CEUR-WS.org/Vol-4019/paper_01.pdf

C

CEUR

Workshop
Proceedings

Reinforcement Learning for Programming Feedback:
Aligning Small Language Models Without Human
Preferences

Charles Koutcheme®*, Nicola Dainese! and Arto Hellas!

TAalto University, Espoo, Finland

Abstract

Providing students with timely and effective feedback remains a critical challenge in programming education.
Locally deployed Small Language Models (SLMs) offer a cost-effective solution that enables educators to generate
feedback while avoiding third-party reliance and privacy concerns associated with Large Language Models (LLMs).
However, SLMs often produce misleading or inaccurate feedback, limiting their practical use. This paper presents
a fully automated reinforcement learning framework for aligning SLMs to generate high-quality programming
feedback without any human-labelled examples or preference annotations. Our approach transfers the feedback
capabilities of powerful LLMs (“teacher models”) to smaller, low-resource models (“student models”) that can run
locally on consumer hardware, with the optional assistance of medium-sized “assistant” models. The framework
supports two configurations: an off-policy setup that uses assistant model generations to bootstrap alignment and
a lightweight online on-policy variant that trains directly on student model outputs. We evaluate both approaches
by fine-tuning two SLMs on a real-world dataset of CS1 programming submissions collected across semesters.
Our experiments simulate realistic deployment scenarios, training on data from past semesters and evaluating on
future ones. Results show that both methods significantly improve feedback quality and generalize across new
course offerings. We provide practical considerations for aligning SLMs in educational settings and outline a
promising direction for future work. Our code is made available on GitHub.

Code: € github.com/KoutchemeCharles/rlpf
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1. Introduction

Learning to program is challenging for many. These challenges can be somewhat alleviated with
improved teaching practice [1, 2]. A key part of this is providing feedback, which should be timely
and accurate [3, 4, 5]. Large Language Models (LLMs) have shown exceptional success in that task
(6, 7], leading to their growing adoption in classrooms [8, 9, 10, 11, 12]. However, relying on third-party
services that provide access to LLMs can introduce cost obstacles and scalability issues [13]. These
constraints are driving a growing shift towards using smaller, open-source models [14], which can be
deployed locally [15, 16] to reduce costs and provide educators greater control over their students’ data.

Although Small Language Models (SLMs) alleviate these issues due to the ability to run them locally
[15], their feedback quality often falls short of LLMs [17], posing significant challenges in real-world
applications. In particular, SLMs tend to generate more misleading feedback [14, 17], including halluci-
nations and irrelevant suggestions. Such shortcomings can confuse students and hinder learning [18].

Reinforcement Learning (RL) has emerged as a promising approach for aligning language models
to generate pedagogically meaningful programming support [19]. However, existing reinforcement
learning methods for programming feedback generation rely heavily on human supervision, typically
in the form of human-written examples [20] or preference annotations [21]. This dependency hinders
improvements in contexts where data or annotators are unavailable.
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In this paper, we explore aligning small models for programming feedback without human annotations
or preference labels. Our approach uses RL to transfer the feedback abilities from a teacher LLM to a
smaller, locally deployable student model, optionally using medium-sized assistant models to bootstrap
alignment. We implement and compare two fully automated training configurations: an off-policy
setup (TASAP), which builds on prior work using assistant generations [22]; and a novel lightweight
online on-policy method (OSAP), where the model trains directly on its own feedback.

Our evaluation focuses on feedback generation for explanations of students’ mistakes [23] and
Socratic hints [24], using two SLMs (SmolLM-V2-1.7B [25] and Llama-3.1-1B [26]) fine-tuned on real
student submissions from the FalconCode dataset [27]. We use this dataset to simulate a realistic
deployment scenario by training on one semester and evaluating on the next. We also study a continual
learning setting where models are refined incrementally as new data becomes available.

Our results show that both configurations significantly improve feedback quality on new student
submissions. We also reflect on methodological challenges when training small models for educational
feedback and highlight a promising direction for future work. Our contributions are the following:

« We introduce a reinforcement learning framework for aligning small language models for program-
ming feedback, without relying on human-labelled preferences or human-annotated feedback.

« We implement an off-policy method using assistant models (TASAP) and introduce a novel online
on-policy variant (OSAP).

« We evaluate both methods on a real-world, semester-split dataset, and show that they substantially
improve feedback quality on new students’ submissions, including in a continual learning setup.

2. Background and Related Work

2.1. Learning from Preferences

Reinforcement Learning With Human Feedback Recent advancements in fine-tuning techniques
have significantly improved the performance of small language models on downstream tasks. While
Supervised Fine-Tuning (SFT) remains a widely used approach to improve language models’ generations
[28], it is limited in its ability to align such models with complex human preferences and objectives [29].
Reinforcement Learning with Human Feedback (RLHF) addresses this limitation by training reward
models on ranked human preferences — for example, generation A is better than generation B — and
has contributed to the success of large language models such as GPT-4 [30].

