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Abstract

Knowledge Graphs (KGs) are integral to multiple applications which makes their completeness a key research
focus. Large Language Models (LLMs) have been increasingly leveraged alongside embedding models to enhance
Knowledge Graph Completion (KGC). However, effectively transforming contextual features from KGs into well-
structured textual prompts for LLMs remains a challenge. In this work, we propose PrO-KGC, a framework for
Prompt Optimization in the context of LLM-Based KGC. PrO-KGC aims to enhance LLM-based KGC performance
by refining and optimizing input prompts through multiple steps. This process includes enriching prompts
with additional information, incorporating structural composition patterns and facts, and refining relation
representations to be more LLM-friendly. Experimental results demonstrate the effectiveness of our approach,
achieving improvements across three common benchmarks compared to vanilla models. Our code is available at
https://github.com/amal-gader/PrO-KGC.
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1. Introduction

Knowledge graphs form the backbone of the semantic web and are among the most widely used
knowledge representation techniques across various domains. As a result, extensive research has been
conducted to address the incompleteness of knowledge graphs through different tasks and settings
like the link prediction task which consists of predicting a tail entity t for a given head entity h and a
relation r (h, r, ?).

Knowledge graph completion was initially tackled using knowledge graph embedding (KGE) models
such as TransE [1] and RotatE [2]. Later, embedding models evolved to incorporate semantics and
textual information alongside structural connections in knowledge graphs [3]. With the rise of large
language models (LLMs), tasks like link prediction were reformulated as sequence-to-sequence problems.
Models like KG-BERT [4] and KGT5 [5] demonstrated the potential of LLMs in knowledge graph
completion (KGC). However, research consistently finds that LLMs alone struggle to capture the
intricate relationships and structured nature of knowledge graphs [6, 3]. Instead of viewing KGE
models and LLMs as competing approaches, recent studies like [7, 8, 9, 10] have explored their synergy,
leveraging LLMs in a second step to rerank and refine KGE model predictions.

In-context learning techniques were used to craft rich prompts by including entity descriptions, entity
classes and relevant relations providing the model with structured hints about potential predictions
[11, 12]. However, prompts can still be further optimized to maximize the integration of textual features
and better adapt the task to LLMs’ input processing patterns, especially that LLMs have shown reasoning
capabilities [13]. One interesting aspect that was not well explored is the incorporation of composition
patterns in the given prompt. A composition pattern is a set of relations where one relation logically
implies another. In other terms, if A has relation 1 with B and B has relation 2 with C, then we can
infer that A has relation 3 with C. An intuitive example is illustrated in Figure 1: if Dr. John Smith
works at the University of Edinburgh and the University of Edinburgh is in Edinburgh, Scotland, then
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we may reasonably infer that Dr. John Smith lives in Edinburgh, Scotland. These facts help resolve
ambiguities and improve the model’s ability to generate accurate predictions. However, not all multi-hop
pattern relations hold consistently, which can sometimes be misleading. For example, the following
path: Bob is friends with Alice, and Alice is friends with Charlie does not necessarily imply that Bob is
friends with Charlie. This highlights the need for a meticulous approach in selecting composition facts
from the knowledge graph to ensure reliability and avoid incorrect inferences.

Prompt: “Given the
triple (Dr. John Smith,place of
residence,???) fill in the missing

I don't have enough context @

value.”
o o +Hint: Dr. John Smith is an American
scholar known for his contributions in
> computational linguistics.. @ The USA @
[
[

+Composition pattern:
1- (Dr. John Smith, works at, Edinburgh, Scotland Q
University of Edinburgh)

2- (University of Edinburgh, located
in, Edinburgh, Scotland)

Figure 1: This synthetic example reflects a realistic scenario where common names like John Smith
require more context for an accurate response. At each step, additional context is introduced to refine
the prediction.

