
AlgoAce: Retrieval-Augmented Generation for Assistance
in Competitive Programming
Anav Agrawal1,*, Jill-Jênn Vie1,*

1Soda team, Inria Saclay, 91120 Palaiseau, France

Abstract
Competitive programming platforms like Codeforces are widely used for self-directed learning and assessment in
computer science education. However, students often struggle to identify relevant practice problems or receive
targeted help without personalized guidance. In this paper we present AlgoAce, an AI-powered assistant that
integrates with Codeforces and uses retrieval-augmented generation (RAG) to provide support while attending
at two key sources of information: user submission history, and problem metadata. The system leverages large
language models to fetch relevant problems and past user submissions, grounding user queries in retrieved
content before generating responses. AlgoAce adapts to user preferences—such as programming language or
problem tags—and supports reflective learning through natural language interactions. We describe the tool’s
architecture and discuss its potential for integration into the competitive programming learning ecosystem.

Keywords
Retrieval-augmented generation, Competitive programming, Intelligent tutoring systems, Codeforces

1. Introduction

Competitive programming platforms, such as Codeforces1, HackerRank, or Kattis, provide thousands of
problem-solving challenges. While they primarily rank programmers through contests, participants also
use them for self-directed learning. However, it is always easier to rank students than to upskill them:
surprisingly, little effort has been directed towards building tools to improve the skills of competitive
programming contestants. Students frequently struggle to identify exercises that align with their current
skill levels. There remains a gap in providing personalized, actionable feedback on what students should
learn or practice next.

Recently, Large Language Models (LLMs) have emerged as powerful tools in educational applications,
but they often face challenges related to hallucinations—generating incorrect or misleading information.
To mitigate this issue, Retrieval-Augmented Generation (RAG) was introduced [1]. RAG enhances LLM
outputs by incorporating relevant context retrieved through a maximum inner product search in a
vector database, thereby improving the accuracy and relevance of the generated responses.

In this paper, we introduce AlgoAce, an LLM-powered assistant designed to recommend relevant
Codeforces problems to users based on their submission history, using a RAG architecture. A demo
video is available2, as well as the code3.

2. Related Work

LLMs have been widely applied to educational tasks, including student performance prediction, person-
alized practice generation, and automated feedback [2, 3, 4, 5]. RAG, in particular, has shown promise
in improving the quality and relevance of educational outputs by grounding LLM responses in external
knowledge [6, 7, 8, 9].

CSEDM’25: Workshop, July 20, 2025, Palermo, Sicily, Italy
$ anavagrawal2309@gmail.com (A. Agrawal); jill-jenn.vie@inria.fr (J. Vie)
� https://jjv.ie (J. Vie)
� 0009-0005-8283-9110 (A. Agrawal); 0000-0002-9304-2220 (J. Vie)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

1https://codeforces.com
2Demo video: https://drive.google.com/file/d/1M2dBUxHcES4RTFKhKwvP2BJCigYMvdfw/view?usp=sharing
3Source code: https://github.com/AnavAgrawal/AlgoAce

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:anavagrawal2309@gmail.com
mailto:jill-jenn.vie@inria.fr
https://jjv.ie
https://orcid.org/0009-0005-8283-9110
https://orcid.org/0000-0002-9304-2220
https://creativecommons.org/licenses/by/4.0/deed.en
https://drive.google.com/file/d/1M2dBUxHcES4RTFKhKwvP2BJCigYMvdfw/view?usp=sharing
https://github.com/AnavAgrawal/AlgoAce


Recent studies have explored programming exercise recommendation systems [10, 11, 12, 13] and AI
support in competitive programming environments [14, 15], yet few approaches have leveraged user
submission history for fine-grained personalization. While course recommendation using LLMs has
seen substantial progress—such as RAMO [16], which uses RAG to recommend MOOCs based on course
metadata—there remains a gap in personalized exercise recommendation, particularly in competitive
programming where detailed skill modeling is essential.

AlgoAce addresses this gap by incorporating users’ historical problem attempts and performance
data into its recommendation pipeline. This enables the system to dynamically adapt to a learner’s
evolving skill set, offering targeted practice.

