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Abstract
While Deep Neural Networks (DNNs) excel in image classification, their black-box nature necessitates the
development of Explainable AI (XAI) methods. Existing XAI techniques often face limitations in balancing
explainability, fidelity, and efficiency. My doctoral research addresses these limitations through an evolving series
of investigations. Initially, I focused on improving the gradient-based explanations. This research led me to
explorations of concept-based explanations. Currently, I am investigating sample-based explanations to attribute
the importance of training samples. These seemingly disparate lines of research are connected by a common
thread: the pursuit of XAI methods that are faithful to the model, understandable to humans, and computationally
efficient for real-time applications.
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1. Introduction

Deep neural networks (DNNs) revolutionize how we approach complex tasks and achieve exceptional
performance in areas like image classification. Their success comes from their ability to learn complex
patterns from a large amount of data. However, this performance comes at the cost of interpretability.
DNNs are often described as black boxes due to their opaque internal workings, making it difficult for
humans to understand the reasoning behind their predictions [1].

Consequently, the research on Explainable AI (XAI) has gained significant momentum, with the aim of
making DNNs more transparent and human-understandable [2]. XAI techniques seek to provide insight
into DNN decision-making processes, allowing users to understand their output and increase trust in
the system. However, existing XAI methods often face trade-offs between explainability, faithfulness,
and efficiency [3].

A common approach for XAI computer vision techniques is to attribute importance scores to pixels
or image patches [4, 5]. However, such pixel-level explanations can be overwhelming and difficult for
humans to interpret, as they lack semantic meaning and do not capture higher-level concepts relevant
to the task [6, 7]. Furthermore, the faithfulness of these methods can be questionable, as they may
lack sensitivity to the model and the data generating process [8]. Additionally, some methods, such as
SHAP [9], can be computationally too expensive for practical application.

This research aims to develop novel explainability methods that are faithful to the model, understand-
able to humans, and computationally efficient for real-time applications. The main research questions
investigated are:

• Can we develop explainability methods that simultaneously achieve model fidelity, human
interpretability, and computational efficiency?

• What explanation type do users prefer based on their expertise?
• Are explanations at higher or lower levels of abstraction in image classification more effective for

users?
• Can different abstraction levels in image classification explanation be integrated into a framework?
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Figure 1: Any Segment Explanation (ASE) overview. An input image x is classified (𝑓 ), yielding prediction
𝑦. 𝑥 is segmented (SAM1 [23]/SAM2 [24]; residual is unsegmented areas). Segments are treated as concepts
and are transformed into binary masks. Perturbed images (𝑥′) are generated by inserting/deleting concepts.
Insertion/Deletion Scores (IS/DS) measure model prediction change. The concepts are ranked by combining IS
and DS scores, where the highest-scoring concept is shown as the explanation.

2. Related Work

A common approach for XAI computer vision techniques is to attribute importance scores to pixels
or image patches [4]. However, such pixel-level explanations can be overwhelming and difficult for
humans to interpret, as they lack semantic meaning and do not capture higher-level concepts relevant
to the task [6, 7]. Concept-based and prototype-based explanations are promising alternatives [10].
Concept-based explanations are more closely aligned with human reasoning and how humans explain
decisions [11]; they help identify biases and improve classification performance [12], are more stable
against perturbations and more robust against adversarial attacks than traditional XAI methods [12]
However, existing concept-based methods suffer from limitations such as task specificity, reliance on
manual annotation of concepts, and limited automatic concept discovery. The Explain Any Concept
(EAC) method [13] addresses some of these challenges using the Segment Anything Model (SAM1) for
automated concept extraction. EAC assigns importance scores to SAM-generated image segments using
Monte Carlo SHAP, enabling concept-level explanations without manual annotation. However, EAC’s
reliance on a surrogate linear model to approximate the target DNN and the computational expense of
SHAP limits EAC’s practical applicability.