In this paper, we propose PrO-KGC a framework to systematically extract and integrate textual
features from knowledge graphs like descriptions, composition patterns and related contextual facts
into LLMs’ prompts, transforming the task into an NLP problem that aligns more closely with LLMs’
expected inputs. We also suggest methods to refine and adapt textual inputs bridging the gap between
symbolic reasoning in knowledge graphs and the language-driven capabilities of LLMs. Our method
consists of three main components: Composition Pattern Extraction (CPE), which extracts and validates
relational patterns from the KG to retrieve supporting facts, Description Generation (DG), which
generates missing entity descriptions and Relation Transformation (RT), which transforms no-verbal
relations into more intuitive natural language forms.

2. Related Work

In this section we provide a brief survey of the latest state-of-the-art research combining Large Language
Models (LLMs) and Knowledge Graph Completion (KGC) models and methods to improve the integration
of structured knowledge with LLMs for KGC tasks.

2.1. State of the Art in KGC with LLMs

The KGC task has evolved significantly with the integration of Knowledge Graph Embeddings (KGE)
and LLMs. Traditional KGE models such as TransE [1], RotatE [2], and TuckER [14] learn structural
connections from the training data but remain limited by their inability to leverage textual information.
On the other hand, LLM-based models rely on rich textual features overlooking the structured nature
of knowledge graphs. Several recent approaches have tried to address this gap by combining the
strengths of both paradigms. One such method, KICGPT [7], introduces a framework that leverages
both structural and textual information side by side. KICGPT incorporates a two-stage process where a
triple-based retriever model extracts structural knowledge, followed by an LLM-based reranker that



iteratively refines the candidate predictions. This method requires training only the retriever module,
while the reranking is handled by an external LLM, ensuring efficiency. However, the iterative reranking
introduces additional computational costs. To reduce this overhead and hallucinations associated with
LLMs, DIFT [10] proposes an alternative by finetuning an LLM specifically for the reranking task.
Instead of treating the LLM as a generic reasoning engine, this approach injects structured embeddings
of both the query and candidate entities into the model, making it more aligned with the KG’s structure.
Additionally, it employs a refined sampling strategy to filter and select only the most relevant contextual
facts, thereby improving efficiency and reliability.

Another direction explored in KGR3 [9] is addressing the variability between the predefined semantics
of a KG and the open-ended nature of generative LLM predictions. This method follows a three-step
process where a retrieval module extracts structural information from the KG and generates a list of
candidate answers, a reasoning module uses an LLM to infer additional candidates, and a reranking
module to combine and rerank these results.

A related effort, KLR-KGC [8], aims to leverage analogical reasoning by extracting structural patterns
and subgraphs from the KG. The extracted analogical knowledge helps filter KGE predictions based
on similarities to known triples, while the subgraph information provides additional context for the
reranking step. By introducing structural analogies, this approach ensures that predictions abide by the
underlying KG structure.

2.2. Integrating Structured Knowledge into prompts for LLM-Based KGC

Beyond the integration of LLMs with KGE models, recent work has also explored optimizing textual
representations to better guide LLMs in KGC tasks. One example is MPIKGC [11] which focuses on
designing effective prompts that are adaptable across different LLMs. By expanding entity and relational
descriptions both globally (from the KG perspective) and locally (from the triple perspective), it improves
the contextual richness of the input. However, it only relies on keyword-based fact extraction.

To improve multi-hop link prediction, KG-LLM [15] formulates knowledge graph structures as natural
language inputs. By extracting all possible paths using depth-first search (DFS) and categorizing them
based on whether the first and last nodes are connected, it enables the model to learn logical chains of
inference. However, the model may apply learned decision paths even when the pattern does not hold
due to the absence of a filtering step leading to overgeneralization.

Another approach, MuKDC [12], aims to enhance few-shot KGC by generating additional knowledge
for long-tailed entities. It utilizes an LLM to generate triplets, attributes, and decision paths based on
a set of instructions and prompt templates, enriching entities with relevant contextual information.
To mitigate potential inaccuracies introduced by the LLM, a consistency check is applied using a KGE
model to score and validate new facts. However, this method is relying on LLMs for structural context
generation, which may not always align with the KG’s factual constraints.

