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Abstract

Creating a sequence of learning activities for teaching programming to students is a challenging task. Educators
must avoid overwhelming students with too many concepts, and need to cater to students who require a lot of
repetition on each concept before progressing. We present a novel method to classify programming exercises based
upon the set of minimal programming constructs, used by students in successful submissions. These constructs
are automatically inferred from the abstract syntax tree representation of each code submission. Our method
provides a meaningful measure of similarity between exercises, which can be applied to grouping exercises that
require the same knowledge, recommending exercises requiring small increases in a student’s existing knowledge,
and identifying large gaps between consecutive exercises when creating a learning sequence for students. To
demonstrate the utility of our method, we apply it to analysing data from two Python programming courses for
high school students (beginners and intermediate), using the submissions of almost 10,000 students.
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1. Introduction

Computer programming has been recognised as an important skill in today’s technological society.
Large-scale programming courses with thousands of students are increasingly being offered by universi-
ties and online platforms. These courses provide students with interactive course content and automatic
feedback on programming exercises, improved accessibility and flexibility. However, students also
experience difficulties for various reasons, e.g., instructional design, sequencing of learning activities,
quality of teaching materials, learning environment and lack of sufficient feedback.

The data generated by such online platforms is rich but also large, complex, multi-dimensional and
noisy, and therefore challenging to understand. Data mining methods can be used to automatically
analyse this data and provide teachers with insights about student behaviour, in order to improve the
course design, provide timely feedback to students, intervene at key points to prevent dropout or take
other remedial actions.

In a programming course, students may become overwhelmed by the new syntax of a programming
language. Once a student has mastered one language, concepts can often be transferred across to other
languages [1]. Novice programmers, however, can struggle with the most basic of syntax elements
[2]. One challenge in designing a course, then, is to choose the correct sequencing of material. Careful
choice of the order in which concepts are introduced, minimising the cognitive load experienced by
students, can significantly improve the success rate and student satisfaction of a course [3].

In this paper, we present a new data-driven method for grouping and differentiating programming
exercises based upon a set of minimal programming constructs. These constructs are automatically
inferred from the abstract syntax tree (AST) of the student submissions. We show how to extract
these constructs, and based on them, define appropriate distance measures between exercises. We
propose to use a map of primitive constructs to visualize the similarity between exercises, and clustering
to group similar exercises. The utility of our method is demonstrated in the context of two large
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programming courses for high school students. Our method can be used to provide insights to teachers
for understanding student behaviour, designing an appropriate sequence of exercises without large
gaps in the required knowledge and recommending exercises with suitable increase in existing student
knowledge, or for identifying key intervention points - e.g., exercises with overly complex solutions
than intended, which could benefit from more guidance.

2. Background and Related Work

The use of syntax elements to identify specific concepts in assessment tasks has been explored previously.
A working group [4] reviewed the concepts commonly covered in novice programming courses and
linked them to the syntax elements that appeared in associated multiple-choice questions using Java
or Python. They demonstrated how dependent concepts could be assessed in a more granular form,
facilitating pedagogical approaches such as Mastery Learning. We extend this thinking by looking at
student submissions to programming exercises, rather than the code included in the assessment task.

There is a large body of research on data-driven methods for analysing student log data, e.g. on
clustering students to understand behaviour over time [5, 6], find the characteristics of high and low
performing students [7, 8], analysing student difficulties [9], automatic hint generation [10, 11], early
prediction of student progress, final course mark and dropout [12, 13, 14].

Clustering student code submissions has also been explored. Joyner et al. [15] used the commercial
system Sense to cluster code submissions from an introductory programming MOOC, with the goal of
providing feedback to teachers for course revision. The results are analysed in terms of percentage of
students using specific constructs and methods, e.g., for-loops, find(). Glassman et al. [16] developed
OverCode - a system that groups similar programming solutions and allows teachers to visualize and
explore the similarities and differences of these solutions, and develop a high-level view of student
understanding and misconceptions. Paiva et al. [17] proposed AsanasCluster for clustering correct
student submissions based on semantic features extracted from the control flow and data flow graphs,
which capture key aspects of the algorithmic strategy rather than syntax. Effenberger and Pelanek [18]
focused on generating interpretable clusters of student submissions. They manually selected a small
subset of features for each programming exercise, combined them as frequent patterns using a pattern
matching algorithm and provided a summarization and visualization of each group. In contrast, our
goal is to explore automatic extraction of programming constructs.

