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Abstract
Understanding vulnerable road user (VRU) behavior is critical for designing safer and more inclusive
urban infrastructure. This paper presents a structured and explainable framework using Spatio-Temporal
Knowledge Graphs (STKGs) to model and analyze VRU crossing behaviors. By constructing knowledge
graphs from real-world urban traffic datasets, we capture dynamic interactions between pedestrians,
cyclists, and vehicles in different crossing scenarios. Through query-based analysis, our approach extracts
insights that provide decision support to traffic engineers, addressing key safety-related concerns such as
unsafe crossing patterns, pedestrian-vehicle interactions, and speed-related risks. This work contributes
to responsible AI by enabling transparent, explainable, and data efficient decision-making support for
real-world traffic planning and infrastructure design.
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1. Introduction

Building an active mobility environment is crucial to foster more sustainable and inclusive
urban life [1, 2]. Vulnerable road users (VRUs), such as pedestrians (including children, the
elderly, and disabled individuals) and cyclists, are integral to the dynamics of urban traffic.
They play an essential role in establishing an active mobility environment. Implementing
safer road infrastructure not only safeguards these vulnerable groups but also encourages a
broader demographic to participate in active mobility. Municipalities, in particular, have both
responsibility and opportunity to enhance road infrastructure design to support this goal. To
develop safer and more inclusive road infrastructure while optimizing costs, municipalities must
transition from today’s subjective, assumption-based decision-making to objective, data-driven
strategies. Leveraging artificial intelligence (AI) methods can provide deeper insights and key
indicators, establishing a robust basis for informed decision making in infrastructure design
choices [3].

Crossing behavior is one of the main aspects of VRUs behavior. It has been studied in
numerous research studies. It involves the actions and movements of VRUs while crossing
streets or roadways, often guided by traffic signals, road markings, and traffic conditions.
However, it is extremely challenging to understand the behavior of VRUs [4]. Unlike vehicles
that follow structured traffic rules and exhibit relatively predictable and linear motion patterns,
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VRUs are influenced by a variety of external and internal factors and exhibit highly uncertain
and non-deterministic motion.

Traditionally, stochastic models, linear regression models, and discrete choice models are
used to understand how pedestrians make crossing decisions based on various factors related
to traffic conditions, traffic controls, and traffic regulations [5]. These models were developed
using self-reported data from interviews and/or questionnaires and observational data from
manually screened video recordings. Another approach involves agent-based models, where
road users are represented as intelligent agents making rational decisions in uncertain and
complex environments. These studies have focused on modeling pedestrians’ collision avoidance
mechanism. The rules for building the models are often derived from survey data [6].

More recently, trajectory prediction has become a common approach to understand road
user behavior [7]. Trajectory prediction involves predicting the future positions and movement
patterns of road users over time [8]. Accurate trajectory prediction allows traffic engineers to
gain insights into how road users move through road infrastructure and interact with dynamic
environments. Deep neural networks (DNN) based models has revolutionized trajectory predic-
tion [9, 10, 11]. They enable the direct learning of complex representations from large datasets
and support long-term future predictions. Recent advancements have focused on capturing
spatial features, particularly relationships and interactions within dynamic environments, using
graph-based models such as graph neural networks (GNNs), graph convolutional networks
(GCNs), and graph attention networks (GATs) (e.g., [12, 13]). Furthermore, the spatial-temporal
graph transformer (STGT) combines the strengths of graph-based models and transformer archi-
tectures to handle both spatial and temporal aspects of trajectory prediction (e.g., [14, 15, 16]).

Although deep learning (DL) has significantly advanced the modeling of pedestrian crossing
behavior, it often requires large-scale and high quality datasets for effective training. Moreover,
these methods primarily focus on prediction rather than providing structured, interpretable
representations. To enhance model transparency and trustworthiness, explainable AI (XAI)
techniques are important, enabling traffic engineers to interpret model outcomes and apply
insights in real-world decision making scenarios.