LLMs-as-judges. Because of their strong performance, such models have also been used as “judges”
to evaluate outputs from smaller models [31, 14]. The growing use of LLMs-as-judges has progressively
reduced the need for human annotators in RLHF pipelines [32], creating a shift towards Reinforcement
Learning From Al Feedback (RLAIF) [33], where AI models themselves are used to supervise other
models’ preference-based training.

Direct Preference Optimization. Recent RLHF and RLAIF approaches have predominantly relied
on offline preference alignment methods such as Direct Preference Optimisation (DPO) [34]. DPO
simplify the classical three-step pipeline by directly optimising language models on prior collected
preference data, removing the need to train a separate reward model [35].

Parameter-Efficient Fine-Tuning. In parallel, Parameter-Efficient Fine-Tuning (PEFT) techniques
[36], such as Low-Rank Adapters (LoRA) [37], have made fine-tuning more accessible by significantly
reducing computational and memory requirements. These techniques have enabled the practical
application of preference alignment to smaller, resource-constrained models.



2.2. Improving Small Language Models for Programming Feedback

Existing reinforcement learning approaches. Fine-tuning small language models (SLMs) for
programming education has become an increasingly active area of research in Al in Education. While
early work primarily focused on generating program repairs to correct student code [38, 39], more
recent approaches explore reinforcement learning (RL) and PEFT methods to fine-tune small models to
support students’ learning how to program. In all setups, a common challenge is obtaining high-quality
preference pairs to guide the learning process.

Some approaches rely on human annotations paired with synthetic examples. For instance, Kumar et
al. use GPT-4 to generate low-quality samples, paired with human-written Socratic questions, to train a
LLaMA model for educational dialogue [20]. Other approaches leverage naturally occurring preference
signals. Hicke et al. use TA edits to forum posts as implicit preferences [19].

Towards Reinforcement Learning with Al Feedback. While promising, these methods rely on
human supervision or access to structured educational data, which limits their scalability to new
contexts. Kotalwar et al. take a step toward automation by using GPT-4 to generate explanations and
hints, training a small model via supervised fine-tuning alone [40]. However, whether preference-based
techniques can further improve such models without human annotation remains underexplored.

Recent studies highlight the promise of LLMs-as-judges in evaluating feedback quality, with models
such as GPT-40-mini and Llama-3.1-70B producing high-quality judgments [14, 17]. These advances
motivate our work to adapt RLAIF for programming feedback.

Closest to our work in another domain is Scarlatos et al. [22], who use a combination of human-
written feedback, LLM-generated feedback, and Al preferences to train an 8B LLaMA model with PEFT
for multiple-choice math feedback, using Direct Preference Optimisation. While both studies rely
on RLAIF, our approach differs by integrating such techniques within a distillation framework that
addresses specific programming feedback challenges, notably, the lack of human-annotated data, the
vast space of possible student mistakes, and the need for highly contextualised recommendations.

Moreover, our work differs from all prior attempts by also integrating online learning algorithms
[41], where language models improve continuously with their own generated responses.

3. Methods

Here, we present our two approaches for improving small language models’ programming feedback.
Before presenting the training methods, we formalize the task and outline our assumptions.

3.1. Task and Assumptions

Task. Our primary objective is to fine-tune a small, resource-efficient, instruction-tuned language
model 7y (the student LM) to generate two interrelated types of feedback [42, 40, 24]: an explanation
&, which identifies and describes a bug in a student’s program, and a single next-step hint 7, which
guides the student toward resolving the identified bug without revealing the solution.

While our method can be adapted to other types of feedback [3], we illustrate its effectiveness with
explanations and hints as these two types of feedback play an important role in supporting students
learning programming.

Quality attributes. To ensure the feedback supports effective learning, it must adhere to specific
quality attributes identified in prior works. First, the generated explanation must be accurate, selective,
and clear [14]. The explanation is considered accurate (&,) if it correctly identifies and mentions the
first existing issue in the student program. It is considered selective (&s) when it focuses exclusively
on one issue in the code (whether the issue is correct or not) and avoids discussing any unrelated or
non-existent bugs. Finally, the explanation should be clear (&€¢},), meaning it is easy to understand,
concise, and presented in a readable format.



Second, the generated hint must be correct, informative, concealed, and clear [42]. A hint is considered
correct () if it provides accurate information to resolve issues in the buggy program. It is deemed
informative (%) if it offers valuable insights to help the learner resolve the bug effectively.

The hint should also remain concealed (#,,) by avoiding the direct revelation of the solution, to
reason through the process of implementing the fix. Lastly, the hint must be clear (#y.), ensuring that
it is easy to understand and devoid of unnecessary complexity. The student language model, my, will be
optimized to consistently meet these quality attributes in its generations.