3. Our RAG solution AlgoAce

On the open source platform AlgoAce, users input a query, e.g. “What should I learn next?”. They can
provide their Codeforces handle, which allows the agent to retrieve their submission history—notably
successful and unsuccessful problem attempts—via the Codeforces API. If no handle is provided, generic
recommendations are made based on the query alone. Sample outputs are provided in Appendix A.

Each Codeforces problem is represented by the following metadata: its title, associated tags (e.g.,
“shortest paths”), Elo rating, and URL, see an example in Table 1 in Appendix C. The difference in Elo
rating between a user and a problem is proportional to the logit of the probability that the user can
solve the problem. AlgoAce embeds this available metadata into a dense vector space to enable semantic
retrieval. The user submission history contains metadata of the attempted problem and the result of the
submission (OK, Wrong Answer, or Time Limit Exceeded), see an example in Table 2 in Appendix C. It
is similar to the data encountered in knowledge tracing scenarios.

AlgoAce runs two parallel retrievers, one over user’s past submissions and another over the Codeforces
problem set, both using vector similarity search. The retrieved results are merged and then fed into a
structured prompt to guide the LLM’s generation. The system is designed with modularity in mind,
currently supporting both API-based large language models such as OpenAI’s GPT models and locally
hosted open-source alternatives, so that the data never leaves the device. The complete prompt templates
are provided in Appendix B. A diagram of the whole pipeline is also provided in Figure 2 in Appendix D.

To evaluate the retrieval of submission history, we prioritized ensuring the relevance of retrieved
documents. Our initial observations revealed a critical need for query reformulation: queries that didn’t
explicitly define terms like "OK" or "time limit exceeded" consistently yielded irrelevant submissions.
This led us to implement a two-way prompting strategy, where the first prompt is specifically designed
to reformulate the user’s query, thereby improving the relevance of the retrieved submission history.

Implementation details AlgoAce is implemented using the Pathway framework, which provides
efficient Retrieval-Augmented Generation (RAG) pipelines. For approximate nearest neighbor search,
we use Pathway’s KNNIndex class, which applies locality-sensitive hashing to perform fast similarity
search across embedded problems. The user interface is built using Streamlit, with a Pathway RESTful
API connecting the front-end to the backend services. All code from the platform is released on GitHub.

4. Conclusion

As future work, we plan to incorporate problem solutions into the retrieval and recommendation
process, and conduct user studies to evaluate our tool and see the common queries made by users.
By analyzing official or community-provided solutions, we can better estimate the prerequisite skills
required for each exercise, leading to more accurate and pedagogically meaningful recommendations.
Additionally, we aim to align the objective of the LLM more closely with learning outcomes, ensuring
that the system prioritizes educational progress rather than optimizing user satisfaction. This could
involve fine-tuning prompts to emphasize skill development and problem-solving strategies.



Declaration on Generative AI

During the preparation of this work, the authors used LLMs like ChatGPT or Mistral in order to perform
grammar, spelling check, and help with formatting. After using these tools, the authors reviewed and
edited the content as needed and take full responsibility for the publication’s content.

References

[1] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al., Retrieval-augmented generation for knowledge-intensive NLP tasks,
Advances in Neural Information Processing Systems 33 (2020) 9459–9474.

[2] L. Zhang, J. Lin, C. Borchers, J. Sabatini, J. Hollander, M. Cao, X. Hu, Predicting Learning Perfor-
mance with Large Language Models: A Study in Adult Literacy, 2024. URL: https://arxiv.org/abs/
2403.14668.

[3] N. Kiesler, D. Schiffner, Large language models in introductory programming education: Chat-
gpt’s performance and implications for assessments, 2023. URL: https://arxiv.org/abs/2308.08572.
arXiv:2308.08572.

[4] S. P. Neshaei, R. L. Davis, A. Hazimeh, B. Lazarevski, P. Dillenbourg, T. Käser, Towards modeling
learner performance with large language models, 2024. URL: https://arxiv.org/abs/2403.14661.
arXiv:2403.14661.

[5] F. Ai, Y. Chen, Y. Guo, Y. Zhao, Z. Wang, G. Fu, G. Wang, Concept-aware deep knowledge tracing
and exercise recommendation in an online learning system, in: EDM, International Educational
Data Mining Society (IEDMS), 2019.