Overall, these works offer valuable contributions and point out the ongoing efforts to integrate
structured knowledge with LLMs’ capabilities. While some remain loyal to structural patterns through
retrievers and analogical reasoning, others focus on refining textual inputs to better fit LLMs’ expecta-
tions. The synergy between structured KGE models and unstructured LLMs’ reasoning remains a key
area of research to get the best blend of both paradigms. In this work we focus on the latter approach
and leave the exploration of the former for future work.

3. Methodology

In this section we explain in detail our PrO-KGC approach.

3.1. Problem Definition

A knowledge graph (KG) is a structured representation of knowledge, defined as G = (&, %, %, 9),
where & is the set of entities, # is the set of relations, .# is the set of factual triples, and ¥ is



the set of textual descriptions associated with entities. Each fact f € .# is represented as a triplet:
(hyr,t) € & x Z x &, where h, t are the head and tail entities respectively connected by the relation
r. An entity may have a description denoted as d € .

Knowledge Graph Completion (KGC) includes tasks such as link prediction, relation prediction and
instance completion aiming all to enrich KGs with new inferred facts. Traditional triple-based models
do not leverage the set of descriptions & and other potential textual features, while LLM-based methods
often overlook the structural connections within the KG. The PrO-KGC framework addresses this
limitation and suggests a set of steps to preserve structual information and optimize the LLM input
prompt for KGC tasks.

CPE
RT
Enhanced Prompt
DG
4 FNok-)vcrb;L l Entities w/o Predict with the help of the given
All' multi-hop Paths rc}:cla:t?;ntsy g Descriptions context and related facts, the tail entity [mask]

by filling in the sentence. Return only the tail

l l entity.
Finetuned LLM

Dr. John Smith lives in [Mask] for Link
@ LLM-based Prompt Constructor A Proc:di;::on
Dr. John Smith is an

l l i American scientist that contributed to l

the field of computational linguistics

Valid Decision Paths Verb-form Relations Entity Descriptions

| |

1- Dr. John Smith works at The university of

Edinburgh Edinburgh. Scotland
»| 2- The university of Edinburgh is located in

Edinburgh, Scotland.

Figure 2: This figure depicts the proposed PrO-KGC framework. The process begins at the top left, where
three LLM-powered operations are performed. CPE (Composition Pattern Extraction), RT (Relation
Transformation), and DG (Description Generation) to construct an enhanced prompt, which is then fed
to a fine-tuned LLM.

3.2. Overview

Our approach consists of two main steps, with the first being the primary focus of this work.

Step 1: Prompt Generation. The goal of this step is to extract and integrate the most relevant
knowledge from the KG into the prompt to enhance the performance of the language model. First, if
a head entity description is available in the KG, we incorporate it directly. Otherwise, we generate it
using a backbone Large Language Model (LLM). Next, we extract composition patterns from the KG,
validating them with the same LLM to extract relevant supporting facts. If no composition patterns are
available, we retrieve a fact associated with a neighboring entity that shares the same relation. If such
a fact is also unavailable, we select any fact involving the same relation. To address cases where the
relation is ambiguous or difficult to interpret, we transform it into a more intuitive verb-based form
using the LLM. All these components are then combined into a structured prompt, compensating for
the language model’s lack of direct access to the structural and relational information in the KG. All of
these steps are detailed in the following subsections and depicted in Figure 2.

Step 2: Link Prediction. We evaluate the effectiveness of our framework on the Link Prediction
task. We use the constructed prompt as the input for a finetuned LLM.

Link prediction focuses on inferring missing entities in triples of the form (h,r,?) or (?,1,t), where the
goal is to predict the missing tail t or head h, respectively. In this work, we focus on tail prediction,
noting that the two cases are structurally symmetric.

3.3. Prompt Generation

Following we detail the steps of the proposed PrO-KGC approach to generate a clear and informative
prompt for the model.