Generation methodology. Following prior work [42, 40], feedback & is always generated using a
chain-of-thought approach that prompts language models to generate the explanation & (the “thought”)
followed by the hint #; This strategy ensures hints are grounded in accurate explanations.

Assumptions. To reach our objective, we consider a training dataset @ = {(d, si)}l-]\:fl consisting of N
pairs of problem descriptions d’ and incorrect student programs s'.

We also assume to have access to a teacher LLM, 1, accessible via an online API (e.g., GPT-40-mini via
OpenAl API). We also suppose having access to a set of A medium-sized assistant LMs Mo J € {1,..., A}
The teacher model is presumed to generate high-quality feedback, while the assistant models perform
well but with lower quality, and the student model may initially perform poorly.

3.2. Supervised Fine-tuning

Given the lack of human annotations, following Koltawar et al. [40], a natural first step in improving
our small language model is to apply Supervised Fine-Tuning (SFT), that is, training the student model
on teacher-generated feedback for all incorrect programs in the training set using the negative log-
likelihood (NLL) loss. This yields a model . We generate such feedback P/T,ir using greedy decoding.
Figure 2 (Appendix B) shows our prompt.

SFT represents the simplest form of distillation [43], where the student directly mimics the teacher’s
outputs. However, SFT alone risks overfitting, especially when training data is limited, and does not
allow language models to understand what constitutes high-quality responses.

3.3. Learning From Feedback Preferences

In this paper, we propose to apply preference-based optimisation techniques on top of the SFT-trained
small language models to refine their abilities to generate high-quality feedback. Unlike RLHF setups
that rely on human preference labels [21], we generate preferences automatically. We compare two
configurations that vary in how feedback examples are generated and how the student model is updated.
In both setups, we use the teacher model to score and rank the generated feedback using a rubric-based
process before optimizing the student model via an appropriate preference alignment algorithm.

3.3.1. Teacher-Assistant-Student Alignment Pipeline (TASAP)

Our first approach, the Teacher-Assistant-Student Alignment Pipeline (TASAP), follows similar offline
off-policy preference alignment strategies underpinning the success of many language models [32, 44].
To apply such methods in our context, we need to construct a preference dataset with feedbacks f,
2,=1{d.s, f,).(d.5, fl)}{\ﬁl, where f,, (the “winning” feedback) is ranked higher than f; (the “loosing”
feedback) based on a quality criterion.

Step 1: Data collection. For each incorrect program, we sample three feedback, each one from the
assistant models &, using greedy-decoding following prior work [14, 31]. We also reuse the feedback
%

generated by the teacher language model 97,% during the supervised fine-tuning step.



Step 2: Judging and scoring generations. Then, we use our teacher 7, as a judge [31] to grade all
four generated feedback (independently against a rubric based on our predefined quality criteria: &4,
&y ... Ko, K1, Hoon, and e, assigning each criterium a binary value of either 0 (false) or 1 (true)
[22]. Following Koutcheme et al. [14], our prompt for judging feedback (see Figure 3, Appendix B) asks
the teacher LM 7, to use its own generated feedback as ground truth to evaluate the newly provided one.
This reference grading strategy [31] ensures the student generations remain aligned with the teacher,
reduces variability in judgments, and ensures the preference dataset is free of noise [45]. Using the
grading values, we assign each feedback an overall quality score [22, 32] using a weighted sum:

(sz 0.20- &4 +0.15- &g+ 0.10- &+ 0.20 - o+ 0.15- Z1+ 0.10 - Z oy, + 0.10 - H 'y

where the resulting score & is also bounded between 0 and 1. Our scoring function prioritizes
explanation correctness and hint accuracy to ensure feedback is factual. We then consider explanation
selectivity and hint informativeness to discourage the generation of irrelevant or hallucinated informa-
tion. Attributes like clarity and concealment are considered last, as they are secondary to the validity of
the feedback (the scoring function can be adapted by teachers to match their needs).

Step 3 - Preference dataset creation. Using the four feedback obtained, three from the SFT model
7 11 one by the teacher r, for all given incorrect programs s', we add to our preference dataset 9, all
possible feedback pairs (f,,, f;) where f,, score is better than f; score (S > Sf).

Step 4 - Optimization. Using the resulting preference dataset, we train our language model using
the DPO loss function [34]:

Zppo (7mg; Tsf) = _E(sl’,d",fw,fl)~@p [log a(ﬂlog % — plog %)] (1)

where o is the logistic function, 7y is the policy being optimized (i.e., the model during training), 7

is the reference policy (i.e., the frozen model before training), and f is a regularization parameter that

controls the deviation of the trained from the reference policy. A higher f keeps the trained model

closer to the reference policy. Intuitively, this formulation penalizes the model based on how much it

“prefers” the lower-quality (losing) feedback over the higher-quality (winning) feedback, which results
in gradually increasing the probability of generating high-quality outputs.

