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Abstract

In previous work we developed a core ontology for the invasion biology domain, the INBIO. In that version,
we modeled a part of the domain by considering concepts contained in a set of important hypotheses in this
domain identified by earlier work, without considering other available resources such as publications testing
these hypotheses. A next step is to update the INBIO ontology with respect to available resources. To this
end, we propose a hybrid approach for ontology evolution that integrates Large Language Models (LLMs)—
specifically GPT-4-based pipelines—with classical ontology engineering practices. This integration aims to create
dynamic, scalable, and semantically consistent ontologies suitable for representing emergent phenomena in
invasion biology. In particular, the proposed approach has three main components: extraction of concept and
relationship candidates by analyzing hypothesis texts, scholarly abstracts, and curated domain metadata; usage
of an LLM-driven pipeline (incorporating prompt-engineering and zero-shot learning) to generate novel concepts
and relationships, linking previously unconnected ecological and socioeconomic attributes; and finally validation
of newly proposed classes by domain experts in an iterative loop.
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1. Introduction

Ontologies, as the core component of the semantic web, facilitate data sharing, integration, and analysis
by providing structured, machine-readable representations of domain knowledge [1, 2]. Ontologies
encode knowledge of a specific domain in a well-structured representation, defining relationships
between concepts and entities of the specified domain [1, 2]. As data generation in a domain continues
to grow and adapt, there is the need to maintain ontologies up to date with respect to changes in the
domain that they represent [3, 4]. Ontology evolution refers to the dynamic process of modifying and
updating ontologies to reflect changes in knowledge, user requirements, or the environment, ensuring
that the information remains accurate and relevant.

Invasion biology is concerned with the question why some species are able to establish and spread
in an area where they have not evolved. Over time, the research community has developed several
major hypotheses, and empirical studies have been conducted to test them [5]. In a previous work,
we designed and developed a core ontology, called Invasion Biology Ontology (INBIO)!,to
represent knowledge from the invasion biology domain [6]. In the realm of invasion biology, the INBIO
has sought to formalize fundamental concepts such as enemy release, biotic resistance, and propagule
pressure. However, as novel findings accumulate, static ontologies often fail to incorporate emergent
theories and observational data. Consequently, they risk obsolescence if not updated to reflect current
scientific knowledge. For the development of INBIO, we relied on a compiled set of hypotheses that
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reflected the scientific understanding of invasion biology at a particular point in time. These hypotheses
served as a foundational abstraction of domain knowledge. However, we did not incorporate other
valuable resources available within the domain—such as publications on empirical studies conducted to
test those hypotheses—which are essential for capturing the dynamic nature of scientific progress and
theory evolution.

Ontology evolution is not an atomic process, but it consists of a number of different tasks. This
includes identifying the need for evolution, determining the required changes, implementing these
changes, and validating and assessing the new changes [3]. A number of approaches have been
proposed to deal with these different tasks [3, 4, 7, 8]. However, most of these approaches lack the
integration of these tasks in an intelligent environment. Ontology evolution is driven by continuous
scientific developments, empirical discoveries, evolving terminology, and refinement of existing theories,
requiring systematic updates to maintain semantic consistency and domain relevance.

Large Language Models (LLMs) offer an alternative to purely manual approaches by parsing unstruc-
tured text and suggesting structured outputs. In particular, transformer-based models like GPT-4 can
propose new terms or relationships that domain experts might overlook [9]. Yet, relying solely on
automated approaches can lead to inaccuracies or semantic drift, especially when context-specific
or domain-specific meaning differs from common usage. Hence, there is a growing need for hybrid
ontology evolution strategies that combine automated extraction with human validation [10].

This work aims to develop and validate a pipeline tailored to the rapidly evolving knowledge base
of invasion biology. Specifically, we target three main objectives. First, we aim for scalability and
timeliness by deploying an LLM-driven workflow that can quickly detect and integrate novel concepts or
relationships, thereby minimizing manual curation burdens. Second, we focus on maintaining semantic
alignment by cross-referencing new ontology elements with external repositories (e.g., BioPortal [11])
and employing automated reasoners within tools such as Protegé. Finally, we emphasize a balanced
hybrid approach that combines data-driven suggestions from LLMs with expert oversight, ensuring
that updates remain firmly grounded in scientific context.