Composition Pattern Extraction (CPE) To provide the model with a structured subgraph containing
relevant facts that support the inference of implicit knowledge, we extract all possible continuous paths
of length [ using a depth-first search (DFS) algorithm, as detailed in Algorithm 1. The hyperparameter [
determines the maximum allowed path length and can be set empirically. A multi-hop path of length [
consists of a sequence of [ interconnected nodes and relations, where each consecutive pair of nodes is
linked by a relation. These paths connect a subject to an object and are grounded in actual entities and
facts from the knowledge graph.

North Korea

CP: [hasDiplomaticRelation, hasDiplomaticRelation, hasDiplomaticRelation]

Figure 3: An example of a misleading composition pattern extracted from valid multi-hop paths

A composition pattern (CP), on the other hand, is defined as the ordered sequence of relations that
interconnect the nodes within a multi-hop path. It represents an abstract relational template derived
from the structure of the graph. However, not all extracted composition patterns are semantically
valid or reliable. For example, if the USA has a diplomatic relation with Germany, and Germany has
a diplomatic relation with France, then it might be reasonable to assume that the USA also has a
diplomatic relation with France (which is also a valid fact). In this case, the algorithm would extract
the composition pattern (hasDiplomaticRelation, hasDiplomaticRelation, hasDiplomaticRelation) as
depicted in Figure 3. The same pattern could misleadingly suggest that the USA has a diplomatic relation
with North Korea, given that the USA has a diplomatic relation with China, and China has a diplomatic
relation with North Korea.

Since our goal is to improve the quality of the prompt rather than introduce misleading information,
we employ an LLM to validate and filter out erroneous patterns that could negatively impact the model’s
reasoning. The prompt used is reported in Appendix A.1.

Descriptions Generation (DG) The head entity’s description plays a crucial role in disambiguating
entity types and names, ensuring clarity and reducing ambiguity. It also allows the Large Language
Model (LLM) to retrieve and reinforce relevant knowledge about the entity from its internal knowledge
base. Modern knowledge graphs often include descriptions for entities, but some may be missing. Given
that LLMs have been trained on extensive knowledge bases and hence have broad general knowledge,
we leverage them as an external resource to generate missing descriptions. We address cases where an
entity ENT lacks a description by prompting our backbone model with the following instruction. If an
entity is not recognized, we instruct the model to return a blank response to reduce post-processing
efforts and limit the risk of hallucinations:



Prompt:
You are a knowledge graph. Provide a concise description of the given entity. Return only the
description without any additional text. If the entity is unknown, return a blank response: {ENT}

Algorithm 1 Extraction of Composition Patterns from a Knowledge Graph

1: Initialize pattern dictionary P < {) to store relation sequences and examples.
2: For each entity node n € G, perform DEFS to explore paths of length /.
3: If a valid path is found:
Let the path be: (e1, 71, €2), (e2,72,€3), ..., (e1—1,71-1, €1)
Check if a direct relation exists between e; and e;: (e1,rf,¢;) € G
if r; exists then
Form pattern: (r1,72,...,7—1 — '¢)
Store two examples of supporting facts:
Observed: (e;,7;,€;41) fori=1,....1 —1
Inferred: (e1,ry,€;)
end if
4: Repeat for all nodes.
5: Until no more paths exist.
6: Validate extracted patterns using an LLM:
Patidated < LLM(P )
7: Return P, jidated-

Relation Transformation (RT) In some datasets, relations are expressed in a structured or a non-
natural language format, making them difficult to interpret and incorporate into an LLM-friendly
prompt. For example in the Freebase-extracted FB15K-237 dataset [16], relations are represented as a
chain of concatenated categories like: /sports/sports_position/players./sports/sports_team_roster/position
which could be simplified to plays as. To ensure prompt readability and clarity, we introduce a step to
simplify relation representation and semantics.