Our work is to address this gap by leveraging a knowledge graph based approach that enable
explicit representing and reasoning about crossing behaviors. In this paper, we present a
structured and explainable framework for modeling and analyzing VRU crossing behaviors
using Spatio-Temporal Knowledge Graphs (STKGs). By employing a structured spatial-temporal
representation, we constructed knowledge graphs that capture the dynamic interactions during
crossings, based on real-world urban road user dynamics data. Through query-based analysis, we
extract insights to support traffic engineers in addressing safety-related concerns. This method
offers a structured, explainable, and data-efficient approach to modeling and understanding
crossing behavior and can serve as a foundation for a decision support system for traffic engineer.

The remainder of this paper is organized as follows: In Section 2, we introduce the methods
employed to understand human activities, particularly VRU behavior, using semantic represen-
tation, ontology, and knowledge graphs. In Section 3, we present a crossing scene ontology.
We describe the knowledge graphs built using the ontology from road user dynamics data in
Section 4. Section 5 presents the insights gained from the knowledge graphs that are relevant
to traffic engineer’s safety concerns. Finally, Section 6 concludes the paper.



2. Related Work

Human activity is a spatial-temporal evolution of interactions [17]. In 1970, Hägerstrand [18]
introduced the concept of a time-space path in understanding human activities, which estab-
lished a foundation for trajectory modeling. Inspired by Hägerstrand’s work, Orellana and
Renso [19] developed an interaction ontology. The ontology conceptualizes the characteristics
of pedestrian movement behavior. It has focused on identifying various movement patterns
from time-space paths, and the different categories of interactions, spatial and temporal contexts,
behaviors, and the high-level relations between these concepts. Logic-based reasoning is used
to categorize pedestrian movement behavior based on its movement patterns, interactions, and
contexts.

Chai et al. [20] utilized fuzzy logic to model the cognition and behavioral patterns of pedes-
trians, in order to understand the effect of age and gender when pedestrians are crossing a
signalized crosswalk and jaywalking. Gharebaghi et al. [21] developed a mobility ontology
for people with motor disabilities (PWMD). Specifically, it considers the interactions between
people and both the social and physical environment. The ontology was used to support the
development of assistive technologies for the mobility of PWMD. Fang et al. [22] developed
an ontology defining various kinds of road users, including pedestrians, and describing their
relationships. The concepts from the ontology are used to define the rules for describing the
interactions between road users and to support rule-based reasoning for predicting road users’
behavior.

In cognitive science and neuroscience, it has been recognized that segmentation is a fundamen-
tal component of perception, playing a critical role in understanding activities. People tend to
perceive ongoing continuous activity as series of discrete events (or called segments) [23, 24, 25].
The relationships between segments are encoded in partonomic hierarchies [26]. Coarse segmen-
tation is often related to objects’ locations and their goals, and the causal relations between their
actions. Fine segmentation is closely linked to changes in the interactions between objects [27].

Building on these findings in cognitive science and neuroscience, Ji et al. [28] proposed a
spatial-temporal scene graph to represent human activity and to improve the performance of
action recognition and few-shot action recognition using neural networks. Mlodzian et al. [29]
presented an ontology that was tailored for representing entities and their spatial and temporal
relations in traffic scenes in the nuScenes dataset1. A knowledge graph was constructed from
the nuScenes dataset using the ontology and provided as a benchmark dataset for developing
advanced trajectory prediction models. These studies within computer vision have suggested
that a structured spatial-temporal representation can lead to more accurate human activity
understanding and improve the performance of various computer vision tasks.

In our previous work [30], we presented a semantic representation of crossing behavior.
The representation captures the dynamic evolution of interactions between road users and
objects within the physical environment over time in both spatial and temporal dimensions.
The representation is generalizable and can be applied to represent the behavior of road user in
various traffic scenarios. We have also demonstrated that knowledge graphs can be constructed
from road user dynamics data using the representation, and the queries over the knowledge

1https://www.nuscenes.org/



graphs can be constructed to answer safety related questions on pedestrian crossing behavior
for traffic engineers.