2. Related Work

In this section, we outline the background and necessary preliminaries to the context of ontology
evolution in the invasion biology domain using LLMs.

2.1. Invasion Biology and the HoH Framework

Invasion biology aims to elucidate factors driving non-native species success. The Hierarchy-of-
Hypotheses (HoH) framework [12] organizes broad theoretical constructs—such as enemy release or
invasional meltdown—into structured, testable propositions. INBIO provides a formal structure for
these hypotheses by representing key ecological concepts and their interrelations, which can support
the alignment of theoretical models. Yet, ongoing research yields new or revised statements on how
ecological interactions or environmental gradients affect invasive processes. Traditional ontology
curation efforts cannot always keep pace with these emergent insights, risking a gap between theory
and knowledge representation.

2.2. Traditional Ontology Engineering and Evolution

Ontology engineering typically involves iterative steps: defining domain scope, enumerating crucial
concepts, creating relationships, and refining constraints [13]. Frameworks like Methontology and
NeOn provided structured methodologies for distributed ontology development [14]. However, when
applied to highly dynamic fields—from invasion biology to cyber threat intelligence—manual ontology
updates become unsustainable, risking outdated or inconsistent conceptual structures [15].

Ontology evolution specifically targets the continuous updates needed to keep an ontology aligned
with new or revised domain knowledge [14]. Early studies emphasized detecting conceptual mismatches



and concept drift, often relying on manual conflict resolution [16]. Although such methods ensured
high precision, they struggled with scalability when domain knowledge changed frequently or in large
increments [14].

2.3. Ontology Learning and Machine Learning

Research on ontology learning attempted partial automation of ontology engineering by leveraging
text mining, pattern recognition, and clustering to extract new terms and their relations from large
corpora [17, 18, 19]. Despite easing the manual burden, these systems often relied on shallow linguistic
cues, leading to errors in polysemous terms [17].

The advent of transformer-based neural language models, including BERT, RoBERTa, and GPT vari-
ants, introduced deeper contextual understanding. They are capable of recognizing linguistic nuances
that simpler NLP pipelines might miss. For instance, REBEL [20] demonstrate advanced extraction of
domain-specific relationships from unstructured text. Nevertheless, purely automated pipelines risk
introducing semantic conflicts or redundant concepts when domain oversight is minimal [21].

2.4. LLMs for Domain Adaptation

Transformer-based Large Language Models (LLMs) have broadened the possibilities for automatic
knowledge extraction [9]. Zero-shot and few-shot learning techniques enable these models to interpret
domain-specific corpora without extensive labeled training data [22]. Prompt engineering further
steers model outputs, minimizing irrelevant or off-topic generation [23]. In parallel, expert-in-the-
loop paradigms mitigate misclassifications, ensuring that domain context remains central to the final
ontology updates [24].

While LLMs have been explored for tasks like summarizing scientific literature or detecting conceptual
relations, relatively few studies integrate them into a full ontology evolution cycle. Challenges include
preserving the ontology’s logical consistency, preventing duplicate classes, and handling ambiguous
terms that might have multiple senses across ecological, socioeconomic, or cultural contexts.

2.5. Research Gaps and Opportunities

To sum up, despite notable progress in ontology development and evolution, a number of issues and
challenges require more attention. Many ontology learning systems ingest data on a one-time basis,
lacking incremental or real-time update capabilities [10]. Changes to an ontology can propagate
inconsistencies to linked datasets or reliant applications, requiring robust version control. Aligning
newly generated terms with established ontologies (BioPortal, OBO Foundry, etc.) is often ad hoc,
underscoring the need for systematic cross-referencing [25]. Additionally, although LLMs exhibit
strong language understanding, they can hallucinate or produce domain-inaccurate definitions when
specialized context is missing.

3. Methodology

To address these challenges, we propose a hybrid pipeline that combines LLM-facilitated concept
discovery with domain-expert review and semantic validation, aiming to address these research gaps
systematically. In this section, we explain the step-by-step methodology for data ingestion, LLM-driven
extraction, expert validation, and ontology integration in the context of invasion biology.