Most of the XAI research is centered on determining the most influential input features, often referred
to as feature importance [14, 9]. An alternative approach to enhancing model transparency is quantifying
individual training instances’ influence on the model’s predictions, known as sample-based explanations
(SBE) [15]. Current state-of-the-art methods for sample-based explanations are generally categorized
into retraining-based and gradient-based approaches [16]. Retraining-based methods operate on the
principle that a training sample’s importance can be quantified by measuring its removal’s impact
on the model’s performance after retraining [17]. Several notable works have developed methods
based on this approach [18, 19]. While this approach is simple and human-understandable, its primary
limitation is computational complexity. Gradient-based methods attribute training sample importance
by calculating gradients over model parameters and evaluating the similarity between the gradients [20].
A fundamental limitation of gradient-based methods is the computational burden that computing the
inverse Hessian poses [21, 22].
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Figure 2: Framework of the proposed CorrSHAP method. Input image 𝑥 is segmented into superpixels 𝑆.
Superpixels are vectorized and centralized into vectors 𝑉 . Correlation matrix 𝐶 between superpixels is calculated
using cosine similarity between individual vectors. For each superpixel, we take correlated superpixels, where
correlation is higher than threshold |𝐶𝑖𝑗 | > 𝜏 , and perform perturbations on all combinations to calculate
superpixel attribution.

3. Methodology

Building upon EAC Any Segment Explanations (ASE), an improved local, post-hoc, and model-agnostic
explanation method was proposed. ASE overcomes EAC’s limitations of model approximation and
high computational cost while achieving superior model faithfulness. ASE employs state-of-the-art
image segmentation algorithms Segment Anything Model 2 (SAM2) in combination with Segment
Anything Model 1 (SAM1) and residual segment for concept extraction, enabling broader and more
relevant concept capture. ASE employs concept insertion and deletion techniques to determine concept
attributions, avoiding the need for surrogate models and the associated inaccuracies. The framework of
the proposed ASE method is shown in Figure 1. This paper is currently under review.

While ASE showed good performance, it does not consider the interdependence of visual concepts.
To address this limitation, a novel method that leverages the correlations between image concepts
to accelerate SHAP attribution calculation Correlation SHAP (CorrSHAP) was proposed. CorrSHAP
transforms image superpixels into centralized vector representations and employs the modified Pear-
son correlation approach to quantify superpixel relationships (Figure 2). By leveraging the concept
correlation, CorrSHAP dramatically reduces the number of feature subsets that need to be evaluated for
accurate SHAP value estimation, resulting in substantial computational savings. This paper has been
accepted to the XAI 2025 conference.

Current state-of-the-art methods for estimating training data attribution are highly computationally
expensive and have problems with scaling up. To address these limitations, a novel black-box approach
leveraging kernel functions was proposed. It achieves better model faithfulness while being much faster
than competing methods. This paper is under review for the ICCV conference.



(a) Mean AUC insertion performance depending on threshold.

(b) Mean AUC deletion performance depending on threshold.

(c) Execution time depending on threshold.

Figure 3: Performance analysis as a function of the threshold 𝜏 . Lower AUC deletion, higher AUC insertion
scores, and lower execution time indicate superior performance.

4. Results

Table 1 shows comparative results of the proposed ASE with the state-of-the-art methods EAC [13],
DeepLift [25], GradSHAP [14], IntGrad [26], KernelSHAP [9], FeatAbl [27], and LIME [28]. ASE
consistently outperforms competing methods, demonstrating substantial improvements in model
faithfulness. Beyond faithfulness, ASE offers significant computational advantage, averaging 1.568
seconds per image explanation, ASE is 38.29x faster than EAC, which requires 60.039 seconds per
explanation.

Figure 3 shows the performance of all three proposed approaches for CorrSHAP. These results demon-



ASE(ours) EAC* DeepLIFT* GradSHAP* IntGrad* KernelSHAP* FeatAbl* LIME*

Insertion ↑

ResNet-50 91.10 83.400 75.235 64.658 68.772 64.544 70.187 76.638
MobileNet-v2 90.67 74.651 34.197 47.848 48.662 60.837 59.197 61.282

ViT-b16 89.86 89.594 54.455 68.125 69.480 75.152 65.656 76.161
ResNet-18 78.03 73.558 47.799 38.877 36.806 50.547 43.448 50.592

