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Abstract

This research explores video data explanations, incorporating temporal information, via XAI methods to enhance
reliability for surgical training. It aims to detect learning biases in DNNs used for surgical skill assessment. The
broader objective is to evaluate XAl performance with complex models and real-world data. This document
details the context, methodology, preliminary findings, and future contributions.

1. Context and Motivation

In recent years, the demand for high-quality and region-specific food products has significantly in-
creased, driven by growing consumer awareness and increasingly stringent regulations on food safety
and traceability. Ensuring the authenticity of agri-food products has become essential to combat food
fraud, protect geographical indications, and promote transparency throughout the entire production
chain. Traceability not only enhances the value of local specialties and quality certifications (such as
PDO and PGI) but also plays a crucial role in detecting potential contamination or adulteration that could
compromise consumer safety[1]. Currently, food origin determination relies on various methodologies,
including certification systems, blockchain technology, spectroscopic and physicochemical analyses[2].
However, these techniques have limitations in terms of cost, scalability, and their ability to provide
in-depth insights into all aspects related to production and quality. In this context, Artificial Intelligence
(Al)—particularly Machine Learning (ML)—is emerging as an innovative tool capable of analyzing large
datasets and identifying complex relationships between the chemical, physical, and environmental
characteristics of food products. By applying ML models, it is possible to develop advanced systems for
uncovering hidden patterns in data, improving accuracy in food origin determination, and optimizing
quality control processes. These models can be used to classify products based on specific parameters,
predict quality variations depending on production conditions, and detect anomalies that may indicate
fraud or contamination. However, one of the main challenges in applying Al to this field is the lack
of transparency in ML-based decision-making. Many Al techniques, especially advanced models such
as deep neural networks, function as “black boxes,” making it difficult to understand how and why a
certain prediction is generated. To address this challenge, this study—conducted within the framework
of the METROFOOD-IT project—adopts an Explainable Artificial Intelligence (XAI) approach [3]. In this
context the project is designed to support research and innovation in the agrifood sector by providing
integrated services that enhance digitalization and improve the efficiency, traceability, and sustainability
of agrifood systems. A key objective is to increase the reliability of products and processes while ensur-
ing that citizens, authorities, and food system stakeholders have access to transparent and trustworthy
information. The project will also define a structured framework for service provision, enabling both
transnational and virtual access to advanced research services that support interdisciplinary studies
in the agrifood sector. XAI provides methods to interpret and explain Al-generated results, allowing
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experts to identify the key factors influencing food quality and traceability[4]. The goal is to improve
the transparency of ML-based analyses, offering reliable tools for food industry professionals to assess
and monitor product quality. This advanced approach applies to various food categories, including olive
oil, tomatoes, and mozzarella, enabling a more comprehensive traceability system and enhancing certifi-
cation processes. Moreover, the integration of Machine Learning and XAI contributes to strengthening
trust among stakeholders in the food sector, providing a clearer and more detailed understanding of the
mechanisms determining food authenticity and quality. In an increasingly demanding and regulated
global market, ensuring food quality, safety, and transparency is now more crucial than ever.

2. Key Related Work

The integration of Machine Learning (ML) and Explainable Artificial Intelligence (XAI) in food quality
assessment has gained increasing attention in recent years [5]. Several studies have explored ML
techniques for detecting food adulteration, assessing quality parameters, and improving traceability,
while XAI has been proposed as a solution to enhance model interpretability and stakeholder trust.
This section reviews the most relevant contributions in this domain, focusing on food authenticity
verification, spectral data analysis, and XAI applications in food science. Various machine learning
approaches have been applied to assess food quality, particularly using spectral techniques such as
Near-Infrared (NIR) and Infrared (IR) spectroscopy. Studies have demonstrated that deep learning
models, including convolutional neural networks (CNNs) and ensemble methods, can effectively classify
food products based on their chemical and spectral fingerprints. For example, research on dairy products,
including mozzarella, has highlighted the potential of ML for distinguishing authentic samples from
fraudulent or lower-quality variants, often leveraging chemometric techniques in combination with
supervised learning models [6]. While ML models have shown high accuracy in food classification
tasks, their adoption is often limited by the lack of interpretability. Recent works have introduced XAI
techniques, such as SHAP and LIME, to provide insight into feature importance and model decisions in
food science applications [7]. Studies in this area have demonstrated that XAI can help identify key
chemical markers responsible for quality classification, improving trust and acceptance of Al-driven
food assessment tools among scientists, regulators, and industry stakeholders.