Our work is closely related to the sub-area of domain modelling which aims to map problems
(exercises, questions) to concepts (skills, knowledge components) that they assess. This mapping is
typically encoded in a Q-matrix [19] and used to assess which concepts are learned by the students in
a given problem. Once the matrix is defined, methods based on knowledge tracing such as Bayesian
knowledge tracing [20], performance factor analysis [21] or deep knowledge tracing [22] can be used
to determine the student’s mastery of the skills and provide recommendations to students.

Methods for automatically deriving Q-matrices from student log data have been proposed. For
example, Barnes [23] utilised random matrix initialization and hill-climbing algorithm, Desmarais et
al. [24] used an initial Q-matrix designed by experts which was refined with the alternating least squares
algorithm, and Picones et al. [25] proposed an entirely data-driven method combining hill climbing to
derive the initial Q-matrix and alternating least squares algorithm to refine it. However, data-driven
methods lack interpretability since it is not clear what the concepts represent — e.g., which concept
represents “if-statements” or “for-loops”.

A neural network based approach for discovering knowledge components in an introductory Java
course was proposed in [26]. The network was trained to predict the correctness of student pro-
gramming submissions, encoded using the code2vec model. The learned hidden layer vectors were
interpreted as knowledge components and analysed by experts. It was found that the discovered
knowledge components were different compared to how experts were likely to define them — they
were amalgamations of micro-concepts, either exercise-specific or applicable to multiple exercises.

Our task is different — our goal is not to predict the correctness of student programs but to group



programming exercises based upon a minimum set of programming constructs, which can be seen
as a set of knowledge components. The programming constructs are inferred automatically from
the AST representation of student programs and their meaning is clearly defined and interpretable.
Our overall goal is to help educators to improve the learning outcomes by designing an appropriate
sequence of programming exercises, identifying the large gaps between consecutive exercises in terms
of programming constructs students use, understanding which concepts students are struggling with
and recommending appropriate exercises and actions.

3. Method

We propose a method for grouping programming exercises based on the set of minimal primitive
programming constructs used to successfully complete these exercises. It consists of three steps:

1. Extracting primitive construct sets from successful submissions
2. Identifying the set of minimal primitive constructs for each exercise through aggregation
3. Defining the distance between exercises

3.1. Extracting Primitive Construct Sets

We first generate the corresponding AST for each correct submission using the ast.parse function in

Python. The correct submissions are the ones which have passed all test cases. Each node class in the

ast module provides information about the type of the programming construct. Hence, we initialise

the set of primitive constructs for a submission to be the distinct set of node classes within its AST.
We then refine the set of primitive constructs through the following steps:

1. Extend the set with the name of the library functions called by masking self-defined function
names within the AST and obtaining the remaining function labels.

2. Obtain further contextual information for the set of primitive constructs by including the exception
types caught by any exception handlers used, the constant types used, and the variable operations
performed.

3. Transform AST primitives to show any hidden hierarchical relationships or associations between
primitives. For example, generalising ast .Eq to (ast.Compare, ast.Eq) indicates the association
between the equality operator and comparisons.

4. Clean the set of extracted node classes by eliminating node classes that are wrappers of primitive
constructs (e.g., ast.Module and ast.Expr), and classes that are redundant (i.e., have been
recaptured during the extended extraction and transformation stage).

5. Relabel ast node classes to improve interpretability.

3.2. Identifying the Set of Minimal Primitive Constructs for Each Exercise

Let S = {s,...,s,} be the set of correct submissions for an exercise p and X; be the set of primitive
constructs used by submission s; € S. We define the set of minimal primitive programming constructs
for exercise p as

X; if X; ¢ X foralls; €S
@ otherwise

n
M, = sz* where X;* = (1)
i=1
That is, the set of minimal primitive constructs for each exercise is the union of the primitive construct
sets of passing (successful) submissions that are not a proper superset of any other passing submission’s
set of primitive constructs. This aggregation method aims to capture a holistic representation of the

multiple sets of programming constructs that could generate a successful solution.



Beginners Course Intermediate Course

Rank  Primitive construct Freq. (max 40) Primitive construct Freq. (max 25)
1 [variable] load 40 assignment 25
2 function call 40 [constant] str 25
3 [constant] str 36 [imported function call] print 25
4 [variable] store to 32 [variable] load 25
5 assignment 29  function call 25
6 [imported function call] print 28 [variable] store to 25
7  [constant] int 27  [imported function call] input 25
8 [imported function call] input 23 attribute 24
9 if/elif/else statement 16  [constant] int 24

10  function argument/arguments 16  if/elif/else statement 24
Table 1

Frequency of the most common constructs in the minimal primitive construct sets for the Beginners
and Intermediate courses

