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Abstract
As AI systems grow in complexity, understanding their structure and behaviour becomes increasingly challenging.
The boxology notation offers a dataflow-oriented abstraction to simplify AI system representation and help
address this challenge. In this work, we explore the potential of extending the boxology notation for AI system
engineering and introduce the Boxology Extended Annotation Model (BEAM). BEAM enhances boxology through
(i) incorporating auxiliary notations to capture engineering-relevant information and (ii) introducing an additional
perspective for AI system risk assessment and mitigation. Furthermore, we developed the BEAM ontology as a
machine-readable representation of BEAM to support further functionalities. We evaluated the BEAM approach
through (a) an initial feasibility evaluation with students in a classroom setting and (b) applying BEAM on use
cases as part of a research project. Positive feedback from both evaluations demonstrates its effectiveness in
supporting the AI system engineering process.
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1. Introduction

The rapid growth of artificial intelligence (AI) has led to increasingly complex systems that are challeng-
ing to understand, analyze, and engineer. Complex AI systems are often seen as ”black boxes” whose
internal workings are opaque, even to those who develop and deploy them, as many stakeholders are
only responsible for parts of the systems [1, 2], e.g., ethicist may only focus on the ethical, social, and
philosophical aspects of AI systems with limited knowledge of the details on system components.

This growing complexity has raised concerns about interpretability, transparency, and reliability,
making it crucial to develop systematic approaches to improve the understanding of AI systems and their
engineering process. One approach that has gained attention in addressing this challenge is the boxology
notation [3], a structured abstraction method that represents AI systems through a visual dataflow
perspective. The updated version of this notation [4] provides a simplified, modular visualization of AI
systems, allowing researchers and practitioners to describe and decompose complex AI systems into
their components and patterns. To the extent of our knowledge, the boxology notation has primarily
been used for post-hoc analysis of AI systems [5, 6], facilitating identification and representation of
abstract patterns of neuro-symbolic AI systems.

In this work, we investigate how the boxology notation can be leveraged as a supporting tool for
AI system engineering, both during design and development phases. To this end, we introduce the
Boxology Extended Annotation Model (BEAM), which enriches the boxology notation with further
system and annotation elements that capture essential information relevant to the engineering process.
Specifically, BEAM extends boxology in two aspects:

(i) System perspective: BEAM adds auxiliary elements to capture relevant information for AI sys-
tem engineering processes, including the notion of abstract system elements, containers, and
annotations.
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(ii) Risk and Mitigation perspective: BEAM introduces a specific perspective for representing AI system
risks and mitigation strategies within the boxology framework. This perspective enables engineers
to systematically assess potential risks and incorporate mitigation strategies in the system design
process.

These extensions provide stakeholders with a shared language to describe and communicate the design
of AI systems between them. Beyond these extensions, we also developed the BEAM ontology, which
provides a machine-readable representation of AI system structures based on the enhanced boxology
framework. Our ontology is mapped to existing relevant work, such as EASY-AI [7], SWeMLS on-
tology [8], and AIRO [9] to ensure interoperability between these approaches. The BEAM ontology
enables analysis, integration with other tools, and reasoning capabilities. Furthermore, we are work-
ing on two-way transformations between BEAM’s formal and visual representations to ensure that
stakeholders can seamlessly transition between structured documentation and graphical design views.

To validate the usefulness of BEAM, we demonstrated our approach in both classroom settings and
real-world use cases as part of an ongoing research project1. Our findings indicate that BEAM improves
the clarity and risk awareness in the AI system development process, demonstrating its potential as a
valuable tool for AI engineers.

2. Related Work

This section offers a brief overview from two research areas as a basis for our work in this paper, namely
(i) AI System Representation, and (ii) AI Risk modeling.

2.1. AI System representation.

A particularly strong need for adequate modeling and representation of AI systems has emerged in
the context of hybrid/neurosymbolic AI which combines symbolic and sub-symbolic paradigms, often
resulting in complex system architectures. For instance, initial AI system modeling approaches have
been developed for the identification and representation of NeSy-AI systems design patterns. Early and
notable contributions in this area include the boxology framework [3] and its subsequent extension [4]
intended to represent design patterns of NeSy-AI systems through visual notations. Recently, the
design patterns extended to cater for the emerging combination of Large Language Model (LLM)-based
Neurosymbolic AI system [10].

