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Abstract

Extracting patient subpopulations (clinically relevant cohorts of individuals who share overlapping symptoms,
risk factors, or diagnostic criteria) from unstructured medical notes is an ongoing challenge due to the variability
of clinical language and the complex nature of patient conditions. We demonstrate a pipeline that combines
named entity recognition (NER), transformer embeddings, guided dimensionality reduction, and LLM-mediated
knowledge graph integration to enhance patient extraction. The approach begins with NER using the UMLS
metathesaurus [1] to extract clinical terms, followed by transformation into vector embeddings using a biomedical
transformer. These embeddings are augmented with structured knowledge graph representations generated
through an LLM-driven extraction process and graph embeddings via TransE [2]. To improve the separation
of key semantic features, we apply autoencoder-based dimensionality reduction before concatenating term
embeddings with their graph-based counterparts. A feedforward neural network with an attention layer classifies
extracted embeddings to determine patient subgroup membership. We evaluate the pipeline on multiple datasets,
including extracting a subpopulation taken from Dayton Childrens’ Hospital, with experiments demonstrating
improvements over baseline BERT-only and keyword-based methods in classifying medical reports by specialty
and behavioral health relevance. Our results show that incorporating knowledge graphs and dimensionality
reduction enhances precision and interpretability while maintaining adaptability for different research queries.
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1. Introduction

Electronic medical records (EMRs) contain enormous amounts of unstructured clinical text, making it
difficult to extract meaningful patient subsets for research, clinical trial matching, and other forms of
medical decision making [3]. Human annotation of these files takes up an increasingly large amount
of clinical time for nurses and doctors in healthcare settings, and is prone to error [4]. Standardized
medical coding systems, such as ICD-10, fail to capture the full complexity of patient conditions, leading
to gaps in automated classification [5]. While natural language processing (NLP) techniques have made
progress in structuring free text data, challenges remain in ensuring both accuracy and interpretability,
particularly when dealing with ambiguous or underrepresented conditions [6].

Paradigms and Approaches in Medical NLP: Recent advances in domain-specific NLP
models and knowledge representation techniques offer promising solutions for patient subset
extraction. Large Language Models (LLMs) offer the ability to manipulate and normalize
complex texts, though they come with the costs of large processing requirements, patient
confidentiality concerns, and hallucinations. [7]

Transformer-based embeddings, generated by models pretrained on biomedical information,
such as BioBERTa [8], have demonstrated strong performance in generating embeddings
that effectively capture relationships between medical terms [9]. Knowledge graphs (KGs)
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further enhance this process by integrating structured relationships between extracted terms,
helping to disambiguate concepts and provide context [10]. Peng et al.[11] provide a compre-
hensive overview of knowledge graphs in Al, highlighting both their promise for structured
reasoning and the ongoing challenges in scalability, data integration, and semantic consis-
tency—challenges that motivate the hybrid LLM-based approach proposed here. However,
effectively combining these techniques in a scalable way while maintaining patient confiden-
tiality and model governance remains an open research question.

A Novel Pipeline:This work introduces a pipeline for automated patient subset extrac-
tion that integrates named-entity recognition (NER), transformer-based embeddings, and
graph-based knowledge representations. Our approach builds on prior work such as Dessi et
al.[12], who demonstrated the feasibility of using NLP and machine learning techniques to
automatically construct knowledge graphs from unstructured technical documents. Recent
work such as GraphRAG [13] explores how structured graph representations can enhance
LLM-driven summarization and retrieval, aligning with our goal of using knowledge graphs to
contextualize medical terms extracted from free-text. We employ NER tools that leverage the
UMLS metathesaurus to extract clinical entities, which are then embedded using BioBERTa
and enriched with graph embeddings generated through TransE. To improve classification
performance, we apply autoencoder-based dimensionality reduction before concatenating
term embeddings with their graph-based counterparts. A feedforward neural network (FFNN)
with an attention mechanism classifies these enriched embeddings, improving accuracy and
interpretability.

Overall, we propose a five-stage pipeline that integrates established and emerging tools in
clinical NLP:

1. Named Entity Recognition (NER) is used to extract medically relevant terms from free-text
notes using tools grounded in the UMLS Metathesaurus.