3.3.2. Online Student Alignment Pipeline (OSAP)

Our second approach, Online Student Alignment Pipeline (OSAP), is an online on-policy variant of
TASAP based on Direct Language Model Alignment from Online Al Feedback [41]. Compared to offline
approaches, online training continuously updates a language model based on its own generations,
potentially reducing common issues associated with using static preference datasets, such as distribution
shift [34] and overfitting [46].

Starting from the supervised fine-tuned model 7, ¢;, OSAP integrates the sampling, data collection,
and optimization steps of the TASAP pipeline within a single optimization loop. At each iteration:

(a) Instead of sampling from assistant models, we sample two generations fi, f; ~ 7 ft(si, d") from
our language model using multinomial sampling with an arbitrary temperature of 0.3 [41].

(b) We use our teacher model 7, to independently judge and score each generation to determine the
winning f,, and losing feedback f;, before updating the model parameters based on the resulting
preference ordering using the original DPO loss function (see equation 1). If both generations
obtain the same score, we default to syntactic distance measures, and we select the feedback
having the highest ROUGE score [47] with the teacher feedback [19].



3.4. Adaptation to New Student Data

In real-life scenarios, student programming submissions are collected by course offerings (e.g. semester
by semester) and accumulate and even somewhat change over time [48]. To take this scenario into
account, we need to study effectively how each of the two preference-based alignment strategies, TASAP
and OSAP, can be applied when additional training data is introduced. We consider the task of refining
a model already trained on an initial dataset &, using a new semester of data 9, = {(dl, sl)}{\ﬁl.

TASAP : We perform steps 1 to 4 of the TASAP pipeline on the new dataset of students’ incorrect
programs P2 to obtain a second preference dataset .9212,. Training the first model exclusively on this new
dataset might induce a situation of catastrophic forgetting [49], where the student model loses some of
the knowledge it acquired when trained on .QZ;. To mitigate this issue, we initialize the weights of our
model to the supervised fine-tuning version (see section 3.2) of the first semester (i.e., 7f;) and train
this model using the IPO loss on the combined 9}, U 91% . Our choice of not repeating the supervised
fine-tuning step on the combined dataset, and instead, starting from 7; fris motivated by our tentative
to mitigate overfitting risks.

OSAP : For OSAP, we continue the training pipeline directly' from %, (i-e., the OSAP model trained

on the first semester), using the problem description and incorrect programs from 9; u @ﬁ. This
strategy thus reflects a true continual learning setup and most benefits from new data.

We note that both techniques shown can be applied continuously, for instance, for refining the model
trained on two semesters of data using a third one.

4. Experiments
In this section, we present our experiments, aiming to answer the following research question:

(RQ) How effective are TASAP and OSAP in improving the feedback quality of small language models
when trained and evaluated across semesters of the same introductory programming course?

4.1. Dataset

We perform our experiments using FalconCode [27], a large and comprehensive publicly available
dataset containing real-life CS1 students’ solutions to Python programming exercises. Beyond its
substantial scale, this dataset distinguishes itself through free-form assignments, enabling a broader
evaluation of language models’ abilities to generate feedback.

Preprocessing. The FalconCode dataset is split over three subsets (three semesters of data). Within
each subset, we select all unique incorrect programs from all students’ last submitted solutions for
all assignments automatically evaluated with unit tests [50]. Uniqueness is determined via AST nor-
malization?. While we acknowledge that this selection may not fully capture the range of difficulties
students encounter during their attempts, it aligns with the idea that a student’s last attempt often
reflects their improved understanding of the problem. Thus, our setup can be viewed as providing
feedback to students as a last resort for elements they may not have grasped.

We leverage the first and second semesters for training and iterative refinement, respectively, and the
last semester for testing. To ensure our setup evaluates our models’ generalization abilities, we filter out
from the test set the programs in the first two semesters having similar normalised AST representations
[51]. This results in three splits with 826, 690, and 693 incorrect programs (s;) from 62, 44, and 62
assignments (d;), respectively.

'In practice, we also need to generate feedback using the teacher model on the new semester of data @ to allow the fall back
to a syntactic distance measure comparison.
“Including variable renaming.



4.2. Models

To answer our research questions, we fine-tune two small language models, SmolLM-V2-1.7B [25] and
Llama-3.2-1B [26], using GPT-40-mini [52] as the teacher. We chose these two student models for
their strong performance on small-model benchmarks, while GPT-40-mini has been shown to produce
high-quality programming feedback [17].

Baseline. As a baseline, we use the models trained using Supervised Finetuning on each teacher-
generated data following Kotalwar et al. [40].