Researchers have proposed several similar approaches for formalizing the boxology notation. For
example, Mossakowski [11] has suggested an alternative symbolic representation for the boxology
notation through the DOL meta language2, while Ellis et al. [7] proposed the EASY-AI formalism for
the boxology notation with semantically rich axioms for validation and classification purposes. Ellis et
al. goes further to develop SNOOP-AI, a support tool for implementation of new design pattern [12]. In
our prior work, we also developed a similar representation, focusing on the system perspective [8] as a
first-class citizen, in addition to the pattern representation and a set of SHACL constraint validation.
This work, however, mainly built on the earlier version of the boxology framework [3], and therefore
did not consider processes and actors as part of system representations.

2.2. AI Risk modeling

A large variety of Artificial Intelligence (AI) risk modeling approaches have been developed in recent
years, which can be organized into a number of categories:

1https://fair-ai.at/
2https://dol-omg.org
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Regulatory Frameworks at the national and supra-national level – such as the OECD AI principles3

or the EU AI Act – regulate the use of AI from a risk-driven perspective. Whereas such regulatory
frameworks – and the EU AI Act in particular – do not themselves provide specific risk modeling
guidance or formalisms, they have been the primary motivation for and heavily influenced many of the
AI risk modeling approaches developed in the following categories.

AI Risk Management Frameworks such as the Assessment List for Trustworthy Artificial Intelli-
gence (ALTAI)4 for self-assessment, the MIT AI Risk Repository5 [13], the NIST AI Risk Management
Framework6 [14] or the CSIRO Responsible AI Pattern catalogue7 [15, 16] all provide systematic ap-
proaches and normative guidance for AI risk management at a high level. They do not, however, use
semantic modeling techniques to link risks to components and design decisions.

Standards AI risk management has also become a very active field in terms of standardization
efforts. This includes ISO/IEC standards such as ISO/IEC: 42001:2023 (AI Management system), ISO/IEC
23894:2023 (AI Guidance on risk management), and ISO/IEC 31000 for risk management more broadly.
In addition, numerous additional standardization activities, e.g., by organizations such as the European
Telecommunications Standards Institute (ETSI) Technical Committee on Securing Artificial Intelligence
Framework (SAI)8 (which primarily approaches AI risks from a security perspective) or Institute of
Electrical and Electronics Engineers (IEEE), which for instance has developed IEEE 7000-2021 for
addressing Ethical Concerns during System Design more broadly.

Industry Frameworks A number of frameworks for modeling AI risks have also been developed
within industry, including for instance IBM Fact Sheets and Risk Atlas9, Google’s Model Cards [17],
Microsoft’s Responsible AI Standard which provides guidelines for AI developers at Microsoft, or the
Algorithmic Impact Assessment (AIA) approach developed by AI Now institute [18].

AI Risk (management) taxonomies and ontologies The National Institute of Standards and
Technology (NIST) Taxonomy of AI risk10, which has developed as part of a larger AI Risk Management
Framework, is currently available as a draft. It covers only high-level categories and maps them to
relevant policy documents, but does not provide formalizations.

The ETSI SAI AI Threat Ontology 11 aims to describe the AI threat landscape from a security
perspective. Although it mentions Resource Description Framework (RDF) andWeb Ontology Language
(OWL) as options, it only provides illustrative examples of how they could be used to formally specify
an SAI ontology, but a full-fledged formal ontology is to our knowledge not available.

More formal ontologies and vocabularies defined in RDF include the AI Risk Ontology (AIRO)12

[9, 19], Vocabulary of AI Risks (VAIR) 13 and the DPVCG Risk Extension 14. All of them are primarily
motivated by regulatory compliance needs and they consequently provide limited normative guidance
and engineering support for risk-aware AI system design.

