermore,
DL algorithms exploit predictions based on correlations, ignoring causal dependencies and mechanisms;
this is referred to as a lack of causal reliability [2]. Several methods have recently been proposed to
overcome the opacity issues of DL models, which fall under the umbrella term of eXplainable AI (XAI).
These methods provide valuable insight into how the DL models operate and produce their results.
However, existing XAl techniques mostly fail to provide models with well-defined semantics that are
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interpretable to their users. This is because most available XAl methods are post-hoc, inspecting the
behaviors of naturally opaque models after training rather than trying to embed interpretable features
directly within a model’s structure. Moreover, these methods are mostly incapable of addressing causal
reliability problems as these fall beyond their usual target scope. This severely limits the usefulness of
these methods in system dynamics, where interpretability and causal reliability are equally fundamental
challenges that go hand in hand. Additionally, the difficulty of certifying deep learning systems due
to their limited explainability poses significant safety concerns in critical applications [3]. This gap
is increasingly being explored in the emerging field of Neuro-symbolic Al which integrates neural
networks and symbolic reasoning to create interpretable and data-driven models. Recent advances in
this field [4] align with the goals of this research, which seeks to combine System Dynamics with Deep
Learning, as detailed in Fig. 1. To address the challenges of interpretability and causal reliability in
DL-based dynamical systems modeling, this project moves away from post-hoc techniques and instead
focuses on the construction of an interpretable by design neural systems dynamic framework. A
plethora of different methods will be implemented to allow the combination of DL with the formalism
of SD. In particular, the focus will be on techniques from the fields of Concept-Based Interpretability
(5], as well as Mechanistic Interpretability [6] and Causal Machine Learning [7]. The pipeline will be
structured as follows, with a more detailed description provided in section 3.

As afirst step, concept-based interpretability methods will be employed to identify a set of semantically
meaningful high-level variables (termed “concepts”) that describe understandable characteristics and
magnitudes of interest. CML techniques will then be implemented to detect the causal dependencies
among the selected high-level variables. Finally, mechanistically interpretable modeling techniques
will be leveraged to infer a set of interpretable structural dynamic equations that govern the system’s
behavior. Such equations will be determined by taking into account the previously identified causal
dependencies. This will not only allow for increased interpretability but will also contribute to anchoring
the models to the real-world causal structure, making them substantially more reliable and trustworthy
for safety-critical applications.

As a final result, this pipeline should be able to return neural models that track the evolution of
systems over time, both by operating on semantically meaningful and actionable variables. It will be
implemented and evaluated on a real-world scenario from the EU-funded project AutoMoTIF, where SD
is involved in modeling the interoperability of multi-modal transportation terminals. A more detailed
description of the real-world application is provided in Sec. 1.1.
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Figure 1: A unified framework combining System Dynamics and Deep Learning for Interpretable Neural System
Dynamics.

1.1. Real-World Application: EU Project AutoMoTIF

The doctoral research proposed herein will be carried out under the EU-funded AutoMoTIF project!
(Automation towards multimodal transportation and integration of freight). The project’s core focus lies in
the formulation of strategies, the development of business and governance models, and the generation
of regulatory recommendations. These are designed to facilitate the integration and interoperability of
automated transport systems. The project’s overarching objective is to automate multimodal freight
flows and logistics supply chains within the intra-European network, thereby enhancing operational
efficiency and addressing existing regulatory and technological gaps.

'https://automotif-project.eu
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Within this project, System Dynamics plays a crucial role in modeling and optimizing multimodal
terminal operations, helping stakeholders to analyze and predict system behavior under different opera-
tional conditions. However, the complexity of these environments calls for data-driven Al approaches,
which, despite their predictive power, often lack interpretability and causal reliability — critical aspects
for risk assessment and certification. This challenge aligns with the broader Trustworthy Al paradigm,
which underscores transparency, reliability, and human oversight [8]. Within this framework, the
Trustworthy Autonomous Systems (TAS) research field focuses on developing methods to enhance
AT accountability, explainability, and resilience in real-world deployments. Reflecting these concerns,
the EU AI Act classifies Al-driven transport automation as a high-risk domain, requiring rigorous
risk assessment, explainability, and robustness [9]. By integrating this research into AutoMoTIF, the
proposed pipeline will be tested in a real-world and high-pressure environment where understanding is
crucial for ensuring safety, compliance, and trust in autonomous systems.