Versions. We train each of our models (on FalconCode) using our two proposed approaches: TASAP
and OSAP. For each approach, we train a first version (TASAP-1 and OSAP-1) on FalconCode first
semester. We train second versions of our models using the adaptation to new student data strategy
(see section 3.4) with both FalconCode first and second semesters.

Assistant models. For TASAP, we leverage three assistant language models: Mistral-Nemo-12B [44],
Llama-3.1-8B [26], and Qwen-2.5-3B [53]. We chose these models to ensure diversity across model
families, sizes, and performance [32].

Parameter Efficient Finetuning To take into account educators’ limited access to computational
resources, we train our SFT and TASAP models (as well as the baselines introduced below) with Low-
Rank Adapters (LoRA) [37], a parameter-efficient fine-tuning method that reduces memory requirements
by freezing the base model and adding a small number of trainable parameters called adapters [36].
These adapters can be removed to restore the base model’s original capabilities.

4.3. Automated Evaluations: LLMs-as-feedback-judges

Manually evaluating all models on our datasets would require substantial effort, even on a subset of
generations. Instead, we leverage LLMs-as-judges once again for our final evaluation [31]. However,
rather than relying on a single model for this task, following Verga et al. [54], we use a panel of three
strong LLMs: Llama-3.3-70B [26], GPT-40-mini, [26], and Gemini-2.0-flash [55]. Earlier versions of
the GPT-40 and the Llama-3 family have been used extensively as judges [56], also in programming
context [17, 14], and Gemini has recently demonstrated comparable performance to GPT-40-mini on
multiple benchmarks. While GPT-40-mini and Gemini-2.0-flash are lighter versions of their full-size
counterparts, they remain strong judges for programming feedback. For instance, GPT-40-mini has
been shown to perform on par with GPT-4o for evaluating feedback quality [17]. Moreover, Verga et al.
[54] demonstrate that ensembles of smaller LLMs of different families outperform single large models,
particularly by mitigating individual model biases.

Evaluation prompting strategy. For each feedback # generated on the test set, we prompt all
judges (see Figure 4, Appendix B) to provide binary decisions across all quality criteria. We obtain
the final verdict using a strict unanimity policy: a criterion is marked correct only if all judges agree.
While this method does not provide absolute performance guarantees, as discussed in our Limitations
of Work, it offers a consistent, scalable, and reliable strategy for comparing the relative effectiveness of
different training approaches.

Human validation. Following Scarlatos et al. [22], we conduct a small-scale analysis over a subset
of language model generations to validate the use of LLM-as-judges and provide insights into potential
evaluation errors.



4.4. Experiment details

We fine-tune our models using the HuggingFace TRL library, following hyperparameters recommended
in prior work. For SFT, we use a learning rate of 1e-4 [34]; for TASAP and OSAP, we set f = 0.25 [41]
and use learning rates of le-5 and le-6, respectively. Batch sizes are 8 for SFT and TASAP, and 16
for OSAP. TASAP-2 and OSAP-2 reuse these settings and repeat the training process as described in
Section 3.4. We apply LoRA with @ = 64 and rank r = 32 [37], train each model for up to 3 epochs, and
select checkpoints based on lowest validation loss. All other hyper-parameters remain at default values.
Full experimental details and prompts are available in our code base. All training was performed on
Nvidia Tesla V100 GPUs (32GB RAM) via Triton, our institution’s research cluster.

5. Results

5.1. Main results

Table 1 shows the results of our experiments. We can observe the following.

Table 1

Percentage of incorrect programs with a given feedback quality. We bold the best results per model
family (Llama-3.1-1B or Smol2-1.7B). Model legend: BASE: untrained model, SFT: Supervised Fine-tuned model,
TASAP(-2): Teacher-Assistant-Student Alignment Pipeline (trained on 2 semesters), OSAP(-2): Online Student
Alignment Pipeline (trained on 2 semesters). QWEN: Qwen-2.5-3B, LLAMA: Llama-3.1-8B, NEMO: Mistral-
Nemo-12B, MINI: GPT-40-mini. Explanation (&) criteria: &,: accuracy, &s: selectivity, &g,: clarity. Hint criteria
(#): ¢ correctness, Z7: informativeness, #,,: concealment, #,: clarity.