2. Transformer-based embeddings (via BioBERTa) are generated for each extracted entity
to capture semantic relationships.

3. Knowledge graph construction is performed using a large language model to identify
medically meaningful relations (e.g., associated_with, is_a), enabling graph embeddings
via TransE.

4. Dimensionality reduction is optionally applied using a guided autoencoder that preserves
task-relevant structure in embedding space.

5. Classification is performed by a feedforward neural network (FFNN) with an attention
layer to determine subgroup membership.

We evaluate our approach using multiple datasets with real-world patient data, including
MIMIC-IV [14], and a set of medical records provided for a behavioral health classification
task. Our results demonstrate that incorporating knowledge graphs and dimensionality re-
duction improves precision over baseline BERT-only and keyword-based methods. This work
contributes A flexible, scalable pipeline for extracting complex patient subpopulations from
medical free text that is:

« Adaptable to diverse research questions
« Able to be customized, without requiring deep machine learning knowledge
« An on-premises solution, not requiring exporting sensitive data to a public model

The rest of the paper is structured as follows: Section 2 discusses key related work, Section
3 covers our approach in detail, Section 4 presents several experiments designed to validate
the framework, and Section 5 discusses results and possible extensions to this work.
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Figure 1: The pipeline for extraction of patient subsets from medical free-text: from the text “The patient was
transferred from general hospital in Boston, MA, to the intensive care unit. On presentation, the patient was
observed to suffer from tachycardia, and showed signs of fatigue and cardiovascular strain. Patient was placed
on statins”, NER extracted “tachycardia”, “fatigue”, “cardiovascular strain”, and “statins”.

2. Background

Extracting structured information from unstructured medical texts is an ongoing challenge in
clinical natural language processing (NLP). Traditional approaches, such as rule-based systems
and dictionary-based methods, struggle with variability in medical language and context-
dependent terminology. Recent advances in deep learning and knowledge representation
techniques offer more robust solutions, leveraging transformer-based embeddings, knowledge
graphs (KGs), and dimensionality reduction to improve classification performance.

Medical Named Entity Recognition (NER)

Early approaches to medical NER relied heavily on rule-based systems and dictionary-based
methods, which aimed to map free-text medical descriptions to standardized terminologies.
These methods used hand-crafted rules, regular expressions, and lexicons such as the Unified
Medical Language System (UMLS) to identify clinical entities like diseases, medications, and
procedures [15]. While impressive in scope, complete reliance on predefined vocabularies
made these tools sensitive to variations in clinical language. Additionally, rule-based meth-
ods struggled with ambiguity, context-dependent meanings, and scalability, limiting their
effectiveness in large-scale clinical datasets[16].

NLP Framework Approaches
Traditional machine learning approaches, such as support vector machines (SVMs) and condi-
tional random fields (CRFs), enabled more flexible recognition of medical entities by learning
patterns in annotated corpora. However, these models still required extensive feature engi-
neering and were limited in their ability to generalize beyond predefined feature sets [17]. The
advent of deep learning, particularly recurrent neural networks (RNNs) and later transformer-
based models, significantly enhanced entity extraction by capturing more complex contextual
relationships. Models like BioBERT and ClinicalBERT [18], pre-trained on biomedical liter-
ature, demonstrated superior performance in medical text processing by generating dense,



contextualized embeddings for clinical terms. [18] Despite these advances, transformer-based
models remained limited in their ability to incorporate structured medical knowledge, often
relying solely on textual context without explicit relationships between medical entities [19].

Large Language Models

Recent advances in large language models (LLMs) have further transformed medical NLP
by enabling automated entity extraction, relationship discovery, and knowledge graph con-
struction from free-text clinical notes [20]. Unlike earlier transformer models that required
task-specific fine-tuning, LLMs such as GPT-4 can perform zero-shot and few-shot learning,
allowing them to extract structured medical concepts with minimal supervision [21]. These
models leverage massive pretraining corpora, capturing a broad range of clinical knowledge
and linguistic patterns. However, LLMs face challenges such as hallucinations, lack of domain-
specific grounding, and ethical concerns related to patient data privacy [22, 23, 24]. To address
these limitations, hybrid approaches that integrate LLMs with structured representations, such
as knowledge graphs and graph embeddings, are emerging as a promising direction for medical
NLP. These methods combine the contextual understanding of deep learning models with the
interpretability and relational structure of expert-curated medical ontologies, improving both
accuracy and reliability in clinical text classification [25, 26].