Exercise ~ Minimal Primitive Construct Set

1 constant: (str), function call, imported function call: (print), variable: (load)
2 constant: (str), function call, imported function call: (print), variable: (load)
3 assignment, constant: (str), function call, imported function call: (print), variable: (load, store to)
4 assignment, constant: (str), function call, imported function call: (print), variable: (load, store to)
5 assignment, constant: (int), function call, imported function call: (print), variable: (load, store to)
6 assignment, binary operation: (add, sub), constant: (int), function call, imported function call:
(print), variable: (load, store to)
Table 2

Minimal primitive construct sets for the first six exercises in the Beginners course

3.3. Defining Distance Between Exercises

Based on the set of minimal primitive constructs, we define two distance measures between exercises: 1)

consecutive distance between two exercises and 2) cumulative distance across a sequence of exercises.
Distance between two exercises. Given two exercises p, and p,, and their corresponding set of

minimal primitive constructs M, and M,, we define the distance from exercise p, to exercise py as

D

pepy = My — My (2)

i.e. the constructs that are seen in p), but not in p,. Hence, Dpxpy is based on the estimated number of
new minimal constructs required to complete p,, with the prior knowledge of the constructs used in py.
Cumulative distance across an exercise sequence. The distance between two exercises from (2)
can be extended to define a cumulative distance across an exercise sequence.
Given an exercise sequence P = {py, ..., p,}, and assuming that the students complete the exercises in
this order, the distance from py.; to the prior sequence {p, ..., pi} is computed as

k

DPk+1P1...k = Mpy1 — U M; (3)
i=1

i.e., this is the distance to progress to the next exercise py,; with the understanding of the set of minimal
constructs used in all previous exercises.

These two distance measures are used in our analysis to identify insights into exercise sequencing
and their impact on student performance.
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Figure 1: Number of passed and failed submissions for each exercise in the Beginners and Intermediate courses

4. Data

We applied our method to two online Python programming courses for high school students in Australia,
that ran for five weeks. The online learning platform offered several courses for different levels of
ability. We used data from two courses: Beginners and Intermediate. The Beginners course is for Year
7-8 students learning fundamental computational thinking, and the Intermediate course is for Year
9-10 students learning data structures, files and functions. A new set of exercises is released every week
(8 for Beginners and 5 for Intermediate) and can be completed until the end of the course. Students
submit their solution for automated marking and feedback based on test cases. They can correct their
solution based on the feedback and resubmit multiple times until they pass all tests.

The Beginners course had 40 exercises and was attempted by 6,539 students, while the Intermediate
had 25 exercises and was attempted by 3,288 students. Most students did not complete all exercises. For
the attempted exercises, the mean number of submissions per student was 1.47 for Beginners and 2.00
for Intermediate. The number of passed and failed submissions for each exercise is shown in Figure 1.

The data was provided in anonymised format, with all student details removed and student identifiers
substituted with randomly generated numbers to prevent re-identification.

5. Results and Discussion

5.1. Identified Constructs

Our method identified 102 base primitive constructs across the minimal construct sets generated from
the passing submissions for the 40 exercises in the Beginner course, and 154 constructs for the 25
exercises of the Intermediate course. The ten most common primitive constructs for each course are
listed in Table 1. It can be seen that the items in each set are the same except for function arguments
which appears in Beginners only and attribute which appears in Intermediate only. Only the top two
items from Beginners appear in all 40 exercises, while the top seven items for Intermediate appear in all
25 exercises for this course. This may reflect the need to routinely use a larger common set of concepts
in the more advanced Intermediate course, where students need to combine concepts in different ways,
while the Beginners course introduces concepts in a more granular manner.
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Table 3
Primitive construct map for the first six exercises in the Beginners course

5.2. Per-Exercise Minimal Primitive Construct Sets

The set of minimal primitive constructs represents the constructs used by students to solve an exercise.
It can serve as a summary of the primitives that a new student will need to complete the exercise.

The minimal primitive construct sets for the first six exercises of the Beginners course are shown in
Table 2. In the first exercise, students simply need to modify the printed string of a single-line program,
to the expected solution: print('Hello, World!'). The set therefore only includes the four syntax
constructs relating to printing a string literal. The set for the subsequent exercises grows to include
handling of string variable (in Exercise 3) and then integers (Exercises 5 and 6).

By vectorising each exercise based on the constructs present within their minimal primitive set, we
can create a primitive construct map that shows the similarities between exercises. We explored the
utility of this technique for the two courses. Table 3 shows the map generated for the first six exercises
from the Beginners course as listed in Table 2. We can see that the first two exercises are syntactically
identical, requiring the same primitive constructs. This was intentional in the activity design: Exercise 2
was similar to Exercise 1, requiring students to write a single-line printing program.

