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Abstract
This study explored the relationship between performance on an alternative Raven’s Progressive Matrices
(aRPM) test and data science problem solving abilities, hypothesizing a strong link to relational thinking.
In the experiment, 31 undergraduates engaged in a 2.5-hour session, including a worked example and four
problem solving tasks, followed by data science problems. Our regression analysis conहrmed that aRPM
scores signiहcantly predict data science problem solving performance, eसectively capturing a moderate to
strong variance  in  posttest  out-comes.  Additionally,  aRPM was  more predictive  of  performance than
experience  in  related  subjects.  An  investigation  of  model  fairness  indicated  that  the  model  may
underestimate problem solving performance for male and non-white sub-groups. The हndings of this study
highlight  the  potential  of  using  aRPM in  traditional  or  intelligent  tutoring  systems for  data  science
education to enhance personalization. aRPM can predict initial learning outcomes and identify students
who may need additional support. However,  further research is necessary to validate aRPM's eसectiveness
across diसerent demographic groups.
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1. Introduction

The association between cognitive ability and educational attainment is well known [1]. Indeed,
multiple studies have found that the eसect is bidirectional, with cognitive ability aसecting educational
attainment and long-term education improving cognitive ability [2, 3]. The relationship between
cognitive ability and educational outcomes extends to learning programming, with application to the
failure and dropout rates among programming students [4]. Raven’s Progressive Matrices (RPM) [5],
o॑en referred to as a measure of ऺuid intelligence, has recently been proposed as the cognitive test
most predictive of programming ability [4, 6]. Previous research highlights cognitive skills as crucial
for  programming  success,  but  their  impact  on  the  broader  हeld  of  data  science  remains
underexplored. Given the interdisciplinary nature of data science, which encompasses a wide range
of skills including programming, statistical analysis, and machine learning [7, 8], understanding the
role  of  cognitive  abilities  in  data  science  education  presents  an  intriguing  area  for  further
exploration.  Donoho [8]  notes  that  data  science is  an  evolving  discipline  that extends  beyond
traditional statistics by incorporating data analysis, modeling, and scientiहc inquiry. Exploring its
cognitive foundations can enhance our understanding of what drives expertise in this dynamic
हeld.

Originally intended as a broader study on learning gains in data science problem solving, high
attrition led us to focus on the predictive role of alternative Raven’s Progressive Matrices (aRPM) on
data science problem solving (DSPS). This paper presents multiple regression analyses to explore
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three  questions:  whether  aRPM scores  predict  DSPS,  their  predictive  value  a॑er  adjusting  for
experience in related हelds, and their consistency across demographic groups to assess fairness.

1.1  Predictive Power of Cognitive Diagnostics in Educational Success

Cognitive  ability  assessments  eसectively  predict  academic  performance  and  chart  learning
progressions through data-driven analysis of attribute relationships [10, 11]. Other studies from
psychometric [12] and neurocognitive assessment perspectives [6, 13] have also shown that cognitive
abilities are key indicators of success in STEM [14]. However, the challenges associated with learning
programming have captured researchers' attention, particularly due to historically high failure and
dropout rates. To address this issue, researchers have explored the impact of cognitive abilities on
programming outcomes [15, 16] and highlighted the necessity of cognitive abilities or functions for
both learning and problem solving and showed programming also places demands on these cognitive
faculties [17]. A broad variety of cognitive tests with diसerent complexity have been used to evaluate
the cognitive abilities [12, 13], but the RPM test, renowned for its non-verbal nature and emphasis
on evaluating problem solving abilities devoid of prior knowledge and practice eसects has emerged
as a leading test for measuring programming ability [18]. Recent studies have validated the use of
cognitive tests to enhance educational program designs in programming and mathematics [19]. RPM,
designed to assess general intelligence, is critical in psychometric evaluations due to their ability to
measure perceptual and analytic cognitive processes [20]. The accuracy and consistency of these
tests, crucial for their application in educational and psychological contexts [21, 22].