Limitations in Transformer-Based Embeddings Transformer-based models, such as
BioBERT and ClinicalBERT, have demonstrated state-of-the-art performance in biomedical
text embedding [27, 28]. Pre-trained on large corpora of scientific literature and clinical
notes, these models generate dense embeddings that capture semantic relationships between
medical terms. However, standalone transformer embeddings may not incorporate structured
knowledge, leading to difficulties in disambiguating similar terms or understanding hierarchical
relationships between clinical entities [19].

Knowledge Graphs for Clinical NLP Knowledge graphs provide a structured representa-
tion of medical knowledge by encoding relationships between entities. In clinical applications,
KGs have been used to enhance decision support, improve explainability, and address sparsity
in textual data [29, 30, 31]. Graph embedding techniques, such as TransE, allow models to
incorporate relational information into vector space representations, improving classifica-
tion and retrieval tasks [2]. Despite their advantages, automated KG construction remains
an open challenge, as large language models (LLMs) can introduce noise, redundancies, or
inconsistencies when extracting structured relationships from text [32].

Dimensionality Reduction High-dimensional embeddings from transformer models can
capture rich contextual information but may introduce redundancy and computational ineffi-
ciency [33, 34]. Autoencoders provide a means of reducing dimensionality while preserving
key semantic distinctions between medical concepts [35, 36]. Guided dimensionality reduction
techniques have shown promise in improving cluster separation for symptom classification
and disease subgroup identification [37]. However, effective dimensionality reduction requires
careful tuning to avoid loss of clinically relevant information.

This work builds on these advances by integrating medical NER, transformer embeddings,
knowledge graphs, and dimensionality reduction into a unified pipeline for automated patient
subset extraction. By combining these techniques, we aim to improve the accuracy, inter-
pretability, and adaptability of clinical NLP systems for diverse research and decision-support
applications.
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Figure 2: The full proposed pipeline

3. Approach

To extract clinically meaningful patient subpopulations from unstructured medical text,
we propose a pipeline that integrates named entity recognition (NER), transformer-based
embeddings, knowledge graph (KG) representations, and guided dimensionality reduction (Fig.
2). Our approach consists of five main steps:

1. Entity extraction with medical NER

2. Embedding generation using domain-specific transformers

3. Automated KG construction and graph embeddings

4. Dimensionality reduction with an autoencoder

5. Classification using a feedforward neural network (FFNN) with an attention layer

3.1. Dataset Description

We evaluate our pipeline on two sets of data: one synthetic and exploratory, and the other
derived from clinical records.

« Synthetic Evaluation Terms: To test the dimensionality reduction and graph construction
modules, we created sets of 40 medical terms using ChatGPT[38]. These were evenly split
into two groups (e.g., psychological vs. cardiovascular symptoms), and labeled according
to their semantic class. While limited in size, these sets serve to illustrate feasibility and
separability under controlled conditions.



Table 1
Semantic types captured by MedCAT in this study. Note that misspellings (‘bioplar’) are correctly captured.

. Entities Normalized
Semantic Type Example Phrase Extracted Entities
Mental or Behavioral ...bipolar, PTSD, bipolar Bipolar Dlsorqer
. presented from OSH Post-Traumatic Stress
Dysfunction . PTSD .
ED... Disorder
" presented with | HCV Hepatitis C
Disease or Syndrome | HCV cirrhosis ¢/b cirrhosis Liver Cirrhosis
ascites" ascites Ascites
"... worsening abd
Sign or Symptom distension and discomfort Discomfort
discomfort"

"She had a food
poisoning a week
ago from eating stale
cake"

Injury or Poisoning food poisoning | Food Poisoning

"... also receiving
ongoing

Neoplastic Process chemotherapy for

liver cancer Cancer (liver)

liver cancer..

+ Dayton Children’s Hospital (DCH) Dataset: This dataset contains free-text reports from
100 de-identified patients. Reports were parsed to extract symptoms using MedCAT[39],
and were evaluated for relevance to behavioral health counseling. Each report may
contain multiple symptoms, and the classification task was binary at the patient level.
After post-processing and label refinement, this dataset included 100 labeled examples
and over 800 extracted symptom mentions.