Exercises 3 and 4 were also intentionally paired and required similar solutions (Exercise 3 involved
multiple print operations with the same string variable, while Exercise 4 used two string variables),
and this is reflected in the primitive map. Similarly, the transition from Exercise 4 to Exercise 5 includes
only one new primitive (integer constants), with all other primitives having been used multiple times
before, making this a very gradual introduction.

The transition from Exercise 2 to 3 introduces both the use of a variable reference to store a value
(ast.Store) and the assignment of that value (ast.Assign). While this was captured as two primitives,
they are so closely related and naturally occur together. This transition therefore does not appear to
require improvement. On the other hand, it can be seen from the map that Exercise 6 introduces both
addition and subtraction for the first time, which may be especially challenging for students who do
not have a strong mastery of arithmetic. The sequencing could be improved by introducing addition
first, and postponing the need for subtraction to a later exercise.

The minimal primitive construct sets for the Intermediate course were substantially larger than
for the Beginners, as can be seen from the results for the first four exercises, shown in Table 4. Each
set of constructs was surprisingly large, considering what was expected by the exercise authors. For
instance, Exercise 1 required the student to write a program that spelled out the letters of an input word
as in a spelling bee competition. A reference solution that would have generated the required output was:

word = input('The next word is... ')

print (word.lower())

for letter in word.upper():
print(letter)

print (word.lower())

This program would have used only the eleven items shown in bold for Exercise 1 in Table 4. The



Exercise  Minimal Primitive Construct Set

1 assignment, attribute, augmented assignment: (add), binary operation: (add), comparison: (It,
noteq), comprehension, constant: (int, str), function argument/arguments, function call, imported
function call: (input, join, len, list, lower, map, print, upper), keyword argument, lambda, list
comprehension, loop: (for loop, while loop), starred, subscript, variable: (load, store to)

2 assignment, attribute, augmented assignment: (add), binary operation: (add), boolean operation:
(and), comparison: (eq, gt, in, noteq), constant: (bool, int, str), f-string, function argument/argu-
ments, function call, if-then-else expression, if/elif/else statement, imported function call: (format,
input, int, islower, isupper, lower, print, upper), keyword argument, lambda, tuple, unary operation:
(not), variable: (load, store to)

3 assignment, binary operation: (add), comparison: (gt, gte, It, Ite), constant: (int, str), f-string, func-
tion argument/arguments, function call, functiondef, if-then-else expression, if/elif/else statement,
imported function call: (float, input, int, print), return, variable: (load, store to)

4 assignment, attribute, binary operation: (add, div, mod, mult, sub), comparison: (in, Ite), constant:
(float, int, str), excepthandler: (ValueError), f-string, function argument/arguments, function call,
functiondef, if/elif/else statement, imported function call: (exit, float, format, input, int, len, print,
replace, round, str), keyword argument, return, try, variable: (load, store to)

Table 4
Minimal primitive construct sets for the first four exercises in the Intermediate course

Minimal Primitive Construct Set Exercises
constant: (str), function call, imported function call: (print), variable: (load) 1,2
assignment, constant: (str), function call, imported function call: (print), variable: (load, store to) 3,4
assignment, comparison: (gt, gte, It, Ite), constant: (int, str), function call, if-then-else expression, 13,14

if/elif/else statement, imported function call: (input, int, print), variable: (load, store to)

Table 5
Clusters of exercises sharing the same minimal primitive construct set for the Beginners course

other eighteen items that appear in the minimal primitive construct set demonstrate the diversity
of approaches taken by students. Using very different syntax primitives than the expected requires
attention - there may be a need to improve the course design and provide better guidance and resources.

5.3. Clusters Based on the Set of Minimal Primitive Constructs

It is desirable to group existing exercises according to the primitive constructs required to solve them.
The pool of similar exercises can be used to recommend exercises to students needing further practice.
To explore the feasibility of this approach, we formed clusters where all exercises within a cluster shared
the same set of minimal primitive constructs.

For the Beginners course, we identified 37 clusters. Of these, 34 were trivial, consisting of a single
exercise, while the other three contained a pair of exercises, as shown in Table 5. Each of these pairs was
intentional, with the first exercise intended to provide scaffolding for a approach that the student was
expected to use unaided in the second exercise. For the Intermediate course, we identified 25 clusters,
one for each exercise. Since the exercises in this course were each designed to cover different material,
this was unsurprising. Hence, these results validated our expectations and showed the feasibility of
this approach. However, the clustering can be improved. As we noted previously, the set of minimal
primitive constructs can be significantly larger than the intended solution. In such cases, effective
clustering may require pruning less frequent members of the minimal primitive constructs set, or
employing some level of tolerance when sharing constructs.