AIRO in particular is grounded in ISO risk management standards [20] and primarily motivated by
regulatory needs imposed by the AI Act; it aims to assist stakeholders in determining “high-risk” AI
systems [19] and to this end, it provides the necessary concepts to systematically document identified

3https://oecd.ai/en/ai-principles
4https://futurium.ec.europa.eu/en/european-ai-alliance/pages/welcome-altai-portal
5https://airisk.mit.edu
6https://www.nist.gov/itl/ai-risk-management-framework
7https://research.csiro.au/ss/science/projects/responsible-ai-pattern-catalogue/
8https://www.etsi.org/committee/2312-sai
9https://www.ibm.com/docs/en/watsonx/saas?topic=ai-risk-atlas
10https://www.nist.gov/system/files/documents/2021/10/15/taxonomy_AI_risks.pdf
11https://www.etsi.org/deliver/etsi_ts/104000_104099/104050/01.01.01_60/ts_104050v010101p.pdf
12https://delaramglp.github.io/airo/
13https://delaramglp.github.io/vair/
14https://dev.dpvcg.org/2.1-dev/risk/ (W3C community report)
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Concept Hybrid AI Taxonomy Visualization Examples

Data
Instance
→ Data

text, images, tensors

Symbol
Instance
→ Symbol

knowledge graphs,
taxonomies

Statistical Model
Model
→ Statistical Model

neural networks, large
language models

Semantic Model
Model
→ Semantic Model

rule-based models,
ontologies

Training
Processing
→ Generation
⟶ Training

supervised learning,
reinforcement learning

Engineering
Processing
→ Generation
⟶ Engineering

ontology engineering,
rule definition by human
expert

Inference
Processing
→ Inference

classification, natural
language generation

Transformation
Processing
→ Transformation

data imputation,
mapping

Actor Actor domain expert, user

Workflow Connector none

connecting input/output
with processes, usage of
a model in an inference
process

Table 1
Visual notation elements based on the extended boxology framework and pattern diagrams by van Bekkum et
al. [4]. The second column indicates the corresponding concept as well as its superclasses from the hybrid AI
taxonomy proposed alongside the extended boxology framework. In the third column, the labels on the visual
elements denote the concept represented by them, whereas in a concrete model instance the labels are used to
describe what the visual element represents more precisely. For an example of a concrete model instance, see
Section 4.3.

risks – primarily at the system level. It does not, however, include concepts for granular system
descriptions and does therefore not provide a foundation for AI system engineering activities such
as evaluating system designs, automatically suggesting potential risks based on generic risk patterns
captured in a knowledge base, reasoning about emergent risks and their interactions, suggest mitigations
or help to clarify trade offs involved in design choices. BEAM aims to take first steps to fill this research
gap.

3. BEAM: Boxology Extended Annotation Model

BEAM consists of two parts: (i) the BEAM visual notation provides a set of reusable elements to describe
AI systems, which can be used as a basis for seamless communication between stakeholders, and (ii)
the BEAM ontology, which caters for machine actionability of the BEAM visual notation, facilitating
easier analysis and advanced functionalities, such as reasoning and tools integration.

In this section we introduce both the BEAM visual notation and the BEAM ontology, followed by a
description of their utilization.



Concept Visualization Purpose

Container
grouping of system components,
e.g. to represent subsystems or
complex processes

Note free-text documentation

System
descriptive element for the system
as a whole

Context
descriptive element for the
context the system operates in

Annotation Connector
connection between system
components and annotation
elements

Table 2
Visual notation of additional annotation elements for capturing engineering-relevant information.

3.1. BEAM Visual Notation

The visual notation of BEAM is based on the hybrid AI taxonomy of the extended boxology framework
by van Bekkum et al. [4]. Where applicable, the BEAM visual notation adheres to the shapes used in
the pattern diagrams of the extended boxology framework, however, our visual notation introduces
different colors for each concept to ease their distinction for the viewer. Table 1 provides an overview
of our notation for concepts defined in the extended boxology framework.