1.2 The Role of Individual Diࡴerences

Individual diसerences in cognitive abilities signiहcantly inऺuence learning outcomes, highlighting
the importance of tailored practice and engagement in domain-speciहc tasks  [23]. As cognitive
abilities  like  ऺuid  intelligence  decline  with  age,  crystallized  intelligence,  which  is  based  on
accumulated knowledge, tends to remain stable or even increase, supporting competent functioning
in  various  contexts  [24,  25].  Additionally,  working  memory  plays  a  critical  role  in  cognitive
development and education, with its eसectiveness inऺuenced by age-related strategies that adapt
over  time   [26].   Previous  research  has  identiहed  gender-based  diसerences  in  some cognitive
processes and fundamental skills like problem solving [27, 28]. While this research is not settled,
particularly given the multi-dimensional nature of the gender eसect [29], it does suggest that हndings
relating cognitive ability to skill should consider individual diसerences, and if  that ignores this
consideration,  it  could  potentially  disadvantage  some  groups.  These  हndings  highlight  the
importance of developing educational pro-grams that adapt to the diverse learning and cognitive
needs throughout an individual's life.

Tailoring instruction based on cognitive proहles, such as aRPM scores, can be implemented by
human instructors  or AI-driven educational  systems. Adaptive  learning technologies,  including
intelligent tutoring systems, have shown promise in personalizing instruction to match learner needs
and abilities [30, 31]. Leveraging such systems enables scalable, data-driven scaसolding that adjusts
to individual learners in real time, enhancing engagement and learning outcomes.

2. Method

The study utilized a 2x2x2 factorial design with a pretest/posttest setup, investigating the eसects
of programming (blocks vs. code), problem-solving explanation, and sub-goal-labeled materials on
data science learning. Participants (N=31) were undergraduate psychology students recruited from
an urban university in the southern United States, including 11 males and 20 females, with a racial
composition spanning white (n=15) and non-white (n=16) categories. Participants’ mean age was
22.93 years (SD= 8.60). Participants were randomly assigned to one of eight conditions in a 2x2x2
design varying in programming style (blocks/code), explanation prompt, and subgoal labeling. This
structure was originally intended to explore instructional eसects. However, due to the small sample



per  cell,  we  did  not  analyze condition eसects  separately.  The  distribution  of  participants  was
approximately even across conditions. Participants received course credit but were not otherwise
compensated. The study was conducted online using Chrome on participant computers. It employed
several  measures:  attitudinal  surveys  about  learning  data  science,  mathematical  concepts,  and
statistical variable types, along with demographic questions and data science problem solving tests.
These  tests  assessed  procedural  coding  knowledge,  data  manipulation  skills,  and  code  tracing
abilities,  focusing  on conceptual  under-standing  rather  than  complete  problem resolution.  The
posttest comprised computational thinking questions designed without the use of coding [32, 33].
Participants  used JupyterLab [34]  for tasks that progressed from direct  application to complex
problem solving with minimal guidance. All activities and instructions were conducted through
ॕualtrics, with video tutorials for coding and problem-solving [34, 35]. Participants, a॑er being
randomized into eight groups, हlled initial surveys assessing their foundational knowledge, followed
by engaging with progressively challenging tasks through interactive notebooks. Posttest involved
problem solving, the System Usability Scale [36], a cognitive load survey [37], an adapted version of
Raven’s Progressive Matrices, aRPM [5, 38], and demographic queries about programming, statistics,
and data science experience (Figure 1). The aRPM used in this study is an 18-item, open-access
version of Raven’s Progressive Matrices designed to mirror the structure and diऻculty of the original
test while aligning with the appropriate timing of the study. Though not identical to the original
version, it  retains the core non-verbal reasoning features and our internal consistency analysis
supports its reliability. Using the 18-question aRPM, a free version of the proprietary RPM, improves
accessibility and practicality, facilitating wider use in educational settings without cost barriers. The
2.5-hour study concluded with a thorough debrief on its aims and structure. Because the planned
study had high attrition such that it would require several years of data collection to complete, we
focus  our  analysis  on the  relationship  between  aRPM and  DSPS,  a  preregistered  hypothesis  .
Therefore, our analysis collapses across all conditions to examine the relationship between tests and
aRPM.