2. The Many-Faces of the Interpretability Challenge

Whilst the importance of eXplainable Al is becoming increasingly acknowledged, achieving inter-
pretability remains a complex process. The opacity of DL algorithms represents a major challenge for
contemporary Al research. In particular, the DL community must navigate various forms of opacity,
which vary based on the different aspects of a model’s structure and functioning that are focused on, as
well as on the specific users and stakeholders involved [10]. The present project focuses specifically on
two primary kinds of opacity that are of central relevance for research, notably semantic and mechanistic
opacity [11].

Semantic opacity refers to the challenge of deciphering what a model’s learned representations
mean in terms understandable to humans. This issue is particularly relevant in Neural Networks
(NNs), where internal representations are often abstract and distributed without explicit meanings.
Humans generally process information through high-level concepts, whereas NNs operate within a
multi-dimensional feature space that obscures the semantics of the features involved and how these
relate to categories comprehensible by the layman user.

Mechanistic opacity refers to the difficulty of detailing precisely the mechanisms through which
the various components of a model interact with one another and thus contribute to generating the
overall model’s behavior [12]. This issue is particularly significant in large-scale NNs with millions or
even billions of parameters, where computations are spread across numerous layers and involve several
non-linear transformations.

In the XAI literature, these two different opacity forms have been mostly addressed separately by
referring to different paradigms and implementing distinct strategies and techniques. This fragmented
approach obstructs the creation of a cohesive, mathematically rigorous framework capable of addressing
multiple interpretability challenges that stem from considering these two aspects of opacity together.
Explaining the mechanisms underpinning the inference process of a DL model (e.g., via equation
modeling) contributes minimally to the overall interpretability of the model’s behavior if the features
remain low-level and semantically meaningless. Conversely, mapping low-level features to high-level
concepts has limited value if the model’s decision-making mechanisms remain opaque.

Causal Reliability. Related to the aforementioned forms of opacity is another fundamental issue,
which is orthogonal to the problem of (mechanistic and semantic) opacity but intrinsically connected
to it. This is the problem we refer to as causal reliability [2]. This problem concerns the (in)ability
of a model to track the real-world causal mechanisms operating beyond observable data generation
and take them into account when drawing predictions. DL models are built to identify correlations
among features and generate predictions solely based on them while ignoring the causal mechanisms.
This poses DL algorithms in contrast with traditional mechanistic models, widely involved especially
in the field of system dynamics. The latter, indeed, embeds an explicit representation of the causal
mechanisms beyond data. The lack of reliance on real-world causal mechanisms represents a major
limitation for DL algorithms, notably as it undermines their robustness and generalizability, especially



in out-of-distribution contexts [13]. Furthermore, this issue limits the actionability of DL models,
limiting the possibility of users intervening properly in their inferential processes and analyzing related
interventional and counterfactual scenarios [14].

The Need for an Integrated Approach. Opacity and causal reliability have been mostly treated
as separate issues in contemporary Al research. Indeed, while opacity represents the target problem
of XAI, causal reliability is at the heart of another growing research field, that of Causal Machine
Learning (CML) [13, 7]. The two fields have developed separately with little connection among each
other [15]. However, the two problems have a close relationship, especially when we focus on modeling
dynamical systems. In response to these limitations, this doctoral project aims to propose a cohesive
framework that jointly addresses the two aforementioned forms of opacity and, at the same time,
produces causally reliable models. The project can be seen as an attempt to combine the three research
domains of semantic (“concept-based”) explainability, mechanistic interpretability, and causal reliability,
with specific reference to the field of dynamical systems modeling and its applications.

3. Research Strategy and Rationale

This project proposes a novel Interpretable Neural System Dynamics (INSD) pipeline that combines
Concept-Based Interpretability, Causal Learning, and Mechanistic Interpretability to construct causally-
reliable neural system dynamics models that operate on human-interpretable variables while preserving
the flexibility and scalability of DL approaches (Figure 2). The pipeline consists of three distinct learning
steps:

1. Concept Learning: In the first step, concept-based interpretability (CBI) methods are used to
extract high-level semantically interpretable variables (“concepts”) from raw data.

2. Causal Learning: In the second step, causal machine learning (CML) and causal discovery (CD)
techniques are leveraged to identify the causal dependencies among these high-level concepts,
thereby representing them in the form of a causal directed graph.

3. Equation Learning: In the third step, mechanistic interpretability methods are involved to derive
explicit and interpretable dynamic equations that allow to predict the behavior of the target-
system over time.