In this work, we extended the semantic representation to incorporate additional factors
relevant to VRUs’ crossing behavior. We constructed knowledge graphs from two road user
dynamics datasets collected in two school areas in Jönköping municipality, Sweden. In collabo-
ration with traffic engineers from the City planning, Development and Traffic Department of
Jönköping municipality, we leveraged insights gained from the knowledge graphs to improve
traffic engineers’ understanding of crossing behavior.

Figure 1: Crossing Scene Ontology (CSO)

3. Crossing Scene Ontology

In this section, we present the ontology describes the semantic representation for crossing
behavior (see Fig. 1). A crossing behavior can be seen as a dynamic evolution of interactions
between VRUs and other objects within the physical environment over time. Every crossing
behavior can be broken down into segments, each representing a distinct phase of the behavior.
These segments capture the changes of the interactions between VRUs and objects in both phys-
ical and temporal dimensions, and together represent the crossing behavior. For example, Fig. 2
shows a crossing scene, which is extracted from road user behavior measurement performed
at a zebra crossing in a school area in Jönköping, Sweden. Fig 2-a displays the trajectories
of the VRUs and other moving objects involved in the event. In this event, a cyclist meets a
light vehicle at the crossing. The blue trajectory represents a cyclist, and the cyan trajectory



Figure 2: An example of VRU crossing behavior.

represents a light vehicle. Fig 2-b1 to b4 show a sequence of distinct segments that capture the
changes in interactions between the cyclist and objects over time during the event.

The triples below express the crossing scene shown in Fig. 2. Each triple follows the format
((id, object_1), hasSpatialRelationship, (id, object_2)), where the object 1 is a moving object
such as pedestrian, cyclist, and vehicle, and the object 2 can be a moving object or a static object
such as crossing and sidewalk, and id is the unique identifier for each object. This is an unsafe
behavior, where the cyclist was trying to cross the street outside the designated crossing area



and came very close to the vehicle.
b1: ((5833 , light_vehicle ), out_of_area , (0 , crossing ))
b2: ((5833 , light_vehicle ), on , (0 , crossing ))
b3: ((5833 , light_vehicle ), out_of_area , (0 , crossing ))

((5833 , light_vehicle ), far_away , (5835 , bicyclist ))
((5835 , bicyclist ), out_of_area , (0 , crossing ))

b4: ((5833 , light_vehicle ), out_of_area , (0 , crossing ))
((5833 , light_vehicle ), close_to , (5835 , bicyclist ))
((5835 , bicyclist ), out_of_area , (0 , crossing ))

Fig 1 illustrates the current version of the ontology designed to represent the spatial-temporal
evolution of crossing behavior. This version is an extended version of the ontology presented
in our previous work [30]. This version also includes the factors relevant to crossing behavior,
such as weather condition and traffic flow. The ovals represent the concepts, and the arrows
represent the relationships between concepts. Specifically, the blue arrow represents subclass
relations between concepts. The boxes represent the XSD (XML Schema Definition) data types.
This ontology is accessible on GitHub2. Since segment is often related to regions in an image in
computer vision, the term frame is used instead. In computer vision, a video can be divided
into a sequence of frames. Each frame represents a single still image in the video sequence. For
each object appearing in interactions, their coordinates and speed are captured too. Currently,
the ontology includes only a limited number of categories for both moving and static objects.
However, additional categories will be integrated as the ontology continues to undergo further
development.

4. The Spatio-Temporal Knowledge Graphs

In this section, we describe the knowledge graphs constructed from road user dynamic data
collected in two school areas in Jönköping, Sweden. The data is described using the semantic
representation of crossing behavior mentioned beforehand in Section 3.