[6] S. Jacobs, S. Jaschke, Leveraging lecture content for improved feedback: Explorations with
GPT-4 and retrieval augmented generation, in: 2024 36th International Conference on Software
Engineering Education and Training (CSEE&T), IEEE, 2024, pp. 1–5.

[7] O. Henkel, Z. Levonian, C. Li, M. Postle, Retrieval-augmented generation to improve math question-
answering: Trade-offs between groundedness and human preference, in: Proceedings of the 17th
International Conference on Educational Data Mining, 2024, pp. 315–320.

[8] S. S. Manathunga, Y. A. Illangasekara, Retrieval augmented generation and representative vector
summarization for large unstructured textual data in medical education, 2023. URL: https://arxiv.
org/abs/2308.00479. arXiv:2308.00479.

[9] Z. F. Han, J. Lin, A. Gurung, D. R. Thomas, E. Chen, C. Borchers, S. Gupta, K. R. Koedinger,
Improving assessment of tutoring practices using retrieval-augmented generation, 2024. URL:
https://arxiv.org/abs/2402.14594. arXiv:2402.14594.

[10] Y. Liu, R. Zhu, M. Gao, Personalized Programming Guidance based on Deep Programming Learning
Style Capturing, 2024. URL: https://arxiv.org/abs/2403.14638.

[11] S. Branchi, C. D. Francescomarino, C. Ghidini, D. Massimo, F. Ricci, M. Ronzani, Learning to
act: a reinforcement learning approach to recommend the best next activities, 2022. URL: https:
//arxiv.org/abs/2203.15398. arXiv:2203.15398.

[12] P. Agarwal, A. Gupta, R. Sindhgatta, S. Dechu, Goal-oriented next best activity recommendation
using reinforcement learning, 2022. URL: https://arxiv.org/abs/2205.03219. arXiv:2205.03219.

[13] J. Vassoyan, J.-J. Vie, P. Lemberger, Towards scalable adaptive learning with graph neural networks
and reinforcement learning, 2023. URL: https://arxiv.org/abs/2305.06398. arXiv:2305.06398.

[14] P. Veličković, A. Vitvitskyi, L. Markeeva, B. Ibarz, L. Buesing, M. Balog, A. Novikov, Amplifying
human performance in combinatorial competitive programming, 2024. URL: https://arxiv.org/abs/
2411.19744.

[15] J. Frej, N. Shah, M. Knezevic, T. Nazaretsky, T. Käser, Finding paths for explainable mooc recom-
mendation: A learner perspective, in: Proceedings of the 14th Learning Analytics and Knowledge
Conference, LAK ’24, ACM, 2024, p. 426–437. URL: http://dx.doi.org/10.1145/3636555.3636898.
doi:10.1145/3636555.3636898.

https://arxiv.org/abs/2403.14668
https://arxiv.org/abs/2403.14668
https://arxiv.org/abs/2308.08572
http://arxiv.org/abs/2308.08572
https://arxiv.org/abs/2403.14661
http://arxiv.org/abs/2403.14661
https://arxiv.org/abs/2308.00479
https://arxiv.org/abs/2308.00479
http://arxiv.org/abs/2308.00479
https://arxiv.org/abs/2402.14594
http://arxiv.org/abs/2402.14594
https://arxiv.org/abs/2403.14638
https://arxiv.org/abs/2203.15398
https://arxiv.org/abs/2203.15398
http://arxiv.org/abs/2203.15398
https://arxiv.org/abs/2205.03219
http://arxiv.org/abs/2205.03219
https://arxiv.org/abs/2305.06398
http://arxiv.org/abs/2305.06398
https://arxiv.org/abs/2411.19744
https://arxiv.org/abs/2411.19744
http://dx.doi.org/10.1145/3636555.3636898
http://dx.doi.org/10.1145/3636555.3636898


[16] J. Rao, J. Lin, RAMO: Retrieval-Augmented Generation for Enhancing MOOCs Recommendations,
2024. URL: https://arxiv.org/abs/2407.04925.

A. Sample Outputs

Examples of the output generated by AlgoAce are provided in Figure 1. We observe that the LLM is
explaining the recommendations made by looking at user submission history.