3.1. Overall Pipeline

As we mentioned before, ontology evolution is not an atomic process, it consists of a number of
overlapping and interconnected tasks. It starts by identifying the reasons behind the need to change
and evolve the current ontology version. Then, parts that need to be changed are discovered. After
that it applies these changes and finally these changes have to be validated and revised. Aligned to this



scheme, we propose an ontology evolution pipeline composed of four key stages, as shown in Figure 1.
To cover main tasks of ontology evolution, we propose a data processing step to check the need for
evolution. This is carried out by analyzing available resources within the invasion biology domain.
After that to check needed changes in terms of new concepts and relations, we introduce an LLM-driven
concept extraction step. The ontology update and expert validation step is used to implement and validate
the new changes. Finally, to assess these new changes, we offer a competency question and reasoning
step. In the following, we are going to introduce detailed description of each step.

Integration with
Term Collection BioPortal

#mmm e —— -
~

Data Extraction

Human Evaluation Ontology
Enhancement

Figure 1: Overview of the ontology evolution pipeline. The process is organized into four main stages: (1)
Data Processing — Coverage Analysis and Data Extraction; (2) LLM-driven Concept Extraction — Term
Collection and LLM Integration; (3) Ontology Update and Expert Validation — Human Evaluation and
Concept Creation; (4) Competency and Reasoning Validation — Integration with BioPortal and Ontology
Enhancement.

3.2. Data Collection and Preprocessing

Data Sources. We gather data from three primary sources:

« Invasion Biology Ontology (INBIO): A structured ontology covering key hypotheses in inva-
sion biology, including enemy release, biotic resistance, and invasional meltdown [6]. The INBIO
ontology provides a hierarchical framework for hypothesis representation and validation.

« Curated Hypothesis Files: A structured collection of domain hypotheses, manually extracted
from research literature and stored in Excel format. This dataset includes hypotheses such as
Tens Rule and Propagule Pressure, which are essential for understanding species establishment
and spread. Each hypothesis file consists of structured metadata, key explanatory variables, and
supporting evidence [6].

« Research Abstracts: A collection of peer-reviewed papers and scientific abstracts sourced from
literature repositories. These abstracts provide emerging concepts, new invasion patterns, and
domain-specific terminology that may not yet be reflected in structured ontologies.

Preprocessing Steps. The raw data typically contain duplicates, inconsistent encodings, and varying
naming conventions for species and hypotheses. To address this:

+ Cleaning: Remove duplicates and harmonize domain synonyms (e.g., alien species vs. non-native
species).

« Normalization: Convert multi-lingual or region-specific terms into a unified format where
feasible.



« Transformation: Tokenize textual data into sentences or paragraphs for efficient ingestion by
the Large Language Model (LLM).

We employ Python scripts for batch processing and consistency checks, ensuring each text snippet is
appropriately encoded and free of irrelevant noise.

3.3. LLM-Driven Concept Extraction

Model and Prompt Strategy. We adopt GPT-4 (via OpenAI’s API) for parsing domain corpora and
generating candidate classes, properties, or relationships. The prompt strategy includes:

1. Contextual Few-Shot Examples: Illustrations of known relationships, such as
"invasive plant" — "displaces” — "local vegetation".

2. Structured Output: Requested in a JSON-like format using Pydantic [11], capturing Subject,
Predicate, Object, and optional definitions or synonyms.

3. Zero-Shot Handling: If no annotated samples exist, the model attempts domain inference from
general knowledge and flags results for expert review.

Validation of Outputs. Concept extraction involves automated LLM processes with manual valida-
tion by domain experts to ensure accuracy and relevance. The pipeline specifically:

« Filters out off-topic suggestions (e.g., ecosystem — has biotic factor).

« Flags ambiguous terms for domain-expert scrutiny (e.g., “resistance” which could indicate ecolog-
ical or socio-political forms).

Domain experts participate actively in reviewing flagged terms to ensure accurate and meaningful
integration into the ontology.

3.4. Ontology Update and Expert Validation

BioPortal Cross-Referencing. Newly proposed classes (e.g., “generalist herbivore”) are first checked
against BioPortal [11] to ensure alignment with established ontologies. This step detects synonyms,
definitions, and potential hierarchical placements. Where no direct match is found, the term is treated
as novel and assigned a provisional status. Ontology updates are considered valid if they accurately
reflect current scientific consensus, resolve semantic ambiguities, maintain internal consistency, and
effectively support domain-specific competency queries. Conflicts or ambiguous terms are resolved
through iterative expert validation and consensus-building.