The datasets were prepared from the traffic measurement performed by Viscando AB3 using
the 3D&AI based infrastructure sensor OTUS3D. The measurements were carried out over 4
days, from 2023-05-23 to 2023-05-26, at two crossings in school areas in Jönköping. One crossing
is a zebra crossing, and the other is a zebra-free crossing. The data contains trajectories of all
road users recorded 10 times per second. Trajectories contain the unique track ID for each
object, the UTC time stamp, position (i.e. X-coordinate and Y-coordinate), velocity (i.e. object
speed in the direction of motion (km/h)) and object type. Currently, the object types include
pedestrian, cyclist, light vehicle and heavy vehicle. Vision data are processed in the embedded
computational unit and removed within 20 ms from being captured. Thus, the dataset is stored
fully anonymously, ensuring compliance with the General Data Protection Regulation (GDPR)
of the European Union4, because personal information is neither stored in the sensors nor
transmitted.

Since the application is to support the traffic infrastructure planning and development priori-
tizing VRUs, the knowledge graph construction has focused on the crossing scenes involving

2https://github.com/tanhe-git/crossing_behavior/blob/main/crossing_scene_ontology.owl
3www.viscando.com
4https://gdpr-info.eu/
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#behaviors #ave_triples #ave_nodes
dataset 1 1200 1503 352
dataset 2 312 715 169

Table 1
The structural metrics of the knowledge graphs

both VRU(s) and vehicle(s). The spatial relationship between objects was calculated based on
the physical distance between them. The current spatial relationships include the ones between
moving objects, i.e. close_to and far_away, and the ones between a moving object and a static
object, i.e., on, close_to, far_away, out_of_area. When the information was extracted from the
aforementioned datasets, the ontology described in Section 3 was populated, and the knowledge
graphs were built.

The structural metrics of the knowledge graphs are provided in Table 1. Each crossing
behavior is represented as a graph. Dataset 1 consists of data collected from a zebra crossing in
a school area in Jönköping, while dataset 2 contains data from a zebra-free crossing in another
school area in Jönköping. The numbers indicate the total number of crossing behaviors, as
well as the average number of triples and nodes in the knowledge graphs representing these
behaviors. Dataset 1 was collected from a school area in the center of Jönköping, where traffic
is typically heavier. This may explain why the behavior KGs are larger in this dataset.

5. Insights Learned from the STKGs

In this section, we present the analysis of the knowledge graphs to gain a better understanding
of the crossing behaviors. Moreover, we discuss safety-related concerns collected from traffic
engineers, as well as insights queried and derived from the knowledge graphs, which can be
used to address these concerns.

5.1. Clustering Analysis

We analyzed the knowledge graphs using clustering techniques. Each STKG represents a
crossing scene and is transformed into embeddings. We then apply graph clustering algorithms
to generate clusters.

Fig 3 shows the clusters obtained using the K-Means clustering algorithm, along with the
embeddings based on the Local Degree Profile (LDP) [31]. LDP encodes the degree distribution
of a node’s neighbors in a graph and captures the local connectivity patterns. The clusters
represent the graph’s density. The graphs highlighted in yellow are denser, while those in
purple are less dense. Higher density graph, the crossing behavior represented by the graph
shows more moving objects involved and more complex interactions between objects during
the crossing, which may correlate with higher accident risk. In contrast, sparsely connected
graphs represent simpler, low-risk crossing scenarios.

Fig 4 shows the clusters obtained using the K-Means clustering algorithm, based on the
embeddings generated by FEATHER [32] and GL2Vec [33]. Both methods capture more global
structural patterns. However, they do not directly encode textual node or edge label information



of a graph. To assess the similarity between the clustering results, the Adjusted Rand Index
(ARI) [34] is used. ARI evaluates clustering similarity by considering all pairs of data points and
determining whether they are assigned to the same or different clusters. For dataset 1, the ARI
score is 0.51, indicating moderate agreement between clusterings, whereas for dataset 2, the
ARI is 0.20, suggesting weak agreement between the clustering results.