3. Research Framework

Food quality and traceability are critical challenges in modern food systems, requiring robust analytical
methods to ensure safety, authenticity, and compliance with regulations. The advent of Machine
Learning (ML) and Explainable Artificial Intelligence (XAI) provides new opportunities to enhance the
efficiency, accuracy, and interpretability of food quality assessments. METROFOOD framework, aims
to establish a research infrastructure for metrology and traceability in food quality and safety.

3.1. Hypothesis

The hypotheses guiding this research are formulated to address key challenges in food quality assessment,
authenticity verification, and traceability within the METROFOOD framework. These hypotheses center
on the effectiveness of ML and XAI techniques in improving the accuracy, transparency, and reliability
of food quality models. Each hypothesis is designed to explore the potential of these methodologies to
revolutionize food safety and quality control by providing more precise, interpretable, and trustworthy
analytical tools. The first hypothesis suggests that integrating ML and XAI will enhance the accuracy
and interpretability of food quality models, making them more applicable in real-world scenarios. ML
models, especially deep learning, are powerful in detecting patterns within complex datasets like spectral
and chemical data. However, their lack of transparency makes them harder to trust. By combining these
models with XAI techniques, the decision-making process becomes more understandable, allowing
stakeholders to confidently apply these models within METROFOOD ([8]. The second hypothesis



emphasizes that XAl enhances the transparency of ML models, which is crucial for building trust
among food scientists, regulators, and consumers. Even though ML can provide accurate predictions, it
often lacks interpretability. XAl methods can explain the factors influencing these predictions, making
the results more accessible and reliable for stakeholders who need to understand how food quality
decisions are made[9]. The third hypothesis posits that advanced ML techniques, such as deep learning
and ensemble models, can process complex food-related datasets, like spectral and chemical data, to
identify quality indicators and detect anomalies. These models are well-suited for extracting valuable
insights from large, intricate datasets, improving the reliability of food quality assessments and helping
to detect issues like fraud or contamination. Finally, the fourth hypothesis proposes that the integration
of XAl-driven ML models in METROFOOD will lead to more reliable food quality control, improving
traceability and ensuring compliance with safety standards. By providing interpretable, real-time
insights, these models can support food safety monitoring, making decision-making more efficient and
trustworthy, while enhancing transparency and accountability.

3.2. Objectives

The primary objective of this research is to develop and validate Machine Learning (ML) and Explainable
Artificial Intelligence (XAI) approaches for food quality assessment within the METROFOOD initiative
[10]. This involves designing and evaluating ML models capable of analyzing food-related data to assess
quality, authenticity, and traceability. The study will explore different ML techniques, such as Random
Forest, Support Vector Machines, and Neural Networks, comparing their performance based on key
metrics like accuracy, precision, recall, and F1-score. A crucial aspect of this research is investigating
the role of XAI in improving the interpretability and transparency of ML models in food science
applications. Various explainability techniques, including SHAP, LIME, and Attention Mechanisms, will
be implemented to make ML-based food quality assessments more accessible and understandable for
domain experts. The effectiveness of these XAl methods will be evaluated by assessing their alignment
with expert knowledge and their ability to enhance trust in Al-driven decision-making. The study
will also apply ML and XAI methodologies to real-world datasets from METROFOOD, focusing on
spectral analysis data (e.g., NIR, IR) and microbiome composition[11] profiles to distinguish high-quality
food products from substandard or fraudulent ones. The potential of ML to detect anomalies and
deviations in food production and supply chains will be explored, contributing to improved traceability
and quality assurance. Finally, the research aims to enhance data-driven decision-making processes in
food quality control by integrating ML and XAI methodologies into existing food analysis frameworks.
A key goal is to develop an XAl-based framework that supports researchers, regulatory bodies, and
industry professionals in understanding and interpreting ML-generated insights. Additionally, the
study will examine potential deployment strategies for integrating ML models into METROFOOD’s
digital infrastructure, ensuring their practical applicability in real-world food quality monitoring and
assessment.