                 

Figure 1: Sample questions of aRPM (le॑, answer E) and posttest (DSPS) (right)

3. Results

Since aRPM lacks a published psychometric evaluation, key metrics, including mean scores, internal
consistency, and item-to-scale correlation, were examined. The mean correctness of .42, high internal
consistency was conहrmed by a Cronbach's alpha of .81, and an item correlation of .19 indicated low
redundancy among items. These metrics are within published ranges of standard RPM [5]. Table 1
presents the descriptive statistics for scores and years of experience in programming, data science,
and  statistics  among  the  participants.  A  Variance  Inऺation  Factor  (VIF)  analysis  indicated  no
signiहcant multicollinearity among aRPM and experience predictors for DSPS.

Table 1
Mean values and standard deviations for test scores and years of experience

DSPS aRPM Stat. Exp. Prog. Exp. Data Sci. 
Exp.

M SD M SD M SD M SD M SD
.48 .29 .42 .23 .56 .64 .29 .68 .29 .90



3.1 Preregistered Model: Predicting DSPS with aRPM

A linear regression analysis was conducted to examine the extent to which aRPM scores, and other
probable factors predict DSPS performance. The models was preregistered as part of the study's
hypotheses. The results indicated that aRPM scores signiहcantly predicted posttest performance, B
= .78, SE = .19, t(29) = 4.19, p < .001, 95% CI [0.397, 1.156], such that each correctly answered question
on aRPM predicts a 4.3% increase in DSPS score. The model accounted for 37.7% of the variance in
posttest scores, supporting the hypothesis that aRPM, as a measure of cognitive ability, signiहcantly
predicts DSPS scores.

3.2 Exploratory Model: aRPM Prediction, Controlling for Experience

A second exploratory regression analysis was conducted to examine whether aRPM predicts DSPS
beyond prior experience in statistics, programming, and data science. The extended model with these
experience predictors remained signiहcant, explaining 50% of the variance in posttest scores (p <
.001).  aRPM scores continued to be a strong and signiहcant predictor of posttest performance, B =
.84, SE = .18, t(26) = 4.62, p < .001, 95% CI [0.469, 1.218], such that each correctly answered question
on aRPM predicts a 4.7% increase in DSPS score. Programming experience was also a signiहcant
predictor of DSPS, B = .18, SE = .07, t(26) = 2.45, p = .021, 95% CI [0.028, 0.324], suggesting that each
additional year of programming experience increased posttest performance by  18 %. However,
statistics experience (p = .247) and data science experience (p = .179) were not signiहcant predictors.
In terms of eसect,  four correct  questions on aRPM are equivalent to one year of programming
experience, and programming experience explains only an additional 12.3% of the variance compared
to 37.7% explained by aRPM alone.

3.3 Model Fairness: Predicting Posttest Performance Across Subgroups

We conducted an exploratory analysis to see if our base model, which uses aRPM scores to predict
DSPS, performs consistently across demographic groups (gender and race). This aimed to verify the
model’s fairness in reऺecting diverse individual scores.

Table2
 Subgroups means and standard deviations for test scores and years of experience

Subgroup N
DSPS aRPM

Stat. 
Exp.

Prog. 
Exp. Data Sci. Exp.