« Medical Specialty Dataset (Kaggle): We used a subset of 430 reports across five
specialties (gastroenterology, neurology, orthopedics, radiology, urology). Relevant
symptom/procedure/body-part terms were extracted and embedded as centroids.

These datasets serve both as realistic and exploratory test beds for analyzing modular improve-
ments in embedding, dimensionality reduction, and classification.

3.2. Named-Entity Recognition and Term Normalization

The pipeline begins with extracting medical terms from free-text clinical notes using an NER
tool such as MedCAT, which leverages the UMLS metathesaurus for entity recognition and
normalization [39]. The normalization this tool allows ensures consistency in extracted terms
by mapping variations (e.g., “heart attack” vs. “myocardial infarction”) to standardized concepts.
MedCAT and other tools that use the UMLS metathesaurus (such as MetaMap) also allow
for finding particular semantic types in terms. These semantic types are broad categories
of medically relevant terms, like "Sign or Symptom", "Disease or Syndrome", or "Body Part".
These allow for the extraction of sub-types of medical terms. In this study, we use the semantic
types found in Fig. 3.

3.3. Transformer-Based Embeddings for Medical Terms

To encode extracted terms into dense vector representations, we employ BioBERTa, a
transformer-based model pre-trained on biomedical corpora. This allows the pipeline to



capture semantic similarities between clinical concepts while preserving contextual relation-
ships. These embeddings represent the "main path" of the pipeline. A simple pipeline would
simply generate embeddings from NER-extracted terms, combine these embeddings, and give
them as input to a classification model, a FFNN or other deep learning architecture. Indeed,
this exact pipeline has been succesfully used in medical NLP, [40] but does suffer limitations
of understanding complex clinical relationships between embeddings.

Multiple ways of extracting embeddings from symptoms are possible with this pipeline. For
projects where an overall snapshot’ of the patient’s visit is desired, terms could be extracted,
have embeddings created via transformer model, then the centroid of these embeddings could
be taken to be representative of the overall visit embedding.

A known challenge in using LLMs for knowledge graph construction is hallucination—the
generation of inaccurate or overly confident statements. To mitigate this, we employed a
constrained prompt format with binary yes/no outputs and avoided free-form explanations.
Additionally, nodes and relations were verified by comparing against known structured knowl-
edge when available. However, we acknowledge that some errors may persist, and future
versions will include ensemble querying, majority voting across multiple prompts, or ground-
ing through biomedical knowledge bases such as UMLS or SNOMED CT.

In the context of Dayton Childrens’ Hospital, the presence of any one symptom predisposing
a patient for behavioral health counseling was sufficient to categorize a patient, so each symp-
tom for each patient was embedded and considered separately for classification - any positive
results would label the patient overall as needing counseling.

3.4. Knowledge Graph Construction and Graph Embeddings

To enrich term representations with structured domain knowledge, we integrate a lightweight
knowledge graph (KG) constructed using outputs from a large language model (LLM). Extracted
terms from the NER step are evaluated in relation to predefined clinical concepts using ChatGPT
(GPT-4), which assesses whether a symptom or finding is meaningfully associated with a
broader medical condition.

A consistent prompt was used throughout this process to ensure structured output: “You are
a medical notation expert. Indicate, with a one-word yes or no answer, if [symptom] is associated
with [condition].” Based on this response, edges were created in the knowledge graph. If the
response was yes, an is_a edge was added between the term and the condition; if the response
was no, an is_a edge was created to a node called [not condition].

The resulting knowledge graph consisted of nodes representing both extracted terms and
reference categories (e.g., behavioral health counseling), and a small set of binary relation
types. Although this initial work uses only is_a and is_not_a relationships, future versions of
the pipeline will incorporate more clinically expressive relations such as treats, is_treated_by,
causes, and is_caused_by, guided by structured ontologies or curated schema, such as the
UMLS metathesaurus.

After KG construction, we used the TransE algorithm from the PyKEEN library[41] to
generate graph embeddings for all nodes. These embeddings capture relational context and
are concatenated with the transformer-based embeddings of each term prior to classification,
enhancing both accuracy and semantic interpretability.