4. Research Approach

Our research approach is based on a quantitative methodology aimed at analyzing and predicting
food quality using advanced Machine Learning (ML) and Explainable AI (XAI) techniques[12]. The
study focuses on analyzing food data from various sources, such as sensors, laboratories, and existing
databases, in order to develop predictive models for tracking the quality of products such as olive oil,
tomatoes, and mozzarella. These data will be used to train ML models with the goal of identifying
and predicting the quality and authenticity of each product. The approach will primarily rely on
classification and regression techniques, to address the complexity of the data and the possible variables
influencing food quality. To enhance the reliability and interpretability of the results, Explainable
Al (XAI) methods will also be employed to make the predictive models not only effective but also
understandable to stakeholders, such as producers and consumers, ensuring transparency in automated
decisions.



4.1. Materials and Methods

The project involves the use of data acquired from various partners within the METROFOOD consortium
to ensure a comprehensive analysis of food quality and traceability. However, at present, the only
published study is based on data related to Mozzarella di Bufala Campana DOP. Mozzarella di Bufala
Campana is a soft, fresh, stretched-curd cheese traditionally produced in the provinces of Caserta and
Salerno (Italy). Production also takes place in selected localities of the metropolitan city of Naples, as
well as in southern Lazio, northern Apulia, and the municipality of Venafro in Molise. Mozzarella di
Bufala Campana is often known as "white gold" in homage to the cheese’s prized nutritional and taste
qualities. It was granted Protected Designation of Origin (PDO) status in 1996. Protected Designation
of Origin (PDO) is a certification that guarantees the authenticity and quality of food products linked to
specific geographical regions. The data used in this study, described in Table 1, were obtained from
the microbiological analysis of the microbiome of 65 samples of Mozzarella di Bufala Campana DOP,
collected from 30 dairies in the province of Salerno and 35 dairies in the province of Caserta [13].

n samples from Salerno 30

n samples from Caserta 35

type of input variables microbiome relative abundance
n input variables for each sample 139

Table 1
Description of samples and input variables

These samples underwent thorough examination in the laboratories of the Microbiology Division of
the Department of Agricultural Sciences at the University of Naples Federico II [14]. All the dairies se-
lected for this study are located within the production area defined by the official production regulations
and exclusively produce Mozzarella di Bufala Campana DOP.

The collected data were analyzed using Machine Learning (ML) algorithms for both classification
and regression tasks. For classification, models such as EXtreme Gradient Boosting (XGBoost)[15] and
Random Forest[16], and neural networks were employed to categorize the data based on predefined
labels. For regression tasks, linear regression, decision tree-based models, and deep learning approaches
were utilized to predict continuous outcomes. To ensure the reliability and robustness of the analysis,
model performance was evaluated using appropriate metrics for each task. Classification models were
assessed based on accuracy, precision, recall, F1-score and AUC (Area Under the Curve), while regression
models were evaluated using Mean Absolute Error (MAE), root mean squared error (RMSE), and R-
squared (R?). To optimize performance and prevent overfitting, hyperparameter tuning was conducted
using grid search and random search techniques, and model validation was performed through k-fold
cross-validation[17]. Additionally, feature selection and engineering techniques were applied to enhance
model interpretability and predictive accuracy. Dimensionality reduction methods, such as Principal
Component Analysis (PCA), were used when necessary to manage high-dimensional data. All analyses
were conducted using Python-based frameworks, including Scikit-learn, TensorFlow, and PyTorch,
ensuring reproducibility and scalability of the results. To further enhance model interpretability and
transparency, Explainable Artificial Intelligence (XAI) techniques were integrated into the analysis[18].
Among the various XAI methods, SHapley Additive exPlanations (SHAP) and feature importance
analysis were employed to provide deeper insights into the decision-making process of the models.
SHAP offers a systematic approach to explaining model predictions by assigning an importance value
to each feature based on its contribution to the final output. By quantifying the individual impact of
each feature, SHAP values enable a clearer understanding of how different variables influence model
predictions. The SHAP value for a given feature is computed by averaging its marginal contribution
across all possible feature subsets, ensuring a fair and comprehensive attribution of importance. This
methodology provides a robust framework for interpreting complex ML models, particularly when
dealing with high-dimensional datasets. In addition to SHAP, feature importance analysis was used to
rank variables based on their influence on model performance. This technique is particularly relevant