Figure 3: The clustering analysis 1

Figure 4: The clustering analysis 2



5.2. Query-based Analysis

Safety-related Concerns

First, we present the safety-related concerns gathered from traffic engineers at the City Planning,
Development, and Traffic Department of Jönköping Municipality. These were collected during a
workshop with traffic engineers, focusing on factors influencing the safety of crossing behaviors
with respect to VRUs (pedestrians and cyclists) and vehicles. The discussions highlighted critical
elements affecting behavior and potential risks in mobility.

Traffic engineers raised several concerns regarding pedestrian behavior at crossings, which
can impact overall mobility safety:

P1: Taking shortcuts: Many pedestrians cross diagonally instead of using designated cross-
walks, increasing accident risks.

P2: Walking speed variations: Differences in pedestrians walking speeds may increase colli-
sion risks at intersections.

P3: False sense of security: Some pedestrians cross roads even when a car is approaching,
assuming that drivers will stop, which can lead to dangerous situations.

Cyclists are particularly vulnerable road users, and their interactions with vehicles and
pedestrians can pose safety challenges. The following concerns were highlighted:

C1: Swinging out at crossings: Cyclists may unexpectedly change direction or enter vehicle
lanes when approaching crossings, creating conflict points with motor vehicles.

C2: Crossing at high speed: Some cyclists approach crossings at high speeds, reducing their
ability to stop in time and increasing the risk of collisions with other VRUs and vehicles.

The behavior of drivers plays a crucial role in ensuring road safety, particularly in varying
environmental and traffic conditions. Key factors identified include:

V1: Speed: How quickly vehicles pass through the crossing area.
V2: Type of vehicle: Larger vehicles, such as trucks and buses, have longer stopping distances

and wider blind spots, increasing accident risks.
V3: Weather conditions: Rain, snow, and icy roads affect vehicle traction and braking perfor-

mance.

In this work we have focused on the concerns that can be addressed using datasets collected
through performed measurements. Other safety concerns were also raised during the workshop,
such as pedestrians crossing while looking at their phones. However, these particular concerns
cannot be addressed by analyzing datasets collected from current sensors or by ensuring
compliance with GDPR regulations.

Query and Results

The main SPARQL queries are included in Appendix A. For example, Query 4 is designed to
identify patterns of interactions involving cyclists who are not maintaining a safe speed during



pattern frequency concerns
pedestrian – close_to – vehicle 124 (1), 127 (2) P3
pedestrian – cross (via) – out_of_area (crossing_area) 695 (1), 181 (2) P1, P3
pedestrian – cross (with) – high speed 433 (1), 129 (2) P2
cyclist – cross (via) – out_of_area (crossing_area) 68 (1), 3 (2) C1
cyclist – cross (with) – high_speed 127 (1), 14 (2) C2
vehicle – pass (with) – high speed AND 222 (1), 70 (2) V1, V3
good weather_condition
heavy vehicle – pass (with) – high speed AND 3 (1), 10 (2) V1, V2, V3
good weather_condition
vehicle – close_to – pedestrian AND 30 (1), 20 (2) P3, V1, V3
vehicle – cross (with) – high speed AND
good weather_condition

Table 2
Pattern summaries, where (1) indicates dataset 1 and (2) indicates dataset 2.

a crossing scene. In the WHERE clause, it is specified that the spatial relationships for cyclists
must include either ’out of crossing area’ or ’on’, ensuring that they have fully crossed the road
rather than merely passing along the sidewalk. The query also uses a UNION to account for
scenarios where cyclists are involved in interactions with either moving or static objects during
the scene. Finally, a FILTER condition is applied to include only those interactions where the
cyclist’s speed is greater than 20 km/h.

In Table 2 we present the analysis results related to safety concerns observed in the two
datasets. These patterns capture various types of interactions between VRUs and crossing road
infrastructure, as well as interactions between vehicles, highlighting potential safety risks. The
table provides the occurrence frequency of each pattern in Dataset 1 (zebra crossing area) and
Dataset 2 (zebra-free crossing area), offering insights into how crossing behaviors may vary
based on infrastructure design. These insights can allow traffic engineers to assess behavioral
trends and road infrastructure design regarding improving safety.