This is achieved by instructing our backbone LLM with the following prompt:

Prompt:

You will get a relation from the Freebase knowledge graph along with an example. Your task is to
convert the relation into a simple verb form while preserving its meaning and key terms. Return
only the converted relation. Example: Input: person/born_in_city Output: born in Relation:

{REL}

Contextual Facts Retrieval (CFR) In this step, we leverage the composition patterns extracted and
validated in the first stage. If the relation in the given triplet matches one of these patterns, we retrieve
the associated nodes from the graph following the same relational structure. For more details refer to
the algorithm in Appendix A.3. When no matching pattern is found, we instead retrieve a neighboring
fact that shares the same relation. In such cases, neighboring nodes often reveal similar properties,
which can support inference. If neither approach is applicable, we include a fact containing the same
relation to provide contextual hints about entity categories to reduce ambiguity. It’s worth noting that
during the training phase, we strictly limit the CFR module to access only the training and validation
splits to prevent any risk of data leakage.



4. Experiments

In this section, we present the experimental setup, including datasets, evaluation metrics, and results.

Table 1
Statistics of the datasets used in our experiments.

Dataset #Ent #Rel #Train #Valid # Test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466
CoDEx-m 17,050 51 185,584 10,310 10,310

4.1. Setups

Datasets We evaluate our approach on three widely used benchmark datasets: FB15k-237 by [16], an
improved iteration of FB15k [16] that removes inverse relations to prevent data leakage. WN18RR [17]
is as well a refined version of WN18 [16], a dataset based on WordNet. And CoDEx-M [18] which is
extracted from Wikidata and Wikipedia. Detailed statistics of these datasets are provided in Table 1.

Baselines To assess the impact of our framework’s components on KGC tasks, particularly link
prediction, we establish a baseline using the vanilla model (i.e., before integrating our framework
enhancements). Additionally, we benchmark our approach against leading triple-based models, including
TuckER [14], TransE [1], and ComplEx[19], as well as the earliest implemented LLM-based methods:
KG-BERT [4], KGT5[5], and GenKGC[20].

Implementation Details We conduct our experiments using two different GPUs: an NVIDIA A100
(80GB) and an NVIDIA RTX A6000 (50GB).

For the knowledge base LLM in the DG module, we use LLaMA 3.1 70B'. In the CPE filtering step
and RT module, we employ GPT-4-Turbo via the OpenAI API?, with a temperature of 1 and top-p set to
1. The size of composition patterns is set to 3. For the link prediction task, we use two different models:
T5-Large® from [21]. and LLaMA 3 (8B) from Unsloth*, which enables 2x faster fine-tuning, 70% lower
memory usage, and 2x faster inference.

To optimize GPU memory usage and efficiency, we apply LoRA [22] and QLoRA [23] in the fine-tuning
process. As decoding techniques, we use top-k sampling (top_k=50) and beam search (num_beams=10)
to get the top-10 predictions. The remaining hyperparameters are reported in Appendix A, Table 5.

Metrics To evaluate the link prediction task, we use standard evaluation metrics: Hits@k (for
k € {1,3,10}), which measures the proportion of cases where the correct entity appears in the top-k
predictions. Additionally, we use the Mean Reciprocal Rank (MRR), which computes the average of the
inverse ranks of the correct predictions.

4.2. Main Results

The main results of our experiments are reported in Table 2. We observe that our enhanced model
competes with PLM-based models; however, KGT5 continues to outperform on WN18RR. This can be
explained by the fact that KGT5 was trained exclusively on KGC benchmarks. Pretrained weights were
discarded and the objective function was replaced with a link prediction one. This probably reduced
potential hallucinations, as the model encounters entity names for the first time within the KG. In

'LLaMA3.1 70B
2OpenAl API
T5-large Checkpoint
*Unsloth
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Table 2
Comparison between our approach and some existing methods on three different benchmarks. Results on CoDEx
are copied from [18], T denotes that results are copied from [24]. Other results are taken from the original papers.