for tree-based models, where built-in feature importance metrics allow for an intuitive assessment of
the most critical predictors. Understanding feature importance not only aids in model refinement but
also provides valuable insights for domain experts, facilitating more informed decision-making.

4.2. Rationale for Testing the Research Hypothesis

The research hypotheses focus on the effectiveness of Machine Learning methods in tracking food
quality and the importance of interpretability through XAI techniques [19]. The primary hypothesis
posits that the use of Machine Learning algorithms to analyze food data can significantly improve
accuracy in monitoring and predicting food quality compared to traditional methods. Machine Learning
models are particularly well-suited to handle large volumes and complexities of data, as they are capable
of identifying hidden patterns and making accurate predictions. The secondary hypothesis suggests
that integrating XAI techniques will improve the transparency and reliability of the models, making
the results more understandable and increasing user trust in food traceability systems. Testing these
hypotheses is crucial to determine whether the adoption of advanced Machine Learning technologies
can indeed optimize the traceability process and improve the overall quality of the food system. In
particular, the proposed research approach will provide concrete answers to how XAI can be used to
make Machine Learning solutions more feasible/acceptable in both industrial and regulatory contexts.

5. Preliminary Results

As part of the ongoing research, preliminary analyses have been conducted to explore the potential of
ML and XAl in food quality assessment, with a specific focus on the classification and characterization
of mozzarella samples [20]. Initial results suggest that ML models can effectively differentiate between
DOP and noDOP samples based on the microbiome composition. However, challenges have emerged
regarding data variability, model generalization, and the interpretability of certain predictive features.
This section discusses these preliminary findings and their implications for refining the models and
improving their robustness within real-world food quality control frameworks. This study involved
evaluating the effectiveness of three supervised machine learning algorithms, namely XGBoost, Random
Forest, and a complex Multi-Layer Perceptron network. The key steps of the analysis are depicted in
the flowcharts provided in the Figure 1.

XAI framework

Evaluation

of ML
Ny classification
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Figure 1: The diagram delineates the sequence of the conducted analysis. The dataset comprised 55 samples,
22 from Salerno and 33 from Caserta provinces.This dataset served to evaluate a 5-fold cross-validation, with
subsequent analysis of XGB Classifier. Finally, the evaluation metrics used to assess the performance of RF
classifier.

The results have been obtained following a 5-fold repeated 20 times cross-validation procedure on
the validation set. This methodology allows us to assess the effectiveness of our algorithm in a robust
and reliable manner.The analysis revealed that the Random Forest classifier outperformed the others,
demonstrating the highest Area Under the Curve (AUC) value of 0.93 & 0.10 and the top accuracy score
of 0.87 & 0.11. Table 2 provides a comprehensive comparison of the three models based on their AUC
and accuracy scores.



Classifier | Accuracy AUC

XGB 0.82£0.12 | 0.87 £ 0.11
RF 0.87 £ 0.11 0.93 £ 0.10
MLP 0.68 +0.13 | 0.78 = 0.11

Table 2
Comparison between evaluation metrics of XGBoost (XGB), Random Forest (RF), and Multi-Layer Perceptron
(MLP) classifiers.