Following the notation of the pattern diagrams, data and symbols are represented as rectangles,
models as hexagons, and processes as rounded rectangles. The two types of generative processes, i.e.
training and engineering, are assigned the same color. Actors are not assigned a shape in the extended
boxology framework, hence we chose a triangle to represent them visually. Pattern diagrams include
arrows that connect various types of elements to visualize the workflow within the AI system, but these
arrows are not explicitly defined in the framework. Our notation defines these arrows as workflow
connectors.

The BEAM notation extends the boxology framework in two ways: (i) by introducing annotation
elements to capture engineering-relevant information in order to facilitate better communication
between various stakeholders already in the design and development phases of AI systems, and (ii) by
introducing annotation elements to capture AI system risks and risk controls to enable a systematic
assessment of potential risks and risk control strategies in the system design process.

Annotation Elements for Capturing Engineering-Relevant Information. Table 2 provides an
overview of the visual notation of the additional annotation elements to capture engineering-relevant
information. Container elements can be used for grouping other system components into parts, e.g.
to represent subsystems or complex processes. They are flexible in size, s.t. any group of system
components can be placed within, and include a title bar. Free-text notes in the style of UML [21]
can be used to attach any kind of textual information to system components. System and context
annotation elements enable the textual documentation of the system itself, as well as the context in
which it operates. To distinguish their connectors from arrows that indicate the workflow within
the documented system, a different type of connector is introduced to connect annotations to system



Concept Visualization Adapted Definition from AIRO

Risk

the state of uncertainty
associated with an AI system, a
component of it or a set of such
components, that has the
potential to cause harms

Risk Source
an element that has the potential
to give rise to a risk

Consequence
direct outcome of risk affecting
objectives

Impact
the outcome of a consequence on
individuals, groups, society,
environment, etc.

Risk Control

a measure that maintains and/or
modifies one or more risks, risk
sources, consequences and
impacts

Table 3
Visual notation of additional annotation elements for the AI risk perspective. The definitions are taken from
AIRO [20], slightly adapted for our focus on AI system engineering, emphasizing the ability to connect the
annotation elements of the risk perspective to individual system elements (or combinations of them) to facilitate
fine-grained assessment of risks and risk controls.

components.

Annotation Elements for AI Risk Perspective. Table 3 provides an overview of the visual notation
of the AI risk perspective, comprised of five additional annotation elements that represent core concepts
of the AI Risk Ontology (AIRO), i.e., risks, risk sources, consequences, impacts, and risk controls. Table 3
additionally provides a definition for each concept, based on the definition in AIRO.

Each of these concepts is visualized as a rectangular shape with a title bar. By convention, the title
starts with the type of concept represented, followed by a descriptive part, e.g. Risk Source: Poor Data
Quality. Below the title bar, a free-text description can be added.

Annotation elements of the risk perspective can be attached to any single or multiple system elements
using the annotation connector depicted in Table 2. Connections within the risk perspective, e.g. to
connect risks with their consequences or consequences with their impacts, are represented by the
workflow connector, depicted in Table 1, which clearly expresses directionality.

3.2. BEAM Ontology

In this section, we will report on the BEAM ontology, a formal representation of the BEAM notation
to allow for further reasoning and analysis of the systems. The ontology consists of two parts: (i)
BEAM core, which represents elements from the boxology notation [4] and EASY-AI [7], with additional
elements for AI system [8], and (ii) the proposed extension on AI system risks and mitigation, inspired
from the work of Golpayegani et al. [9]. The BEAM ontology is available online15.

BEAM Core. The BEAM core ontology is designed to support the engineering process of AI systems
through its entire lifecycle. It is developed based on concepts defined by EASY-AI [7] and SWeMLS
ontology [8]. Note that we adapt and rename several classes and properties, while keeping the relation

15https://w3id.org/beam/

https://w3id.org/beam/


Figure 1: Key concepts and relations within BEAM core ontology

with the original concepts through rdfs:subClassOf and rdfs:subPropertyOf. Furthermore, we ex-
tended the ontology with additional concepts to capture relevant information on AI system engineering
process, such as beam:Resource, beam:Container, beam:Unit, and beam:Note.