Figure 1: Examples of AlgoAce’s output for problem recommendations and strategies.

B. Prompt Template

B.1. Query Rewriting Prompt

The query rewriting prompt is used to reformulate user queries with explicit metadata terms, improving
retrieval accuracy:

You are a query rewriting assistant for a competitive programming tool.
The goal is to rewrite user queries so that they include concrete terms that match
problem metadata stored in a database. The database retrieves problems based on word
overlap with the query - so include exact terms like problem ’tags’ (e.g. ’greedy’,
’dp’, ’graphs’), verdicts (e.g. ’WRONG_ANSWER’, ’OK’, ’RUNTIME_ERROR’), difficulty
’ratings’ (e.g. 800,1000, 1700), or specific problem names if known.
You do NOT have access to the user’s past submissions, but you must guess the user’s
intent and include as many relevant keywords as possible to help the system match the
query to relevant problems. Your output should be in the following format:
Retrieval terms: <insert keywords for retrieval>

https://arxiv.org/abs/2407.04925


Table 1
Example of Codeforces problems

Rating Name (URL) Tags

1700 Mathematical Problem brute force, constructive algorithms, geometry, math
1200 Training Before the Olympiad constructive algorithms, games, greedy, implementation, math
1000 Two Divisors constructive algorithms, math, number theory
800 2023 constructive algorithms, implementation, math, number theory
1800 Bicycles graphs, greedy, implementation, shortest paths, sortings

Table 2
Example of user submission history

Rating Verdict Name (URL) Tags

2300 OK Farm Game combinatorics, games
2100 OK Learning to Paint binary search, data structures, dfs and similar,

dp, greedy, implementation, sortings
1900 Timeout Yet Another Permutation Constructive *special, constructive algorithms
1900 OK Yet Another Permutation Constructive *special, constructive algorithms
2000 Wrong Narrow Paths *special, combinatorics
2000 OK Narrow Paths *special, combinatorics

User query: <natural language query reformulated for the LLM>

Make sure the retrieval terms are rich in specific tokens, and the user query is clear
and helpful for the LLM.

B.2. Response Generation Prompt

The response generation prompt guides the LLM in analyzing user submissions and generating tailored
recommendations or explanations:

You are a competitive programming coach.
I will give you the user code submissions and a list of all available problems after
"Data:". The data lines with verdict are the user code submissions. The other lines are
the available problems on codeforces. Answer the user query after looking at the user
code submissions and the questions he got a wrong answer in. The problems you analyze
and suggest should only be from the given data lines without verdict and should be
similar in rating to the highest rated problems that the user has attempted.
The answer should also explain how you arrived at the answer looking at the user code
submissions if necessary. Keep your thinking short.
Example query : "What problems should I practice next?"
Ideal Answer : "Looking at your submissions, you solve questions rated around 1500 and
you are facing difficulty in implementing binary search. So here are some binary
search problems you can practice: [Links to Binary search
problems]."
Example query : "How to implement dynamic programming?"
Ideal Answer : "Here’s an implementation of dynamic programming. [Dynamic Programming
Code].\n
Data: \n {context} \n{query} /think.

C. Sample Codeforces data

Examples of Codeforces problems are provided in Table 1. An example of user submission history is
provided in Table 2.

https://codeforces.com/problemset/problem/1916/D
https://codeforces.com/problemset/problem/1916/C
https://codeforces.com/problemset/problem/1916/B
https://codeforces.com/problemset/problem/1916/A
https://codeforces.com/problemset/problem/1915/G
https://codeforces.com/problemset/problem/1942/E
https://codeforces.com/problemset/problem/1942/D
https://codeforces.com/problemset/problem/1958/E
https://codeforces.com/problemset/problem/1958/E
https://codeforces.com/problemset/problem/1958/F
https://codeforces.com/problemset/problem/1958/F


Figure 2: RAG pipeline used by AlgoAce

D. RAG pipeline

Our pipeline is provided in Figure 2.


	1 Introduction
	2 Related Work
	3 Our RAG solution AlgoAce
	4 Conclusion
	A Sample Outputs
	B Prompt Template
	B.1 Query Rewriting Prompt
	B.2 Response Generation Prompt

	C Sample Codeforces data
	D RAG pipeline