After the three learning steps, the final model integrates the learned concepts, causal relationships,
and governing equations to emulate the underlying dynamical system. Unlike traditional black-box
neural networks, this model offers full interpretability, enabling users to trace predictions back to
meaningful variables and causal influences. Furthermore, it provides actionable insights, allowing
decision-makers to simulate interventions, predict long-term effects, and better understand the system’s
behavior under different conditions. This ensures both transparency and practical applicability, bridging
the gap between deep learning’s flexibility and human-comprehensible system dynamics. The following
paragraphs provide a detailed breakdown of each methodological component.

3.1. Understanding System Dynamics Through Concept-Based Interpretability

When applied to system dynamics, DL algorithms typically generate latent representations of system
states that are usually not understandable and are arduous to interpret. For instance, in the context of
epidemiological modeling, deep learning algorithms have the potential to discern underlying patterns
of disease transmission; however, they have difficulty formulating these patterns using conventional
epidemiological factors, such as contact rate or incubation period. This semantic opacity restricts their
reliability for critical decision-making processes. Concept-based Explainable Al introduces a potentially
effective solution to these limitations by aligning Al reasoning with human-understandable abstractions
rather than opaque latent representations [5]. Despite these innovations, this approach remains opaque
regarding other aspects, such as the intrinsic mechanisms underlying concept representational learning.
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Figure 2: Overview of the INSD pipeline, from concept learning to causal and equation learning, ensuring
interpretability and causal reliability in the resulting model.

Concept-based models are currently underdeveloped concerning the temporal dimension, i.e. the
evolution of interpretable concepts over time. This project would enable human interventions over
evolving representations, constituting a significant advance. In addition, this class of methods faces
generalization and compositionality challenges because, similar to standard deep learning architectures,
they are essentially associative models [14]. This suggests that their decision-making process is not
aligned with the underlying causal mechanisms of the world. They must distinguish regularities in data
that reflect true causal relationships from those that are spurious. It is, therefore, crucial to comprehend
this distinction to develop a robust and reliable understanding of phenomena, as well as to support
intervention planning and ensure the application of fairness constraints [13].

Running Example: Automated Terminal Operation in AutoMoTIF. Within an intermodal
terminal setting, while a DL model might forecast freight congestion patterns, it may not
clarify the reasons behind delays. By employing concept-based interpretability, logistics-related
concepts such as terminal workload, handling efficiency, and waiting times for various transport
modes are incorporated. This ensures predictions reflect real-world operational factors accurately.
Consequently, this approach makes Al-driven simulations more transparent and actionable for
terminal operators.

3.2. The Role of Causality in DL-based System Dynamics Models

Causal reasoning plays a crucial role in System Dynamics, as these models explicitly represent causal
connections between system variables. Contrarily, DL-based approaches rely on statistical correla-
tions rather than true causal frameworks, which limits their ability to provide strong, interpretable
predictions. A promising direction for overcoming these limitations is provided by recently developed
CML techniques and, in particular, the framework of Neural Causal Models (NCMs). These techniques
aim to uncover the underlying causal structure of a system by learning a graph that captures causal
dependencies between concepts. Based on this learned graph, we can then infer equations that describe
the system’s evolution in a causally reliable manner, ensuring that the resulting models generalize more
robustly and provide deeper insights into the underlying mechanisms governing the data.

~

Running Example: Automated Terminal Operation in AutoMoTIF. A DL model might
predict regular train delays at an intermodal terminal and identify a correlation between high
truck traffic and these delayed departures. However, without causal reasoning, the underlying
cause can remain unclear. A causal model could determine whether truck congestion is directly
causing train delays or if another external factor, such as inefficient crane operation, is primarily
responsible. By simulating counterfactual scenarios, such as “What if we increased crane
availability?”, causal DL enables logistics operators to make proactive and data-driven decisions.




3.3. Understanding System Dynamics Through Mechanistic Interpretability

Mechanistic Interpretability seeks to unravel DL models by reverse-engineering them to reveal their
internal structures and decision-making processes. This research field is highly pertinent to System
Dynamics, where comprehending a model’s inner workings holds equal importance as its predictive
accuracy. Traditional System Dynamics models use clearly defined equations and feedback loops, which
make them inherently easy to interpret. The formal use of a causal loop diagram to describe a feedback
system naturally leads to a connection with graph-based Al architectures like Graph Neural Networks
(GNNs). GNN s offer an intuitive and organized way to represent dynamical systems, bringing benefits
regarding intrinsic interpretability by exploiting relational inductive bias. Specifically, mechanistic
interpretability techniques can help to trace information propagation to understand internal interactions.
This is essential to develop structured, human-interpretable representations of dynamic processes.