An overview of BEAM’s core classes, relations and properties is shown in Figure 1 (note that we
omitted sub-properties and inverse properties for clarity). We outline our adaptations and extensions to
the existing ontologies in the following.

• Most classes from the boxology notations (cf. bottom part of Figure 1) are direct subclasses
of their respective classes from EASY-AI, which includes: beam:Actor, beam:Process (and
its sub-classes), beam:Model (including its sub-classes), beam:Data, and beam:Symbol. Class
beam:Instance, which revert to its original name from boxology instead of easy-ai:Artifact,
is an exception.

• Class beam:Resource is added as a super-class of both beam:Instance and beam:Model, repre-
senting possible (non-actor) input for beam:Process.

• We differentiated object properties from beam:Resource and beam:Process (i.e., beam:usedBy)
and between beam:Resource and beam:Process (i.e., beam:participatedIn, for clarity. Fur-
thermore, we added beam:inform relation between Process instances, inspired from similar
concept from PROV-O [22].

• Class beam:Element is a super-class of beam:Resource, beam:Process, and beam:Actor.
The aim is to represent instances of boxology elements involved in a beam:System. Class
beam:Element is a direct subclass of swemls:Unit.

• Class beam:System as a direct sub-class of swemls:System that contains a set of interconnected
swemls:Element designed towards addressing specific goal in a given context.

• Class beam:Container as a superclass of beam:System, representing logical groups of
beam:Element, that are not necessarily interconnected. A beam:Container can contain another
beam:Container through object property beam:contain.



• Class beam:Unit is defined as the superclass of beam:Container and beam:Element, representing
all components and logical groups defined over a beam:System. Any beam:Unit can be linked to
beam:Note through object property beam:note.

• Class Note represents various type of annotations that can be attributed to any beam:Unit.

Figure 2: Risk concepts and their relation to core system concepts.

BEAM Risk Perspective. Existing AI risk (management) conceptualizations (see the overview in
Section 2) include (i) descriptive taxonomies that provide general definitions of relevant concepts –
published for instance by bodies like NIST or ETSI as part of their standardization efforts; (ii) more
formally specified ontologies and vocabularies – such as the AIRO or VAIR developed by ADAPT Centre
Dublin; and (iii) catalogs that provide best practices – e.g., the responsible AI pattern catalog published
by CSIRO16 [15, 16].

However, whereas taxonomies in category (i) are informative, they are limited to natural language
definitions of key terms and do not aim to support modeling or machine-readable knowledge represen-
tation. More formal vocabularies and ontologies in category (ii) do provide representations and are
useful for high-level descriptions of AI systems and their risks — e.g., for documentation purposes — but
they are primarily designed for high-level risk assessment rather than to support automated reasoning
about risks and implications in a particular system design context. Therefore, they do not relate risks
to granular system elements, do not enable risk-aware AI systems engineering, and do not provide
prescriptive guidance. Finally, risk patterns in category (iii) do provide guidance, but they are limited to
natural-language descriptions of general patterns on various levels and also do not aim to support AI
system engineering through machine-readable descriptions and automated reasoning.

To tackle these limitations and take initial steps towards semantically supported risk-aware AI
systems engineering, we base the BEAM Risk Perspective on existing resources – AIRO in particular
– and extend them into a more granular conceptualization of AI risks aligned with BEAM to enable
detailed risk modeling and risk localization within an architectural design. In the following, we describe
how we reuse concepts from AIRO to complement the BEAM core concepts with a risk perspective.

Key classes in the risk perspective are subclassed from AIRO to enable reuse and extension:

• Class beamr:Risk as a sub-class of airo:Risk

16https://research.csiro.au/ss/science/projects/responsible-ai-pattern-catalogue/
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• Class beamr:RiskConcept as a sub-class of airo:RiskConcept

• Class beamr:RiskSource as a sub-class of airo:RiskSource

• Class beamr:Consequence as a sub-class of airo:Consequence

• Class beamr:Impact as a sub-class of airo:Impact

• Class beamr:RiskControl as a sub-class of airo:RiskControl

Properties in the risk perspectives are partly reused from AIRO as well, but are extended for more
granular modeling:

• hasRisk, which unlike the definition of the property in AIRO relates risks and granular system
elements (i.e., Resources – including Data, Symbol, and Model; Processes, i.e. Transform,
Generate and Infer; and Actors)

• originatesFrom is introduced to associate abstract RiskSources (e.g., poor_quality_of_in-
put_data) with concrete Elements in an architecture (e.g., a particular input data set used in the
training process).