Model FB15k-237 WN18RR CoDEx
MRR H@1 H@3 H@10 | MRR H@1 H@3 H@10 | MRR H@1 H@3 H@10

Triple-based Models

TransE [1] f - 0.198 0.376  0.441 - 0.043 0.441 0.532 | 0.303 0.223 0.3363  0.454

TuckER [14] 0.358 0.266 0.394 0.544 0.470 0.443 0.482 0.526 0.328 0.259 0.3599 0.458

ComplEx [19] t - 0.194 0.297 0.450 - 0.409 0.469  0.530 0.337 0.262 0.3701 0.476
PLM-based Models

KG-BERT [4] - - - 0.420 - 0.041 0.302 0.524 - - - -

KGT5 [5] 0.276  0.210 - 0.414 | 0.508 0.487 - 0.544 - - - -

GenKGC [20] - 0.192  0.355 0.439 - 0.287 0.403  0.535 - - - -

Our Models
Vanilla Model 0.271  0.227 0.294 0.382 | 0.304 0.256 0.341 0.406 | 0.359 0.293  0.398 0.514
+PrO-KGC 0.293 0.241 0.317 0.403 0.400 0.353 0.432 0.500 0.415 0.331 0.434 0.541

contrast, LLMs, which were initially pretrained on large text corpora, may show biases toward the
expected answer format from their pretraining. Particularily, relations and taxonomy in WN18RR
might differ from those in the generic pretraining datasets used for LLMs. For example: according to
the WordNet Glossary”, the relation "derivationally related form" refers to terms in different syntactic
categories that share the same root form and are semantically related. However, in WN18RR, we find
entities connected through this relation which are semantically related but do not share the same root.
e.g: ("cover’, "derivationally related form", "spread over")

Regarding triple-based models, we observe that our model outperforms them on CoDEx with a 6.9%
Hits@1 improvement, while TuckER achieves better results on WN18RR and FB15k-237, which might be
explained by the inherent nature of these datasets. CoDEx, based on Wikidata, primarily contains binary
relations, unlike FB15k-237, which is derived from Freebase, where relations are n-nary and require
an understanding of the KG structure [18], such as /media_common/netflix_genre/titles. Deterministic
binary relations help LLMs in making more accurate predictions.

According to [25], WN18RR is the most structured KG among these datasets, which could explain
the strong performance of triple-based models on it.

Our overarching goal is to improve LLM-based KGC performance. The results show that our approach
outperforms the vanilla models across all three benchmarks, with a notable 9.7% improvement in Hits@1
on WN18RR, 3.8% on CoDEx, and a slight enhancement on FB15k-237 of 1.4% in Hits@1 and 2.1% in
Hits@10. This confirms our hypothesis that enriching the prompt with structured knowledge enhances
LLM-based KGC performance.

4.3. Ablation Study

To gauge the impact of the different components on the model’s performance, we conduct an ablation
study. We start with the vanilla model where we only feed the model with the query including the
head entity and the relation and we instruct the model to predict the tail entity. Then, we gradually
add the different components starting with the Description Generation (DG) component and then the
Contextual facts Retrieval (CFR) component. The results of this study are reported in Table 3 and show
that the more components we add the better the model’s performance gets.

In fact, the incorporation of textual descriptions in CoDEx boosts performance by 3.4% in Hits@10,
while the addition of structural information further increases this improvement to 4.7%. On WN18RR,
we observe a 9.4% increase in Hits@10 with the addition of contextual facts, comparing the vanilla

*WordNet Glossary
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model to the improved version. As aforementioned, WN18RR is a typical structured network, which
probably contributes to this boost. For FB15k-237, however, incorporating descriptions does not
significantly enhance performance, while adding contextual facts improves Hits@10 by 2.1%. One
possible explanation for the limited impact of descriptions is their length: 141.7 words on average per
description [26]. These lengthy descriptions may contain too much information, which may cause
important facts to lose their relevance.