Llama-3.2-1B (Student) H Smol2-1.7B (Student)

Model ‘gA &s %Cle‘ He Hi Heon %CleHMOdeI ‘%A &s gcte‘ e i oo o

BASE 20.7 163 466|274 7.5 81.2 62.2 || BASE 29.5 439 48.0 339 98 864 584
SFT 60.6 55.8 557|679 152 983 81.7 || SFT 53.6 674 522|615 158 976 77.1
OSAP 63.6 581 57.7|71.6 131 98.6 83.3 | OSAP 60.8 71.6 57.1 | 66.7 16.7 982 81.6
TASAP 68.5 61.6 551|768 163 99.2 86.4 || TASAP 66.7 745 634|720 208 989 8538
TASAP-2 | 68.2 64.1 575|765 159 99.0 86.5 | TASAP-2|68.2 76.1 651|759 26.6 98.6 85.7
OSAP-2 | 69.5 64.3 53.0|77.8 142 98.7 854 | OSAP-2 |73.0 78.8 554 |80.6 20.3 99.4 88.2

MINI (TEACHER) AND QWEN (ASSISTANT) | LLAMA AND NEMO (ASSISTANTS)

MINI 98.7 98.0 738|989 249 100.0 99.2 || Llama 82.6 755 745|871 204 999 93.0
QWEN 709 66.2 750|729 194 96.1 88.5 || NEMO 90.3 87.2 747 (927 169 996 97.0

We observe that both TASAP and OSAP generally improve performance over the supervised fine-
tuned baselines. Interestingly, Llama TASAP (respectively OSAP) achieves performance comparable to
Smol OSAP (respectively TASAP), despite the more substantial performance difference between the
respective supervised fine-tuned base models.

Tracing this observation backwards, we note that although the Smol base model performs slightly
better than the Llama base model (as expected, due to size differences), supervised fine-tuning benefits
the Llama model more. We hypothesise that this may be due to a distribution shift: the Llama model’s
answer distribution is closer to that of GPT-40-mini, making further improvements easier [34]. Training
with OSAP and TASAP may guide the model toward a more optimal solution space. Hieke et al.
[19] have already highlighted that preference optimization exerts a regularising effect on supervised
fine-tuning.

While TASAP generally outperforms OSAP across both language models, this performance gap nar-
rows when training on additional data (e.g., from a subsequent semester). OSAP-2 performs comparably
to TASAP-2 on Llama, and even outperforms TASAP-2 on Smol.



5.2. Small-scale human evaluation

Following Scarlatos et al. [22], we conduct a small-scale analysis of LLMs-as-judges performance in
our setting. We arbitrarily selected a subset of 5 representative assignments in our dataset (see Table 1,
Appendix A). For each assignment, we choose the student’s submitted incorrect solution which had the
highest unit test score. Then, one author of the paper manually annotated the quality of the generations
of the BASE, SFT, TASAP, and OSAP models for those 5 assignments for the two models, resulting in
4x5x2 = 40 annotations with 7 criteria. Our analysis procedures follow prior work [17, 22], considering
such manual annotations as ground truths and the LLM-as-judges ensemble result as predictions in 7
distinct binary classification problems (one per criteria). Table 2 shows the result of such annotations
for various classification metrics.

Table 2

LLM-as-judges classification performance. We report various classification metrics. Legend: %PA: number
of positive human annotations (out of 40) for each respective criteria. (&) criteria: &,: accuracy, &s (selectivity),
&cpe: Clarity. Hint criteria (#): #: correctness, Z: informativeness, #,,: Concealment, #,: Clarity.

gA gS gCle %C %I %Can %Cle
#PA 8/40  6/40 24/40 7/40 4/40 33/40 34/40

f0.5 0.86 0.89 0.88 085 0.83 0.80 0.84

accuracy  0.82  0.82 0.88 0.80 0.90 0.85 0.78
precision  0.54  0.46 091 0.46 0.00 0.85 0.96

recall 0.88 1.00 088 0.86 0.00 1.00 0.76
f1 0.67 0.63 0.89 0.60 0.00 0.92 0.85
kappa 0.56  0.54 0.74 0.48 0.00 0.22 0.40

Leveraging LLMs as judges yields a minimum F0.5 score of 80% and a minimum accuracy of 80% for
classifying model generations. For the selected assignments, most model outputs were neither accurate
(& 4) nor correct (#¢), resulting in an imbalanced classification task. Similar to the main results in
Table 1, we observe that language models struggle to generate informative hints. The LLM-judges
ensemble did not classify any generation as containing an informative hint, and our human annotations
identified only 4 out of 40 (10%). While LLMs are not perfect evaluators in general [57], our small-scale
human analysis supports their utility in this context as a reasonable proxy for human judgment.

6. Discussion and Conclusion

In this paper, we presented a framework for improving small language models’ ability to provide
feedback using Reinforcement Learning With AI Feedback. We proposed two approaches based on
offline and online preference alignment methods and evaluated the methods performance using LLM-
as-judges on a publicly available dataset of students’ Python programs. To summarize the answer to
our research question, the proposed framework, including TASAP and OSAP methods, is effective in
enhancing SLMs’ feedback capability within a course setting.

Practical educational implications. By utilizing and training fine-tuned models, educators can
provide tailored guidance to their students in a timely manner without constantly relying on external
APIs. Such small models can be effectively deployed using tools like WebLLM [58], even allowing
inference on client devices with a compatible GPU. This reduces latency, ensures timely feedback, and
eliminates the need to deploy custom inference services [40]. This can also give educators and learners
higher control over the generated information and its use.