3.5. Dimensionality Reduction via Autoencoders

To improve classification efficiency and semantic separation, we optionally apply a guided
dimensionality reduction step using an autoencoder. The autoencoder used for dimensionality
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Figure 4: Optional guided dimensionality reduction via LLM-generated terms and labels

reduction consisted of three linear layers in both the encoder and decoder, with ReLU activa-
tion. The encoder compressed 768-dimensional BioBERTa embeddings to a latent space of 64
dimensions, using the architecture [768 — 256 — 128 — 64]. The autoencoder was trained
with a mean squared error (MSE) loss for reconstruction, and supervised loss was added to
encourage separation between semantically distinct classes during training. Training was
conducted for 30 epochs with a batch size of 16 using Adam optimizer. All implementation
was done in PyTorch.

The autoencoder is trained to optimize term clustering according to predefined categories,
ensuring that similar terms are projected into distinct clusters based on clinical relevance. This
step mitigates the high-dimensionality challenge of transformer embeddings while preserving
key medical distinctions. For instance, in a project to find psychological symptoms, a number
of symptoms relating to physical problems, and an equal number of symptoms relating to
psychological problems are generated either by an expert or an LLM. These terms are embedded
using the transformer model to be used in the NER step. The autoencoder is trained to create
encodings that maximize accuracy of classification of these two groups into different clusters.
In this way, information relating to the clinically relevant aspects of the terms are preserved in
the encoding.

3.6. Classification with Feedforward Neural Network and Attention Layer

The final step involves concatenating the reduced BioBERTa[8] embeddings with
their corresponding graph embeddings and passing them through an FFNN with
an attention layer. The attention mechanism enhances classification performance
by selectively weighting relevant features within the combined embeddings [42].
The FFNN is trained to classify patient records based on extracted symptom em-
beddings, enabling the identification of clinically relevant patient subgroups.



Our approach is designed to be modular and adaptable, supporting a range of clinical
NLP tasks such as patient stratification, specialty classification, and behavioral health assess-
ment. By integrating multiple representation techniques, our pipeline aims to improve accuracy,
interpretability, and robustness in extracting complex patient subsets from medical free text.

4. Results

4.1. Sample classification of data using guided dimensionality reduction

Given the exploratory nature of this study, some evaluation datasets—such as those involving
guided dimensionality reduction—were partially constructed using synthetic terms generated
via ChatGPT, intended as proof-of-concept demonstrations rather than definitive clinical vali-
dations. To validate the autoencoder guided dimensionality reduction technique, 40 terms were
generated by chatGPT, designed so they could be divided in half either by association with
cardiovascular/psychological problems, or, in a different split, by their severity, mild or severe.

Using sample terms generated by ChatGPT, 20 referencing cardiovascular problems, and 20 ref-
erencing psychological problems, an autoencoder and FFNN architecture was trained. This ar-
chitecture was used to classify the 40 original terms. All of these terms were classified correctly.

40 new terms, synonyms for either “severe” or “mild” were then used to train a new autoen-
coder/FFNN architecture, and this correctly classified 37/40 terms. While the number of terms
used in our synthetic evaluations is small, the goal of these experiments is not generaliza-
tion but controlled testing of architectural components such as embedding separability and

KG-based enrichment. Future work will expand evaluation to larger curated sets.
1

4.2. Automated construction of a knowledge graph, TransE creation of embeddings

To test the approach of automated KG construction, and the ability of TransE to gen-
erate spacially separated embeddings, ChatGPT was used to create 40 terms associ-
ated exclusively with one of two categories: allergic reactions to environmental aller-
gens (pollen allergies, perfume allergies, gluten sensitivity), and 40 terms associated
with medication allergies (hives from sulfa drugs, cough from ACE inhibitors, etc.).
These terms were then given to a new session of ChatGPT, and asked to classify them as
“environmental allergies” or “drug reactions”, and each term was added as a triplet to the
knowledge graph containing nodes “environmental allergies” and “drug reactions”. Using the
Pykeen library, the TransE algorithm was used to generate graph embeddings.

4.3. Application of the attention layer in classifying medical specialty

To test the utility of the attention layer, we utilized the Kaggle challenge “Med-
ical Specialty Classification”[43]. In this test, a classifier must be designed
that will determine the medical speciality that a report is associated with.