These two main properties play distinct roles in modeling risks and localizing the risks in a system
architecture — originatesFrom is used to to link risk sources to particular system elements that
have the potential to give rise to a risk, whereas hasRisk is used to relate system elements where
potential risks materialize to those risks.

• isRiskSourceFor, hasConsequence, hasImpact and modifiesRiskConcept are reused from
AIRO.

• associatedTo is introduced to associate RiskControls with concrete Units in an architecture
to indicate in which part of the system the RiskControl is implemented or which parts it affects.

3.3. BEAM Utilization

The utilization of BEAM, i.e. the visual notation and the ontology, in practice depends on available tools
and the involved stakeholders. The default approach starts with the manual construction of a system
model in the visual notation. This does not presuppose any specific technical knowledge by the modeler
apart from an understanding of the AI system architecture under consideration, however, we assume
that prior experience with modeling, e.g. in UML [21], is helpful. Theoretically, any diagramming
or modeling tool capable of depicting the elements of the visual notation can be used, however, a
transformation between the visual model and the machine-actionable semantic representation based on
the BEAMontology is only possible if the chosen tool allows the import and export in amachine-readable
format. For details on our prototypical implementation, see Section 4.1.

Currently, the transformation from visual notation to the respective semantic representation can only
be done manually by a knowledge engineer. We developed an initial prototype for such transformation
as part of a master thesis [23]. However, it is preliminary work and does not cater to the current version
of the BEAM notation and semantic representation.

The two-way transformation between the visual notation and the semantic representation based on
the BEAM ontology is subject to future work, see Section 5. Once a two-way transformation between
representations is available, the utilization of BEAM can also start from the semantic representation,
e.g. by automated model generation based on textual documentation using an LLM, providing a way to
model large-scale AI systems for which manual modeling is not feasible. Our goal is to make BEAM
accessible to stakeholders that are not experts in semantic web technologies, thus a direct interaction of
stakeholders with the semantic representation is not necessary.



4. Evaluation

This section will report on the initial evaluation of BEAM, consisting of (i) the development of a
prototypical implementation of BEAM notations as a draw.io library (cf. Section 4.1), (ii) an initial
feasibility evaluation with data science students (cf. Section 4.2), and (iii) a workshop-based evaluation
with in an industrial research project (cf. Section 4.3), including an example BEAM instantiation from a
simplified use case in the project.

4.1. Prototypical Implementation of BEAM

A prototype of the BEAM visual notation was implemented as a library for the popular diagramming
application draw.io.17 The library is available online on GitHub18 as an XML file that can be imported
into the application. draw.io was chosen as it fulfills all of our requirements, i.e. the definition of
elements for the concepts defined in Section 3.1, the ability to predefine these elements in the form of a
library or templates, easy manipulation of concrete elements based on the aforementioned library or
templates, as well as the ability to save and load the diagrams in a machine-readable format to facilitate
the transition between the visual notation and semantic representations based on the BEAM ontology.
Furthermore, it is open-source, free, well-known and intuitive to use.

During our feasibility evaluation we also used features that were not strictly necessary but improved
the usability of our diagrams, namely layers and collapsible elements. draw.io allows the creation of
layers, to which elements can be assigned. The visibility of each layer can be toggled individually, thus
presenting a rudimentary way of implementing multi-perspective views. A basic setup can be to add the
elements that represent the system components to a base layer that is always visible. Additional layers
can be created for engineering-relevant annotations and the AI system risk and mitigation perspective.
Using this setup, different stakeholders can take their desired perspective on the documented AI system,
optionally including or omitting details. Diagram elements with the collapsible property enabled
can be collapsed, including all elements within them. Using the collapsible property on containers
that represent subsystems or complex processes allows temporarily hiding details when a high-level
overview is desired.