6. Conclusions

In this paper, we introduced a structured spatial-temporal representation of VRU crossing
behavior using ontology-based knowledge graphs. Our method enables explicit reasoning
and explainability, addressing the limitations of deep learning-based trajectory prediction,
which often lacks interpretability and structured knowledge representation. By constructing
knowledge graphs from real-world urban datasets, we captured crossing behavior patterns
and provided query-based insights to support traffic engineers in assessing safety risks and
infrastructure planning.

To further enhance the effectiveness of STKG-based analysis, future research will explore
additional techniques for pattern mining and causal analysis. Specifically, we aim to identify
recurring unsafe crossing behavior patterns using methods such as frequent subgraph mining
algorithms [35] and rule mining with LLMs [36], and reinforcement learning [37], and to apply
causal inference techniques to perform cause-effect analysis. Moreover, we will use knowledge



graph embeddings, rather than simple graph embeddings, to better capture the semantic infor-
mation within the KGs. Such analyses could provide insights into factors influencing unsafe
crossing behaviors and provide decision-making support for road infrastructure planning and
development.
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Appendix A: SPARQL Queries
In this appendix, we include the SPARQL queries used to answer the safety related concerns described in Section 5.2.

Query 1: VRU is taking shortcut
SELECT (COUNT(DISTINCT ?b) AS ?total)
WHERE {

?b rdf:type ts:Behavior .
?b ts:hasFrame ?f .
?f ts:containsInteraction ?i .
?i ts:hasSpatialRelationship ?r .
FILTER(?r = ts:out_of_area) .
?i ts:hasObject1 ?obj1 .
?i ts:hasObject2 ?obj2 .
{?obj1 rdf:type ts:Pedestrian}
UNION {?obj2 rdf:type ts:Pedestrian}

}

Query 2: regarding pedestrian walking speed
SELECT (COUNT(DISTINCT ?b) AS ?total)
WHERE {

?b rdf:type ts:Behavior .
?b ts:hasFrame ?f .
?f ts:containsInteraction ?i .
{

?i ts:hasObject1 ?obj1 .
?obj1 rdf:type ts:Pedestrian .
?i ts:hasObject1Info ?obj1Info .
?obj1Info ts:speed ?speed .
BIND(?obj1 AS ?pedestrian)



}
UNION
{

?i ts:hasObject2 ?obj2 .
?obj2 rdf:type ts:Pedestrian .
?i ts:hasObject2Info ?obj2Info .
?obj2Info ts:speed ?speed .
BIND(?obj2 AS ?pedestrian)

}FILTER(?speed > 10)
}

Query 3: regarding cyclist swinging out at intersections
SELECT (COUNT(DISTINCT ?b) AS ?total)
WHERE {

{
SELECT ?b
WHERE {

?b rdf:type ts:Behavior .
?b ts:hasFrame ?f .
?f ts:containsInteraction ?i .
?i ts:hasSpatialRelationship ?r .
{

SELECT ?b (COUNT(?r) AS ?totalRelations
(SUM(IF(?r = ts:out_of_area, 1, 0)) AS ?outOfCrossingCount)
WHERE {

?b rdf:type ts:Behavior .
?b ts:hasFrame ?f .
?f ts:containsInteraction ?i .
?i ts:hasSpatialRelationship ?r .