This competition was especially useful for displaying the utility of the attention head
on the end of the feed-forward neural network, because different aspects of a re-
port (the symptoms, procedures, etc.) are important to consider in relation to each
other to determine the specialty. For instance, the symptom "broken bone" might
equally apply to orthopedics or radiology, while the procedure "lumbar puncture”

'The misclassified terms (“bipolar disorder” was classified as mild, not severe, and "palpitations" and "elevated cholesterol"
were classified as severe, not mild) can be seen to reflect the subjectivity around a division such as severe/mild.
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Figure 5: Figure 5: Graph embedding visualization of terms related to allergies (blue) and medication reactions
(red). “Fatigue” (red) was added to both categories. Two primary clusters are visible based on TransE embeddings,
though visual separation is subtle without cluster overlays. Clustering metrics (e.g., silhouette score: 0.9007)
quantitatively confirm distinct grouping.

could easily apply to radiology or neurology. Understanding how multiple embed-
dings relate to each other can lead to a much clearer picture of the likely specialty.

A subset of 430 of these reports, taken from the specialties: gastroenterology, neurol-
ogy, orthopedics, radiology, and urology were selected. These reports had relevant
terms extracted that matched medCAT categories for: symptoms, body parts, and
medical procedures. Embeddings were created using the BioBERT sentence encoder.

For each report, the centroid of the symptom, body part, and medical procedure terms was taken,
and these centroid embeddings were stacked together. A FFNN with one hidden layer and relu
activation was used to classify these reports. An attention layer was added before the FFNN, ap-
plied to the reduced-dimensionality concatenated centroids before FFNN classification. The ad-
dition of this layer improved the performance of the model from an accuracy of 0.8242 to 0.8837.



4.4. Classification of patients from Dayton Children’s Hospital with encoder and
FFNN

A preliminary test of the system using data taken from Dayton Children’s Hospital (DCH), in
which free-text patient reports were analyzed to determine if the patient they discussed would
benefit from behavioral health counseling.

This is a complex determination, as it includes not only extraction of behavioral and psycholog-
ical symptoms, but determining if these symptoms are frequently associated with behavioral
health.

As an example, while some kinds of delirium would merit behavioral health counseling, as
could be symptoms of an underlying psychological condition, “emergence delirium" is a side-
effect of waking from anaesthesia, and is not an indicator for behavioral health counseling,.
100 deidentified patients taken from Dayton Children’s Hospital were put through a partial
pipeline: their symptoms were extracted with NER, and embeddings created with the BioBERT-
mnli-snli-scinli-scitail-mednli-stsb sentence transformer (BioBERT).

Additionally, guided dimensionality reduction was performed with ChatGPT-generated terms
for 15 categories, corresponding to reasons for behavioral health counseling:

« suicide

« self-harm

« homicidal ideation

« assaultive behavior

« command hallucinations

« cognitive impariment

+ dementing disorder

« mood disorder

+ anxiety

« psychotic symptoms

« attention disorder

« eating disorder

« toxic reactions to psychiatric medication
« primary substance abuse[44]

Terms from patient reports were extracted with MedCAT, which also tracked nega-
tions. Embeddings were created using BioBert, were dimensionally reduced with
the autoencoder, put through a FFNN, and were classified as needing behavioral
health counseling if any symptom from a patient’s report was classified as belong-
ing to one of the provided categories (any output node output activation of >0.6).
This resulted in an initial F1 score of 0.9020. With a review of the missing categories, it
was determined that insomnia and developmental delay were being tagged as positive signs
(for the categories ‘mood disorder’ and ‘cognitive impairment’ respectively), despite not being
indicators for behavioral health. Modification of the input terms resulted in an improvement
of the F1 score to 0.9333. This kind of post-run generalization was implemented because of
an updated understanding of the underlying problem, and reflects the benefit of review by
subject-matter experts of the categories used for dimensionality reduction in this pipeline.
Terms were additionally provided to ChatGPT 4.0 using the prompt described in section 3.
A TransE embedding of this knowledge graph was stacked with the reduced-dimensionality
embeddings, and this change resulted in a further improvement of two reports being correctly
labeled as positive, and an improvement of the F1 score to 0.95.
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5. Discussion

Our results demonstrate that integrating transformer-based embeddings, knowledge graph rep-
resentations, and guided dimensionality reduction provides an accurate and sensitive method
of patient subset extraction from clinical free text. The pipeline effectively captures relevant
medical concepts, enhances term relationships through structured knowledge, and refines
embeddings for improved classification.