After conducting cross-validation, the outcomes were then utilized to compute feature importance
employing SHAP. Through a SHAP analysis, the 20 most important feature were identified, deriving
from the analysis of the microbiota 65 samples. In the SHAP plot in figure 2 it is evident how certain
features, such as Lactococcus lactis and Moraxella osloensis, contribute significantly to the model’s
prediction. The feature Lactobacillus helveticus is important for the model’s interpretability, as the
colored points are well distinguished, and red points indicate that high values of that bacterium have
influenced Salerno class, and vice versa. This suggests that these elements play a crucial role in the
geographical discrimination of the samples.
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Figure 2: The SHAP (SHapley Additive exPlanations) summary plot provides an overview of the importance of
features in contributing to model predictions. In this type of plot, each point represents a data instance, and the
horizontal position of the point indicates how much the effect of a specific feature contributes to the change
in prediction compared to the model’s average prediction. The color of the point represents the value of the
feature, with darker colors indicating higher values.

6. Expected Next Research Steps

The forthcoming steps in our research will focus on the advanced analysis of NIR (Near Infrared) and
IR (Infrared) spectra to assess the quality and authenticity of olive oil and tomatoes. For olive oil, the
primary objective will be to distinguish extra virgin olive oil (EVOO) from non-EVOO based on the
ethyl esters (EE) content. Ethyl esters are key indicators of oil quality and authenticity, often linked to



oxidation and the presence of adulterants. NIR and IR spectroscopy has already been employed to collect
spectral data from a range of olive oil samples, both EVOO and non-EVOO. This method has provided
valuable insights into the chemical composition of the oils, capturing critical quality markers such as
fatty acid profile, moisture content, and oxidation levels. The next phase of the research will involve
extracting relevant spectral features that correspond to ethyl esters, followed by the development of
Machine Learning models, particularly classification algorithms, to differentiate EVOO from non-EVOO
based on the spectral data. These models are currently being fine-tuned, and their performance will
be validated through cross-validation techniques and comparisons with traditional chemical analysis
methods used for determining ethyl ester content. The results of this phase are already being compiled
into a manuscript for publication. Tomatoes analysis focuses on distinguishing Protected Designation
of Origin (PDO) tomatoes from non-PDO varieties by analyzing the chemical characteristics of the pulp.
NIR and IR spectroscopy has also been used to evaluate key chemical compounds, such as sugars, acids,
and phenolic compounds, that influence the quality and authenticity of tomatoes, particularly those
with PDO certification. The spectral data has already been analyzed, revealing distinct patterns related
to the chemical signatures of PDO tomatoes, which are known for their specific growing conditions
and quality attributes. Data has been collected from tomatoes at various stages of ripeness and from
different varieties, creating a comprehensive dataset that reflects the diversity of chemical compositions.
The next steps will involve further processing of the spectral data to extract relevant features, which
will be used to build predictive models capable of classifying tomatoes as PDO or non-PDO based on
their chemical characteristics. Calibration and validation of these models are ongoing, and comparisons
with traditional quality assessments, such as sensory analysis and chemical analysis, will be carried out
to ensure reliability and accuracy. Both research areas aim to develop efficient, non-invasive methods
for ensuring the traceability and authenticity of olive oil and tomatoes. By integrating Explainable AI
(XAI) techniques into these models, the research will ensure that the results are interpretable, allowing
stakeholders, including producers and consumers, to better understand the reasoning behind the model’s
predictions. This approach will not only enhance the accuracy and reliability of the classification but
also contribute to building trust in food quality control systems.

Finally, the research will remain open to the incorporation of new data from various sources, including
industry collaborators or external datasets. This flexibility will allow for the refinement of the models
and ensure their robustness, adaptability, and applicability across different types of food products. By
integrating new data, the study aims to improve the accuracy and generalizability of the predictive
models, thereby advancing the development of effective and universally applicable food traceability and
quality control systems. This approach underscores the dynamic nature of the research, which seeks to
remain responsive to emerging trends and data in the food sector.
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