Deletion ↓

ResNet-50 8.99 23.799 25.262 40.996 36.214 26.583 37.332 25.307
MobileNetv2 6.61 6.002 26.381 14.679 13.382 7.766 8.866 7.344

ViT-b16 6.24 17.298 40.784 30.948 29.903 21.825 34.191 19.254
ResNet-18 2.57 6.596 8.588 11.273 11.555 6.638 8.352 6.776

Table 1
Mean AUC over 10000 random ImageNet-1k images. * indicates results reproduced from [13] using the same
seed for random image sampling for direct comparison. Higher AUC (insertion) and lower AUC (Deletion) are
better. ASE outperforms the other methods for all the compared models and for both evaluation circumstances.

Area Under the Curve (AUC) Insertion ↑
Model Superpixels CorrSHAP 1 CorrSHAP 2 CorrSHAP 3 MCSHAP

MobileNet-v2
Quickshift 80.4 80.37 80.29 80.89

SLIC 78.12 78.13 78.15 77.79

ResNet-18
Quickshift 60.21 60.23 60.21 61.60

SLIC 54.66 54.65 54.65 55.41

ResNet-50
Quickshift 82.63 82.61 82.63 82.27

SLIC 81.20 81.20 81.20 80.66

ViT-b16
Quickshift 80.83 80.83 80.74 81.84

SLIC 76.36 76.33 76.41 76.82
Area Under the Curve (AUC) Deletion ↓

MobileNet-v2
Quickshift 20.14 20.14 20.16 20.93

SLIC 19.48 19.48 19.48 21.40

ResNet-18
Quickshift 8.25 8.25 8.25 8.03

SLIC 9.06 9.06 9.06 9.01

ResNet-50
Quickshift 22.79 22.79 22.79 24.16

SLIC 22.36 22.36 22.39 23.79

ViT-b16
Quickshift 17.20 17.17 17.13 16.86

SLIC 20.53 20.53 20.53 20.48
Execution Time (seconds) ↓

MobileNet-v2
Quickshift 0.42 0.54 1.15 16.13

SLIC 0.74 0.89 1.86 14.98

ResNet-18
Quickshift 0.43 0.50 1.09 7.85

SLIC 0.66 0.51 1.91 13.82

ResNet-50
Quickshift 0.46 0.58 2.76 25.16

SLIC 0.78 0.93 5.93 36.49

ViT-b16
Quickshift 0.40 0.52 5.41 7.26

SLIC 0.73 1.01 10.53 18.00

Table 2
Quantitative evaluation of explanation methods using metrics AUC Insertion, AUC Deletion, and execution time.
Methods (CorrSHAP versions 1-3 and MCSHAP) are compared across architectures (MobileNet-v2, ResNet-18,
ResNet-50, ViT-b16) and superpixel algorithms (Quickshift and SLIC).

strate that CorrSHAP substantially reduces execution time while maintaining explanation faithfulness
(Table 2). This outcome indicates the effectiveness of our correlation method in accurately assigning
correlations to superpixels. Consequently, we can restrict the computation of superpixel attributions



for explanations to a smaller subset of correlated superpixels. Qualitative comparison of CorrSHAP to
Monte Carlo SHAP is shown in Figure 4.
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Figure 4: Qualitative comparison of explanations generated by CorrSHAP and MCSHAP. Visual inspection
reveals that CorrSHAP’s explanations are more consistent with human perception of important image features.



5. Research Impact and Future Work

The proposed XAI methods offer explanations that are faithful to the model, understandable to humans,
and computationally efficient which enables them to be practical and applicable in real-world scenarios.
The proposed sample-based XAI method has broad applicability across various domains. It can detect
mislabeled data, identify data leakage, analyze memorization effects, and optimize training datasets and
is applicable to other fields like control, active learning, and system identification.

Future work will explore alternative correlation measures, focus on enhancing the robustness of
XAI methods, as well as conducting a deeper investigation into the interaction between kernel choice,
hyperparameters, and the underlying data distribution, with the goal of developing a more stable and
consistently high-performing sample based explanability method.

Declaration on Generative AI

The author has not employed any Generative AI tools.
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