We do not aim to claim that pure data-driven approaches are the way to go. Ideally, when preference
data can be collected and integrated by human TAs [21], such approaches should most likely be
prioritised. However, in many instances, programming courses do not have human TAs write feedback
to students or collect preference data, which limits how such prior work can be effectively used. Our
work closes this gap.



Privacy and cost issues. We acknowledge that leveraging RLAITF pipelines requires sending student
data through external APIs for teacher model queries, which breaks privacy measures and might also
incur initial costs. However, we also note that much of the existing work in programming education
already relies on proprietary models (e.g. [40, 42]). Moreover, distilling the performance of remote
queried models to smaller models run locally decreases long-term costs. For institutions with strict
data privacy concerns, open-source LLMs (e.g. 4-bit quantized Llama-3.3-70B) could, given sufficient
computational resources, also be hosted locally and used as teacher models.

Room for improvement. We note that our results can be further improved, for instance, by training
with more data, leveraging several prompts for different feedback tasks simultaneously, and increasing
LoRA rank (the parameter controlling how many parameters 0 are updated during training). Program-
ming educators and practitioners often have data readily available to them through the use of automated
assessment systems.

The framework is versatile. We anticipate that this training procedure will generalise to more
complex prompting strategies, for instance, leveraging program repairs [42] to produce better feedback,
as the improvements stem from the framework’s alignment mechanisms rather than the specific prompt
design. We could also have trained the model on several prompts for different types of feedback, using
more data. Programming educators and practitioners often have data readily available to them through
the use of automated assessment systems. The framework is adaptable; we recommend adopting the
same setup as ours: using a teacher LLM to evaluate over one semester to understand what to expect.

Limitations of work. First, we conducted all experiments on a single dataset of Python programming
submissions collected from one institution and did not explore whether our results hold in other contexts.
Second, although our automated evaluation pipeline is robust, leveraging several leading large language
models, no large-scale human analysis was performed. Third, our experiments were limited to two small
models with around 1B parameters. While prior work suggests that performance improves with base
model size [34], it remains to be seen whether the same trends hold when applying OSAP and TASAP
to larger models. Fourth, importantly, we do not claim that OSAP and TASAP trained models produce
feedback matching the exact reported scores (e.g., we do not assert that the models now generate “nearly
perfect feedback”). Rather, the combination of a large dataset and the substantial performance margins
allows us to confirm relative rankings with confidence, even when taking into account judgment error
rates [14].

Future work. Future work will address these gaps by first conducting human evaluations to validate
the usefulness of the feedback generated by our trained models. This will include qualitative surveys
with both teachers and students to gain insights into their perspectives. We also plan to conduct
small-scale A/B studies in real educational settings, comparing courses that use these locally deployed
models as Al teaching assistants with those relying on larger models. These deployments will provide
critical insights into small models’ impact on student learning, engagement, and overall educational
outcomes.

Moving forward, we are studying ways to improve small language models’ programming feedback
ability without relying on large language models. In particular, we believe the recent success of pure
reinforcement learning methods such as Group Relative Preference Optimization [59] could also benefit
programming education.

Declaration on Generative Al
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A. Dataset
Figure 1 shows the assignments used for the human evaluation.

B. Prompts

Figure 2, figure 3, and figure 4 shows the prompts used in our study.
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Assignment 1 - Isn6_lists

Write an algorithm that gets a decimal GPA, APA, and MPA from the user (in that order). You may assume
that all inputs are non-negative whole numbers.

It then reports which meritorious list the cadet is on. If the GPA is equal to or above 3.0, the cadet is on the
“Dean’s List”, and if the APA is equal to or above 3.0, the cadet is on the “Athletic Director’s List”, and if the
MPA is equal to or above 3.0, the cadet is on the “Commandant’s List”. Finally, if the cadet qualifies for all
three individual lists, then the cadet is on the “Superintendent’s List”. The algorithm should report all the
lists the cadet is on (in the order defined above), unless the cadet is on the Superintendent’s List, in which
case, it should report only “Superintendent’s List”.

Assignment 2 - [sn9_imagesize

Write a function that computes the size of an uncompressed image. You will name your function calcu-
late_size_of_image(), and it will have three parameters: the width of the image, the height of the image, and
the bit depth (i.e., the number of bits per pixel). The function should print the size of the image in kilobytes.

Assignment 3 - IterLogic2_football

In Python, write an algorithm that first asks the user how many football players they wish to enter statistics
for and then gets that many yearly passing totals for each player. Output how many of those players had
more than 5000 passing yards in a year. Also, your algorithm will output the average yardage per year as
well as the minimum yardage entered, in that order. You can assume there is at least one player’s yardage to
input.