Running Example: Automated Terminal Operation in AutoMoTIF. Consider a simu-
lation of an intermodal terminal where a DL-based model recommends rerouting trucks via a
secondary access road. Without mechanistic interpretability, the reasoning behind this decision
remains unclear — whether it stems from predicted congestion, infrastructure constraints, or
other operational factors. Taking advantage of the intrinsically interpretable model, we can
identify modular components within the model, track the flow of information within the model,
and uncover the key interactions influencing routing choices. This structured understanding
enhances both the interpretability and trustworthiness of Al-driven logistics systems.

4. Research Questions and Objectives

This research is guided by the following key questions:

RQ1: How can a system dynamics framework ensure transparency and accountability while maintaining
the predictive power of deep learning?
Working Hypothesis: Integrating traditional equation-based modeling with deep learning can
achieve this balance.

RQ2: How can traditional modeling techniques and deep learning be effectively combined to leverage
their strengths?
Working Hypothesis: An optimal integration may involve combining three key areas of XAl
research: concept-based interpretability, mechanistic interpretability, and causal machine learning.

RQ3: How can methods from the aforementioned distinct fields be integrated to develop an interpretable
neural system dynamics framework?
Working Hypothesis: Concept-based interpretability can be used to learn high-level concepts
and map raw data to meaningful variables, causal learning to infer dependencies among these
variables, and mechanistic interpretability to define and parameterize system equations.

To refine this framework, the investigation focuses on: (i) how concept-based techniques can identify
high-level variables from raw data; (ii) how causal learning can infer dependencies using data and
background knowledge; and (iii) how to determine the structure and parameters of governing equa-
tions in an interpretable manner. Additionally, the framework’s adaptability for modeling intermodal
transportation logistics is examined, with an emphasis on ensuring safety and accountability. The
integration of traditional equation-based modeling with deep learning, leveraging methods from these
XAI fields, is hypothesized to achieve an interpretable and reliable system dynamics framework. This
approach ensures partial verifiability, actionability, and control in real-world applications.

Specific Objectives and Milestones. The project’s main objective is to design, implement, and
evaluate an integrated pipeline combining system dynamics modeling with deep learning, applying



it to AutoMoTIF and assessing generalisability. To achieve this objective, the following intermediate
milestones are planned:

M1: State-of-the-Art Analysis. Review concept-based, mechanistic, and causal learning interpretability
via a systematic literature review [D1: survey paper].

M2: Pipeline Blueprint. Design a blueprint for integrating dynamical system modeling with deep
learning through literature review and theoretical modeling [D2: short conference paper].

M3: Use-Case Implementation. Develop and validate the pipeline on a toy example [D3: conference
paper (e.g., NeurIPS, ICML)].

M4: Real-World Scalability Study. Scale the pipeline to AutoMoTIF [D4: applied research paper].

M5: Generalization Study. Assess applicability to other real-world scenarios [D5: generalization study
report or journal paper].

Meé: Dissertation Completion. Compile research findings into the PhD thesis [D6: dissertation].

The project will run for 48 months. It started in January 2025, and termination is planned for
December 2028. The structure of the project’s timeline is reported in Fig. 3.
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Figure 3: Gantt diagram of the doctoral project.

Expected Contribution and Impact. Through the development of a unified interpretability frame-
work for DL-based System Dynamics models, this research aspires to bridge the current divide between
theoretical advancements in eXplainable Al and their application in high-stakes, real-world environ-
ments. By bringing together causal, mechanistic, and concept-based perspectives within a cohesive
methodology, the project is expected to deliver not only novel algorithms and formal models but also
practical tools that empower users to understand, trust, and effectively intervene in Al-driven processes.
The anticipated contributions extend beyond the specific context of multimodal logistics, offering gen-
eralizable insights for any domain that relies on the interplay of Deep Learning and System Dynamics.
These insights may be applied to a wide range of fields, including, but not limited to, transportation,
healthcare, environmental monitoring, and finance. Ultimately, this work aims to establish both a
conceptual and operational foundation for interpretable, trustworthy Al in settings where transparency
and accountability are not optional but essential for safety, compliance, and societal acceptance.
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