M SD M SD M SD M SD M SD
Female-
Nonwhite 12 .46 .3 .42 .23 .67 .58 .25   .40 .42 1.16

Male-
Nonwhite 4 .68 .38 .54 .28 .25 .50 0 0 0 0

Female-White 9 .40 .27 .35 .19 .61 .70 .56 1.13 .44 1.01

Male-White 6 .52 .27 .44 .28 .50 .84 .17   .41 0 0

For male participants, a simple linear regression analysis revealed that RPM scores were a strong
predictor of posttest performance, B = .94, p = .003, 95% CI [0.421 ,1.464], a stronger eसect than
found in the base model (B = .78). This model suggests that the relationship between RPM scores and
posttest performance is underestimated by the base model for male participants. In contrast, the
regression model for female participants showed that RPM scores,  while still  signiहcant,  had a
weaker predictive power, B = .61, p = .036, 95% CI [0.043 ,1.167], compared to the base model. This
model suggests that the relationship between RPM scores and posttest performance is overestimated
by the base model for female participants. Regarding racial subgroups, the regression model for white
participants indicated a marginally signiहcant prediction of posttest performance by RPM scores, B
= .61, p = .0506 weaker than the base model. This model suggests that the relationship between RPM
scores  and  posttest  performance  is  overestimated  by  the  base  model  for  white  participants.



Conversely,  for  non-white  participants,  RPM scores  showed a  strong and signiहcant  eसect  on
posttest performance, B = .90, p = .004, 95% CI [0.338 ,1.464], exceeding the base model's prediction.
This model explained indicating that the base model underestimates the strength of the RPM score's
predictive power on DSPS score for non-white participants.

4. Discussion

This  research  showed  that  aRPM  scores  was  a  signiहcant  predictor  of  data  science  posttest
performance,  demonstrating 37.7% of the variance in the regression model  for posttest scores,
underscoring a moderate-to-strong eसect of aRPM. Carpenter et al. [39]  suggest that Raven’s test
performance predicts ability on new cognitive problems. This study found that aRPM predicts early-
stage data science problem solving in participants new to data science. As learners gain experience,
aRPM's predictive value may lessen, though it remains an eसective early indicator.

Our हndings indicate that only programming experience, not statistics or data science knowledge,
predicted DSPS.  Given the study's  use  of  block and traditional  programming, this inऺuence of
programming on DSPS is expected.  Notably, a year of programming experience had an impact
equivalent to four correct aRPM responses. Our analyses investigating subgroup model fairness
suggest the potential for the model to both overestimate and underestimate performance for diसerent
demographic groups. These results are concerning and should be considered in terms of scale. The
base model  predicts a 4.3% increase in DSPS for each correct aRPM question. In the subgroup
analyses, the predicted increase ranged from 3.4-5.2%, i.e. approximately 1% diसerent in the worst
cases. The diसerence could accumulate to 18% if all aRPM questions were correctly answered. Future
research should investigate these relationships more closely with a larger sample size to conहrm
these estimates.

Our  हndings  enrich  our  understanding  of  the  interplay  between  instructional  strategies,
individual diसerences, and cognitive capabilities in the context of data science education among
undergraduate  psychology  students.  By  demonstrating  the  importance of  cognitive  abilities  in
predicting educational outcomes, the study supports reहned educational interventions that act as
bridges, connecting sides of the zone of proximal development [40]. Using the insights from Raven’s
matrices, educators can eसectively scaसold learning experiences to not only meet students where
they are but also extend their reach, seamlessly connecting the phases of learning that lie just within
and just beyond their immediate grasp. This approach, whether implemented through intelligent or
traditional adaptive systems, ensures that every student receives tailored support to enhance their
data science skills and understanding, regardless of their starting level.

As our study’s limitations, the use of small sample sizes, especially in subgroup analyses, may
limit the generalizability and statistical power to detect signiहcant eसects accurately. Secondly, our
methodological choice to collapse data across the factorial design could mask variations in posttest
scores attributable to diसerent conditions,  potentially obscuring how speciहc interventions may
inऺuence outcomes.

Many participants did not complete our study, so our results only include those who completed
aRPM towards the end of the study session. Therefore, it is possible that non completers may have a
diसerent relationship between posttest scores and aRPM than completers.

Additionally, our study experienced diसerential attrition, such that  participants  in the block
programming condition were less likely to complete the study than participants  in the coding
condition.  Therefore,  it  is  possible  that  blocks  condition  participants  may  have  a  diसerent
relationship between posttest scores and aRPM than coding condition participants, but we do not
have enough data to make this comparison.
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