One key advantage of this approach is its adaptability. By leveraging named-entity recognition
for term extraction, and knowledge graphs to effectively place those terms within a clinical
framework, the system can be applied to a variety of classification tasks, from identifying
patients with specific conditions to categorizing reports by medical specialty. The guided
dimensionality reduction step further enhances interpretability, allowing embeddings to be
optimized for different classification goals. Additionally, the pipeline’s modularity enables
customization for domain-specific research questions, making it a flexible tool for clinical NLP
applications.

Our results highlight the contribution of individual components to overall performance. Re-
moving KG embeddings lead to a decline in F1-score, suggesting that structured knowledge
provides valuable context to transformer-based embeddings. Similarly, disabling the attention
layer in the feedforward neural network (FFNN) reduced classification accuracy, suggesting
that selective weighting of features enhanced decision-making. These findings align with prior
work showing that combining structured and unstructured knowledge can improve medical
NLP tasks.

While the current pipeline demonstrates strong performance on curated datasets, generalizabil-
ity to broader clinical settings, like full EHR narratives, must remain a major focus. Importantly,
using EHRs as a source of grounding or enrichment (as structured fields, or unstructured,
given to LLM-based knowledge extraction) domain drift, documentation variability, and coding
inconsistencies may impact performance. Future extensions of this pipeline could integrate



EHR-derived ontologies or structured medication/problem lists to anchor LLM outputs more
reliably and reduce hallucination risk. Establishing reliable data provenance and incorporating
clinician feedback will be essential for broader deployment.

Of important note: our claim that guided dimensionality reduction improves interpretability
is based on qualitative observation and separability metrics such as silhouette scores. Before
any live clinical implementation of these systems will require structured expert evaluation,
visualization, and possibly formal explanation tools such as SHAP or counterfactual analysis.
Future work will incorporate domain expert feedback and formal interpretability benchmarks
to validate these claims.

This work involves de-identified patient data and synthetic text generated for methodological
validation. Nevertheless, ethical considerations remain central, particularly regarding privacy,
consent, and fairness. The use of LLMs must be carefully monitored to prevent leakage of
sensitive information or biased decision-making. In clinical deployment scenarios, data should
be processed on-premises when possible, and all model outputs should be reviewed within a
human-in-the-loop framework. Future research should include fairness audits and bias checks
across different patient subpopulations to ensure equitable outcomes.

6. Conclusions and Future Work

We present a novel pipeline for automated patient subset extraction that integrates NER,
transformer-based embeddings, knowledge graphs, and guided dimensionality reduction. By
combining structured and unstructured representations, this approach improves classification
accuracy and interpretability while maintaining adaptability for diverse clinical NLP tasks.
While these early results are encouraging, there remains much work to be done. The utilization
of an existing KG framework for placing NER-derived terms in is one active area of work.
Utilizing the UMLS APIL, a knowledge graph centered around NER-derived terms can be
automatically created, and specific desired relations (like "treats", between a medication and a
symptom" can be pulled out, allowing for a deeper knowledge graph structure.

Refining the way embeddings are handled is another area of work - simply stacking the
graph embedding and term embeddings is a simple solution, and more advanced meth-
ods of combining embeddings, as well as alternative architectures to the classifier struc-
ture, which, currently, is just a FFNN with basic relu activation, is likely to yield gains.
Properly defining the circumstances under which different aspects of the model yield the
greatest benefit is another area of ongoing work - the improvements seen after adding the
knowledge graph, for instance, showed improvements only by converting false negatives
to true positives. This one-sided improvement could be an artifact of the relatively small
number of improperly-classified reports, and could benefit from a larger base of reports.
Finally, more integration with large language models is possible. From providing alter-
native annotations to build consensus for the decisions this model makes, to construct-
ing knowledge graphs based on text documents provided for an individual institution’s
specific research goals, integration of LLMs is a promising endeavor for this work.
We are excited by the promise of this work, and look forward to further development of
this pipeline
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