Expert-in-the-Loop Review. Each suggested concept or relationship undergoes domain validation
by an expert panel. They categorize proposals into:

« Accepted: Semantically valid and novel, or a useful refinement.
+ Revised: Minor corrections needed (e.g., merging with an existing property).
+ Rejected: Irrelevant or incorrectly inferred by the LLM.

Accepted or revised elements are integrated into the updated INBIO ontology.

3.5. Technology Implementation

Our implementation uses an integrated set of technologies for effective ontology evolution. The
implementation details can be found in our GitHub repository 2.

*https://github.com/EcoWeaver/DomainOntologies/tree/development
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3.5.1. System Architecture

The system architecture combines artificial intelligence techniques with traditional ontology engineering
practices:

« Knowledge Base: The INBIO core ontology is stored in OWL format using Protégé 5.5.0.

« LLM Access: GPT-4 integration via OpenAl API through Python (with the ‘openai‘ library).
« Validation Tools: Web-based BioPortal REST API queries.

+ Persistence: Neo4j graph database for efficient storage of the knowledge graph.

3.5.2. LLM Integration and Prompting

Our approach employs specific prompt templates for ontology element extraction:
Concept Extraction Prompt:

Listing 1: Concept Extraction Prompt Template

Generate a detailed concept for the term ’{term}’

in the context of invasion biology, incorporating

the following inputs:

- Hypothesis Text: ’{hypothesis_text}’

- Abstract: ’{abstract}’

- Ontology Schema (VERSION 1 INBIO): ’{ontology_schema}’

Please provide information for each field:

1. Label: A clear name for the concept.

2. Definition: A precise explanation of the term.

3. Annotations: Additional context on significance.
4. Subclass Of: Identification of the parent concept.

This prompting helps filter system-generated noise and improves semantic alignment during the
extraction phase.

3.5.3. BioPortal Integration

The BioPortal API is integrated to validate and enrich ontology terms. For example, when processing
the term "invasive species", the system:

1. Constructs a query to BioPortal’s search endpoint 2. Extracts metadata like definitions, URIs, and
related concepts 3. Incorporates this information into the validation workflow

This integration ensures consistency with broader biomedical vocabularies and reduces redundancy
in the ontology.

4. Results

The proposed approach in this paper has been developed and implemented. More details are available
at the GitHub repository>. Furthermore, we evaluate the proposed approach using datasets available at
the HoH website®.

4.1. Extraction Metrics

The LLM-driven ontology evolution pipeline systematically processed invasion biology literature,
resulting in structured ontology elements categorized into distinct semantic types:

« Subjects (69 unique terms): Identified as primary entities initiating actions or processes, such
as generalist herbivore or biotic acceptance.

*https://github.com/EcoWeaver/DomainOntologies/tree/development
*https://www.hi-knowledge.org/tools
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+ Predicates (63 unique terms): Relationships linking subjects to objects, including terms like
facilitates, influences, or disrupts.

« Objects (113 unique terms): Target entities involved in or impacted by actions, for example,
ecosystem dynamics, species distribution, or species coexistence.

These semantic elements constituted 175 unique triplets, explicitly structured as subject-predicate-
object relations. The metrics of the extraction process, including expert validation outcomes, are
summarized in Table 1.

Table 1

Summary of Extracted Terms and Triplets
Category Count
Subjects 69
Predicates 63
Objects 113
Total Extracted Triplets 175
Expert-Validated Triplets for INBIO 83
Validation Accuracy (%) 47.43%

Interpretation of Metrics. The initial set of 175 candidate triplets generated by the LLM represented
preliminary ontology suggestions. Each was manually validated by domain experts for semantic
correctness, relevance, and ontology alignment. This rigorous assessment yielded 83 confirmed triplets,
reflecting a validation accuracy of approximately 47.43%. This accuracy demonstrates both the pipeline’s
efficacy in generating meaningful suggestions and the importance of subsequent expert validation to
maintain ontology quality.

Extraction Scope and Validation Procedure. Initially, approximately 1,200 terms were identified
by the LLM from a broader textual corpus covering ecological, environmental, socioeconomic, and
policy contexts. Expert validation was essential for identifying and removing irrelevant or redundant
terms, resulting in the final selection of validated triplets that significantly contributed to the ontology’s
conceptual clarity and interdisciplinary scope.