30 A

—— Consecutive Distance o
25 1 Cumulative Distance - 50 b
o 20 - = = Failed submissions / L 40 E
[v] / a
c 7 0
S 15 - I~ - 30 €
il ! <
8 10 4N ! 20 @
\\ /] o
5 - —_— ad F 10 =
\v,l\/\ L

0 T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 0

0123456 7 8 9101112131415161718192021222324252627282930313233343536373839
Exercise
(a) Beginners
40 7' Consecutive Distance N =
>
< CumulativeDistance  ~ 60 &
SN\ SJ /N 0
30 7= = Faifed submissjons / - 5
[} 1 =
U

2 L 40 8
8 20 1 IS
2 o
° 20 ?
10 E
5

0 T T T T T T T T T 0

T T T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Exercise

(b) Intermediate

Figure 2: Exercise distance compared to failure rate of submissions for (a) Beginners and (b) Intermediate

5.4. Comparison Between Exercise Distance and Exercise Failure Rate

We hypothesised that an exercise that required a large number of new programming constructs would
have poor outcomes, as students encounter significant cognitive load applying these new constructs.
To explore this, we compared the consecutive and cumulative exercise distances Dy, , and Dy,
with each exercise’s failure rate, as shown in Figure 2. The exercise failure rate is the proportion of all
syntactically valid submissions which failed any of the correctness tests.

For the the Beginners course the failure rate correlated poorly with the cumulative distance (Spear-
man’s coefficient r; = 0.06) and weakly with the consecutive distance (r; = 0.31). The absence of a
strong correlation is not surprising, since we would expect many factors to influence the difficulty of
an exercise. However, it is interesting to look at cases where there was a large jump in new constructs
in an exercise and compare it with the failure rate. For instance, Exercises 14 and 22 involved a large
number of new constructs and low failure rate. These exercises used several functions from the turtle
graphics library. Despite their large number, these constructs were intuitive to use and explained clearly
in the preceding course content, which may be the reason for the low failure rate.

On the other hand, Exercise 29 also shows a high jump in the number of constructs but also a
high failure rate. Upon inspection, we found that many submissions involved finding the maximum-
valued item in a list using functions like max or sort that had not been introduced yet. Additionally,
we observed that many submissions used a wide variety of constructs that had been used in earlier
exercises, such as loops and inequality operators. This suggests that students would benefit from
more practice and explanations before attempting this exercise and also better scaffolding towards the
intended solution which was far simpler.

In contrast, for the Intermediate course, the failure rate correlated more with the cumulative distance
(ry = 0.26) than the consecutive (r; = 0.07). Even so, the consistently high failure rate for all exercises
(mean 48.7%), together with the high mean consecutive distance of 18.7 constructs, suggests a large
diversity of approaches. This exercise could also benefit from providing more practice and guidance.



6. Conclusion and Future Work

In this paper, we presented a novel method to group programming exercises based upon the programming
constructs commonly used by students in successful submissions. It mines the abstract syntax tree
of submissions, to determine the set of minimal primitive constructs required for each exercise. A
map of primitive constructs was used to visualize the similarity between exercises and clustering was
used to group similar exercises. We introduced two distance measures to quantify the number of
new primitives required to complete the next exercise, having completed the previous exercise and all
previous exercises, and explored their relation to the exercise failure rate.

The proposed method was applied to two large-scale online Python programming courses undertaken
by almost 10,000 high school students. It was able to successfully identify flaws in the exercise design
and key points where more practice and guidance would be beneficial, as well as groups of similar
exercises that can be used for recommending exercises with a small increase of knowledge for practice
and revision. It also identified exercises with overly complex solutions, including the use of new, not
studied constructs, that would benefit from providing better scaffolding and intervention.

We found that the set of minimal primitive constructs was surprisingly large, especially for the
Intermediate course, due to the diversity of approaches taken by students, perhaps due to using external
resources. In future work we plan to refine our method to exclude outlier constructs and provide a
tighter and more representative set. It is expected that this would improve the grouping of exercises
and allow to recommend new exercises with few new constructs. We also intend to go beyond the
primitive constructs and explore ways to automatically extract more complex constructs expected in
advanced programming courses, such as nested loops and recursion.

Declaration on Generative Al

No Generative Al was used during the preparation of this paper.
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