}
GROUP BY ?b

}
FILTER(?outOfCrossingCount > ?totalRelations / 2)

}
}
?b ts:hasFrame ?f .
?f ts:containsInteraction ?i .
?i ts:hasSpatialRelationship ?r .
{

?i ts:hasObject1 ?obj1 .
?obj1 rdf:type ts:Bicyclist .
?i ts:hasObject1Info ?obj1Info .
?obj1Info ts:speed ?speed .
BIND(?obj1 AS ?bicyclist)

}
UNION
{

?i ts:hasObject2 ?obj2 .
?obj2 rdf:type ts:Bicyclist .
?i ts:hasObject2Info ?obj2Info .
?obj2Info ts:speed ?speed .
BIND(?obj2 AS ?bicyclist)

}
}

Query 4: regarding cyclist unsafe speed
SELECT (COUNT(DISTINCT ?b) AS ?total)
WHERE {

?b rdf:type ts:Behavior .
?b ts:hasFrame ?f .



?f ts:containsInteraction ?i .
?i ts:hasSpatialRelationship ?r .
FILTER(?r = ts:out_of_area || ?r = ts:on) .
{

?i ts:hasObject1 ?obj1 .
?obj1 rdf:type ts:Bicyclist .
?i ts:hasObject1Info ?obj1Info .
?obj1Info ts:speed ?speed .
BIND(?obj1 AS ?object)

}
UNION
{

?i ts:hasObject2 ?obj2 .
?obj2 rdf:type ts:Bicyclist .
?i ts:hasObject2Info ?obj2Info .
?obj2Info ts:speed ?speed .
BIND(?obj2 AS ?object)

}
FILTER(?speed > 20)

}

Query 5: regarding vehicle’s speed
SELECT (COUNT(DISTINCT ?b) AS ?total)
WHERE {

?b rdf:type ts:Behavior .
?b ts:hasFrame ?f .
?f ts:containsInteraction ?i .
{

?i ts:hasObject1 ?obj1 .
{?obj1 rdf:type ts:Pedestrian}
UNION {?obj1 rdf:type ts:Bicyclist}.
?i ts:hasObject2 ?obj2 .
{?obj2 rdf:type ts:HeavyVehicle}
UNION {?obj2 rdf:type ts:LightVehicle}.
?i ts:hasObject2Info ?obj2Info .
?obj2Info ts:speed ?speed .
BIND(?obj2 AS ?vehicle)

}
UNION
{

?i ts:hasObject2 ?obj2 .
{?obj2 rdf:type ts:Pedestrian}
UNION {?obj2 rdf:type ts:Bicyclist}.
?i ts:hasObject1 ?obj1 .
{?obj1 rdf:type ts:HeavyVehicle}
UNION {?obj1 rdf:type ts:LightVehicle}.
?i ts:hasObject1Info ?obj1Info .
?obj1Info ts:speed ?speed .
BIND(?obj1 AS ?vehicle)

}FILTER(?speed > 30)
}

Query 6: regarding vehicle’s speed and distance to VRUs
SELECT (COUNT(DISTINCT ?b) AS ?total)
WHERE {

?b rdf:type ts:Behavior .
?b ts:hasFrame ?f .
?f ts:containsInteraction ?i .
?i ts:hasSpatialRelationship ts:close_to .
{



?i ts:hasObject1 ?obj1 .
{?obj1 rdf:type ts:Pedestrian}
UNION {?obj1 rdf:type ts:Bicyclist}.
?i ts:hasObject2 ?obj2 .
{?obj2 rdf:type ts:HeavyVehicle}
UNION {?obj2 rdf:type ts:LightVehicle}.
?i ts:hasObject2Info ?obj2Info .
?obj2Info ts:speed ?speed .
BIND(?obj2 AS ?vehicle)

}
UNION
{

?i ts:hasObject2 ?obj2 .
{?obj2 rdf:type ts:Pedestrian}
UNION {?obj2 rdf:type ts:Bicyclist}.
?i ts:hasObject1 ?obj1 .
{?obj1 rdf:type ts:HeavyVehicle}
UNION {?obj1 rdf:type ts:LightVehicle}.
?i ts:hasObject1Info ?obj1Info .
?obj1Info ts:speed ?speed .
BIND(?obj1 AS ?vehicle)

}
FILTER(?speed > 30)

}
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