4.2. Initial evaluation in Data Science Lab Student Industry Projects

As an initial step, we invited students working on a capstone project at the end of their Data Science
specialization to use and assess BEAM. The setting was a final course where student teams of 3-4
students work on a real-world project for an industry partner for one semester. Each group was
assigned a case from a different industry partner, which effectively covered a wide range of sectors and
a broad variety of methods and approaches.

Specifically, we provided students with the draw.io-based modeling tool, detailed instructions on how
to use it, and invited them to (optional) tutorial sessions. Students were then asked to describe their
solution architecture - once as an initial solution architecture during the initial stages of the project as
part of a project plan submission and once at the end of the project to document their final solution. So
far, this resulted in approximately 25 models of real-world industry use cases collected over the course
of two semesters.

We collected initial feedback on the BEAM through a small-scale survey involving selected stakehold-
ers: students, instructors, lecturers, and involved industry partners. We developed the questionnaire
based on the TAM model [24], focusing on three aspects: (i) perceived usefulness, (ii) perceived ease of
use, and (iii) two open-ended questions about experiences with the notation and feedback on BEAM
aspects that could be improved. The participants were asked to provide their scores on a 7-point Likert
scale (1-strongly agree, 7-strongly disagree).

17https://www.drawio.com/
18https://github.com/wu-semsys/beam_tutorial – The repository includes a quick tutorial and further documentation.

https://www.drawio.com/
https://github.com/wu-semsys/beam_tutorial


The stakeholders generally found the approach easy to use and the resulting models useful (average
score: 3/7) and easy to use (average score: 3/7). They found it valuable, particularly for discussing the
solution approaches among students, instructors, and industry partners (average score: 2/7). As part
of the feedback, a student noted that the BEAM tool helped scope the project, engage with industry
partners to elicit requirements, discuss risks and limitations, and develop a joint vision of the solution
approach.

Figure 3: BEAM visual notation for a simple Graph-RAG based ChatBot system

4.3. Workshop-based evaluation in industrial research projects

As a second evaluation step, we conducted in-depth modeling workshops with seven industry partners
as part of an Austrian lighthouse project FAIR-AI 19, which aims to contribute towards a principled
methodological approach to build trustworthy AI systems. This evaluation was conducted in two
phases:

In the pilot phase, a core team of six researchers engaged with industrial partners in half-day ex-
ploratory workshops to model their use cases and assess the risks involved in these use cases from
scratch using the BEAM methodology. Two instances of these workshops were conducted20.

In the second phase, we conducted guided modeling sessions with five additional project partners
from a variety of industries. In this phase, the use cases were pre-modeled by the researchers based
on initial use case descriptions and then fleshed in detail in a three-step process (AI system modeling,
risk modeling, mitigation modeling). The participants provided both direct qualitative feedback and
participated in a survey after the modeling sessions.

19https://fair-ai.at/
20One of them contributed by a very large-scale industrial manufacturing company focused on microgrid demand predictions
and one use case contributed by an SME developing a hybrid AI chatbot frameawork

https://fair-ai.at/


The overall results were very promising and the general feedbackwas that BEAMhelped to (i) explicate
the technical approach and communicate the solution architecture across stakeholders (including – in
this setting – researchers, software engineers, and business sponsors), (ii) link technical design decisions
to risks and business concerns, and (iii) improve risk-awareness across lifecycle phases (i.e., help to
guide risk-aware monitoring after deployment).

Figure 4: An excerpt of BEAM ontology instances for simple Graph-RAG based ChatBot system

Illustrative Example Instantiation. One of the industry partners involved in the FAIR-AI project
provides chatbot solutions for its customers from a variety of industries. They combine Knowledge
Graph-based Question Answering with LLMs in their solutions, particularly for answering questions
from documents and other necessary tasks for dialog systems. While the real-world implementation
of the chatbot is significantly more complex, in the context of our feasibility evaluation, we defined a
simplified use case on retrieval of event summaries consisting of the following components:

• Event Identification: The process begins by obtaining the identifier of an event from a natural
language question. This identification is achieved using an entity extraction algorithms, which
can be replaced with a zero- or few-shot prompt using an LLM.