4.2. llustrative Triplets

Extracted triplets exemplify critical ecological interactions within invasion biology. Notable examples
include:

« invasion patterns — illustrate — colonisation patterns of species
« mutualistic interactions — facilitate — establishment of invasive species
« invasion — disrupts — indigenous ecosystems

These examples underscore the pipeline’s capacity to identify and articulate complex ecological
phenomena.
4.3. Added Concepts and Relationships

The ontology evolution pipeline proposed 46 new concepts and 24 new relationships, with detailed
statistics provided in Table 2.
Representative concept definitions and relationships include:

« Generalist Herbivore:



Table 2
Summary of Added Concepts and Relationships

Category Count
New Concepts Introduced 46
New Relationships Added 24

Validated Concepts and Relationships ~ >90%

— Definition: An organism feeding broadly across diverse plant species rather than specialized
diets.

— Relationships: Impacts ecosystem dynamics.
« Biotic Acceptance:

— Definition: The phenomenon wherein ecosystems with high native biodiversity levels more
readily integrate non-native species, potentially influencing overall species richness.
— Relationships: Affects native biodiversity.

4.4. Expert Validation Results

The expert validation process critically evaluated the relevance, precision, and consistency of proposed
ontology additions through iterative reviews by domain specialists in invasion biology. The procedure
classified outputs into categories: Accepted Without Modifications (68%), Accepted With Modifications
(22%), and Rejected (10%), as detailed in Table 3.

Table 3

Summary of Expert Validation Feedback
Feedback Type Percentage
Accepted Without Modifications 68%
Accepted With Modifications 22%
Rejected 10%

Critical modifications derived from expert input included:

« Reclassification of entities (e.g., Alien and Native Species reclassified directly under conceptual
entity).
« Removal of redundant and obsolete concepts such as plant weeds.

« Refinement of relationships (e.g., improved relationship representation for "generalist herbivore"
as "affects ecosystem dynamics").

4.5. Competency Questions and SPARQL Queries

Competency questions (CQs) formulated by domain experts played a pivotal role in ontology evaluation,
serving as structured benchmarks for ontology adequacy, consistency, and completeness. A total of five
core competency questions were systematically evaluated using SPARQL queries against the updated
ontology:

What is an invasive species?

What is an alien species?

List all classes with their definitions.
What does invasion biology examine?

M .

What ecological functions does a detritivore enhance?



The following is an illustrative example SPARQL competency query (CQ1):

Listing 2: SPARQL Query: Definition of Invasive Species

SELECT ?definition WHERE {
?class rdfs:label "invasive species" .
?class skos:definition ?definition .

Query Result:

“Alien species that sustain self-replacing populations over several life cycles, produce
reproductive offspring, often in very large numbers at considerable distance from the
parent and/or site of introduction, and have the potential to spread over long distances.”

This definition matches established scientific literature, demonstrating successful ontology alignment
with established domain knowledge.

ExpertInvolvement in Query Validation. Domain experts systematically verified all SPARQL query
responses, ensuring correctness of definitions, alignment with ecological theories, and appropriateness
within invasion biology’s scientific discourse. This expert oversight validated the ontology’s robustness,
highlighted subtle semantic discrepancies, and informed targeted modifications to enhance ontology
reliability and relevance.

In summary, the LLM-driven ontology pipeline efficiently proposed substantial expansions, systemat-
ically validated through structured expert reviews and competency-based querying, thereby ensuring
semantic accuracy, interdisciplinary comprehensiveness, and practical applicability to invasion biology
research and applications.

5. Discussion

In this section, we discuss the pros and cons of the proposed approach as well as areas for future
direction:

5.1. Advantages of the Hybrid Approach

Our methodology demonstrates several key benefits for ontology evolution in dynamic scientific
domains:

+ Accelerated Knowledge Acquisition. The LLM-based extraction significantly reduced the time
required to identify candidate terms from new literature. What previously took 2-3 hours of
manual review per paper was reduced to approximately 10 minutes of validation time, with the
LLM handling the initial extraction in seconds.

+ Novel Connection Identification. The GPT-4 model frequently suggested relationships between
concepts that were not explicitly stated in the source text but were semantically valid. For
example, it correctly associated the "Naturalization-Interference Paradox" with both "Competition
Mechanisms" and "Succession Dynamics" despite these connections being implicit in the literature.