Assignment 4 - Lists2_movies

Write a Python function called ‘get_movies‘ that takes three parameters: * A two-dimensional list containing
movie titles and other stats * A rating (e.g., “PG”, “R”) * A run time (in minutes)

Your function should return the number of movies that have the specified rating, and run for at least the
number of minutes specified.

[ Assignment 5 - a3_6_pushups

You have been asked to write a program that analyzes number of pushups done by a group of cadets. Write
a program that gets from the user the number of people tested, and gets that many pushup scores (which
you may assume are whole numbers) from the user. Your program must print out: * The average number of
pushups for the group. * The count of cadets that scored higher than the average.

Figure 1: Assignments used for human annotation of language model responses.



@Qou are a CS professor teaching introductory programming using Python. w

Below are a problem description and an incorrect program written by a student (i.e., it does not pass all test cases).
<problem description>, <student code>

Your tasks are as follows:
1. Explain the first bug:

« Identify and explain the first bug in the student program in 1-3 sentences.
« Focus on a functional issue only; do not discuss performance improvements or stylistic concerns.

2. Generate a Hint:

+ Provide a short and specific hint to help the student address the identified bug.
« The hint should encourage the student to think critically about resolving the issue without directly providing a solution
or code fix.

Important Notes:

+ Concentrate on one single issue in the program.
+ Ensure both the explanation and the hint are clear, concise, and actionable. /

O)

Figure 2: Feedback prompt. Our template for prompting language models to provide feedback. (1) A system
prompt specifying the behaviour of the model. (2) A description of the grading task. (3) Information necessary
to grade the feedback.



You are a computer science professor teaching introductory programming using Python. You are an expert at evaluating
@ programming feedback tailored to novices.

Below are a problem description and an incorrect program written by a student (i.e., it does not pass all test cases).
problem description, student code

Your tasks are as follows:
1. Explain the first bug:

« Identify and explain the first bug in the student program in 1-3 sentences.
+ Focus on a functional issue only; do not discuss performance improvements or stylistic concerns.

2. Generate a Hint:

« Provide a short and specific hint to help the student address the identified bug.
« The hint should encourage the student to think critically about resolving the issue without directly providing a
solution or code fix.

Important Notes:

» Concentrate on one single issue in the program.
+ Ensure both the explanation and the hint are clear, concise, and actionable.

C List of judge-generated bugs and fixesj®

Below is the feedback written by a teaching assistant (TA), which includes an explain and fixes for the bugs in the program.
As well as a hint for the first bug.

feedback

Your task is to evaluate the quality of the TA’s feedback according to the grading criteria outlined below.
grading criteria

This evaluation will be conducted in two parts

1. Reasoning: Reflect on the quality of the TA’s feedback.

«+ Reflect on the quality of the feedback, using the grading criteria as a guide.
« Discuss strengths and weaknesses in the explanation and hint.

2. Grading List: Conclude with your final assessment for each criterion.
« If the criterion is fully met, respond with “true”; otherwise, respond with “false”.
Please provide your answer using a JSON format with two keys:

«+ “reasoning”: your detailed written analysis
- “grading” a dictionary with each criterion as a key and your final answer (true or false) as the value.

Use only true or false (no other qualifiers) for each grading criterion in the JSON output.

®

Figure 3: Training judging prompt. We first ask our LLM teacher (GPT-40-mini) to provide feedback on the
incorrect program before asking it to grade the provided one.




programming feedback tailored to novices.

Qou are a computer science professor teaching introductory programming using Python. You are an expert at evaluating)

Below is a problem description and an incorrect program written by a student (i.e., it does not pass all test cases).

problem description, student code

Below is the feedback written by a teaching assistant (TA), which includes an explain and fixes for the bugs in the program.
As well as a hint for the first bug.

feedback

Your task is to evaluate the quality of the TA’s feedback according to the grading criteria outlined below.
grading criteria

This evaluation will be conducted in two parts

1. Reasoning: Reflect on the quality of the TA’s feedback.

« Reflect on the quality of the feedback, using the grading criteria as a guide.
« Discuss strengths and weaknesses in the explanation and hint.

2. Grading List: Conclude with your final assessment for each criterion.
- If the criterion is fully met, respond with “true”; otherwise, respond with “false”.
Please provide your answer using a JSON format with two keys:

« “reasoning”: your detailed written analysis
. “grading”: a dictionary with each criterion as a key and your final answer (true or false) as the value.

®\Use only true or false (no other qualifiers) for each grading criterion in the JSON output. /

Figure 4: Evaluation judging prompt. We provide our three LLM judges with a system description describing
their role and a description of the judging task. While during training we asked the LLM to first generate its
own feedback, we omit this part here as models becoming overly stringent affects ensemble performance.
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