• KG Querying (Retrieval): Once the id is obtained, relevant information is retrieved through
Knowledge Graph (KG) querying on a predefined Events KG. The resulting subgraph is then
passed to the next component.

• Answer Generation: In the final step, an LLM agent generates the response using context retrieved
from the knowledge graph.

We described this simplified use case with BEAM notation in Figure 3. Furthermore, we demon-
strate the BEAM capability to link risks with examples identified during our workshop, which assists
communications between system developers and non-technical stakeholders in the process.



Furthermore, we represent the use case as instances of the BEAM ontology (cf. Figure 4), allowing for
further analysis of the system description with a machine-readable representation. The representation
helps stakeholders to answer various queries related to the risk of the systems and mitigation strategies
that is (or planned to be) implemented to address the aforementioned risk factors, e.g., Which Elements
contains risks that do not have associated risk control/mitigation mechanisms as part of the system?
(cf. Listing 1) or Which Elements could potentially have multiple (adverse) impacts to the stakeholders?

PREFIX beam: <http://w3id.org/beam/core#>
PREFIX beamr: <http://w3id.org/beam/risk#>

SELECT ?element ?risk
WHERE {

?system a beam:System ; beam:hasElement ?element .
?element beamr:hasRisk ?risk .
OPTIONAL { ?mitigation beamr:modifiesRiskConcept ?risk . }
FILTER NOT EXISTS { ?mitigation beamr:modifiesRiskConcept ?risk }

}

Listing 1: An example SPARQL query to detect unmitigated risk in a system

5. Conclusion and Future Work

This paper aimed to investigate how the boxology notation can be leveraged to support AI system
engineering. To this end, we proposed the Boxology Extended Annotation Model (BEAM) approach
that extends the boxology notations with additional perspectives, namely system and risks. The BEAM
approach consists of visual and semantic notations that enable efficient communication to heterogeneous
stakeholders, as well as efficient processing, analysis, and querying of AI system representations. For
each additional perspective, we developed the extension through literature studies, building on existing
approaches such as SWeMLS, EASY-AI, and AIRO towards workable notations and ontology definition.

We evaluated our approach in two qualitative feasibility studies: First, we conducted an evaluation
with students in the context of industry Data Science lab projects; Second, we conducted in-depth
modeling workshops with industry partners in the context of a national research project. In both
evaluations, we received positive feedback from the users. They acknowledged the value of the BEAM
notation and found that BEAM is relatively easy to use, which is an encouraging sign for us to incentivize
further development of BEAM.

FutureWork. We iteratively develop the BEAM notations based on the feedback from each evaluation
to improve its quality and utility. We plan to continuously develop BEAM and (re-)evaluate it in both
the research project context as well as in the classroom settings. Furthermore, we identified a number of
areas where we plan further extension to BEAM, including (i) two-way transformation between visual
notations and ontology instances, (ii) automated extraction of semantic representations from scientific
publications, (iii) formal definition of the multi-perspective approach for AI system representation, and
(iv) development of a knowledge base for risks and system patterns.

Based on the latter, we will also leverage the semantics for reasoning about risks, for instance
to facilitate automated risk identification based on risk templates, rule-based risk propagation, or
suggestions of design alternatives and suitable risk mitigations.

In addition to this immediate next steps, we also plan to conduct a more structured evaluation
and assess the scalability of the approach in complex scenarios. In such settings, BEAM models may
consist of numerous data sets and corpora as well as a vast number of components, parameters and
hyperparameters, making manual model design inefficient or even infeasible. To support such scenarios



(and more generally foster synchronization between BEAM models and implementations), automated
BEAM model construction from code21 and ideally even roundtrip engineering (e.g., generating BEAM
models from code and vice versa) would be highly useful.
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