« Reduced Expert Fatigue By pre-filtering suggestions and providing structured candidate terms,
the approach substantially reduced cognitive load on domain experts, allowing them to focus on
validation rather than comprehensive manual extraction.

5.2. Limitations and Challenges

Despite the promising results, several challenges remain:



+ Domain-Specific Ambiguity. LLMs occasionally suggested terms that seemed valid from a general
knowledge perspective but had different meanings in invasion biology. For example, "resistance"
was sometimes incorrectly associated with antibiotic resistance rather than community resistance
to invasion.

+ Neologism Handling. Newly coined terms in recent literature presented challenges, as they lacked
sufficient representation in the LLM’s training data. Supplementing with specialized glossaries
partially mitigated this issue.

« Hierarchical Placement. While the LLM excelled at identifying concepts, it was less reliable
in suggesting optimal taxonomic placements within the ontology hierarchy. This aspect still
required significant expert input.

5.3. Scalability and Dependency Management

Adopting a modular architecture supports batch-mode or near real-time integration. For instance,
incremental updates can be triggered whenever a new dataset or publication hits a certain threshold
of domain relevance. Although real-time updates carry a higher computing cost, they ensure INBIO
remains updated with minimal lag, a feature critical for fast-moving fields.

The pipeline design can generalize to other data-intensive fields (e.g., epidemiology, climate change
studies) where new findings emerge rapidly, requiring frequent ontology updates. The key is ensuring
domain experts remain an integral part of the loop.

5.4. Future directions

Our work directly contributes to the incremental evolution of the INBIO ontology, effectively resulting
in successive ontology versions. The validated concepts, properties, and relationships are systematically
integrated into formal releases, marking explicit milestones in the ontology’s lifecycle. Each validated
update results in an explicit new version INBIO 1.2, reflecting structured improvements over earlier
ontology snapshots. Beyond the addition of new concepts, future iterations should explicitly address
ontology maintenance tasks including:

- Updating Existing Concepts: Regular revision of ontology entries is necessary, involving
refinement of definitions, improvement of hierarchical placements, and resolution of semantic
ambiguities as new domain insights emerge.

+ Deletion of Obsolete or Redundant Concepts: Implement systematic processes to remove or
merge outdated or redundant terms, thereby maintaining ontology coherence and clarity.

Additional promising avenues for future research and improvement include:

+ Real-Time Ontology Updates. Developing automated mechanisms for continuous monitoring and
incorporation of newly published research, allowing near-instantaneous ontology evolution.

+ Cross-Ontology Alignment. Expanding interoperability by aligning INBIO with complementary
ontologies such as the Environment Ontology (ENVO) and the Population and Community
Ontology (PCO), facilitating cross-domain knowledge exchange.

+ Multilingual Extensions. Adapting and extending the pipeline for multilingual data ingestion to
incorporate international perspectives and enhance comprehensiveness across diverse ecological
and policy contexts.

« Interactive Visualization. Creating tools to visually represent ontology evolution over successive
versions, clearly depicting changes, additions, and shifts in thematic emphasis, thereby supporting
domain-expert exploration and stakeholder communication.



6. Conclusion

In this paper, we introduced a hybrid methodology for ontology evolution that leverages Large Language
Models to accelerate concept extraction while maintaining semantic rigor through expert validation.
Using the Invasion Biology Ontology (INBIO) as our case study, we demonstrated significant expansion
in domain coverage, particularly in previously underrepresented socioeconomic and management
dimensions. The combination of automated extraction with expert-driven validation significantly
improved the scalability and responsiveness of ontology updates, establishing a systematic approach for
continuous ontology evolution. While our approach substantially reduces manual workload, it relies
on manual hierarchical placement and expert review due to occasional domain-specific ambiguities.
Additionally, LLM-driven extraction currently suffers from moderate accuracy (47%), indicating potential
for improvement.

To address these limitations, we plan future work on comparative benchmarking with other ontology
evolution methods, fine-tuning domain-specific language models, implementing advanced alignment
tools (AML [26], LogMap [27]), and integrating multilingual capabilities to further improve accuracy
and comprehensiveness.

In conclusion, integrating advanced language models and rigorous semantic web methodologies
demonstrates substantial potential to manage dynamic and continuously expanding scientific knowledge
domains. Continued enhancements in LLM capabilities, ontology engineering frameworks, and expert
validation processes promise further advances in semantic knowledge representation.
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