Table 3
Ablation study results (MRR, Hits@1, Hits@3, Hits@10) on different datasets.
. FB15k-237 WN18RR CoDEx
Model Variant
MRR H@1 H@3 H@10 | MRR H@1 H@3 H@10 | MRR H@1 H@3 H@10
+PrO-KGC (Full Model) 0.293 0.241 0.317  0.403 0.400 0.353 0.432 0.500 0.415 0.331 0.434 0.561
w/ Desc, w/o CP 0.272 0.226 0.290  0.390 0.341 0.293 0.375 0.441 0.402 0.307 0.418 0.548
w/o CP and DG (Vanilla) | 0.271 0227 0.294 0.382 | 0.304 0.256 0.341 0.406 | 0.359 0.293 0.398 0.514

To better understand the influence of multi-hop decision paths on model performance, we measure
accuracy on a subset of CoDEx test triples that are supported by such paths, and compare it to the
overall performance on the full test dataset. As shown in Table 4, the performance is significantly
better on this subset, with Hits@1 and Hits@3 increased by 14.5% and 15.9%, respectively. These results
indicate that the presence of structured decision paths plays a significant role in guiding the model’s
predictions.

Table 4
Performance comparison of the full model on the full CoDEXx test set vs. a subset with supporting decision paths.
Setting Hits@1 Hits@3 Hits@10 MRR
Full Test Set 0.331 0.434 0.561 0.415

Subset w/ Decision Paths

. 0.476 0.593 0.704 0.548
(2,343 triples; 22.7% of the test set)

4.4. Model Comparison

In this subsection, we compare the performance of the different models fine-tuned for the link prediction
task based on two key dimensions: Accuracy and Efficiency, as depicted in Figure 4. The models used
are, as aforementioned, T5-large and LLaMA 3 8B, with only a small percentage of their parameters
fine-tuned: 4.7M (0.64%) for T5 and 42M (0.92%) for LLaMA.

We observe that, overall, LLaMA outperforms T5 in terms of accuracy and is more efficient in training
time for WN18RR and CoDEx. However, on FB15k-237, T5 is 70% faster (21 vs. 29 hours). One possible
explanation for this difference is the nature of the dataset and the complexity of its n-nary relations.
In this case, decoder-only models like LLaMA may struggle with complex multi-entity relationships,
requiring more updates to learn meaningful patterns.

Regarding performance, LLaMA has more parameters and was trained on larger datasets, which could
explain its superior results, particularly in Hits@1. For example, on CoDEx, T5 achieves 0.212, whereas
LLaMA reaches 0.331, an 11.9% improvement. However, in terms of Hits@10, the T5-based model
outperforms LLaMA (0.584 vs. 0.561, a 2.3% difference). One possible reason for this is the difference
in decoding methods; for LLaMA, beam search is not available in the used library, so sampling was
employed instead.

In terms of the impact of additional prompt components, we observe that LLaMA’s performance
on CoDEx and WN18RR significantly decreases when prompt components are ablated (9.4% and 4.7%
reductions, respectively), whereas T5 remains relatively stable (2.4% and 2.5% reductions). One possible



explanation is T5’s 512-token context length limit, prompts exceeding this limit are truncated, which
could lead to information loss.

T5 Model
Hits@3

LLaMA Model Training Time
Hits@:

- LaMA

00 MRR 00 MRR o-
02 04 0.6 08 10 Codex FBISK WN18RR
-~ Vanilla Model FB15K

—— Enhanced Model WN18RR

Codex

Figure 4: Performance and training time comparison of T5 and LLaMA for link prediction. The bar chart
on the right illustrates the training time required by both models across three different datasets. The
radar chart on the left presents performance metrics for various model variants on the same datasets.

4.5. Limitations

In this section, we discuss the major limitations of our work from our perspective.

Firstly, we believe that applying the framework to other Knowledge Graph Completion (KGC) tasks
beyond link prediction, such as triple classification and relation prediction, may reveal additional
insights and further validate the effectiveness of our approach.

For composition patterns, the length [ was fixed at 3, but we believe that longer paths could lead to
greater improvements, particularly for multi-hop relations. Additionally, composition patterns cannot
be applied to all samples; only a small percentage of queries can leverage them (e.g., in the FB15K-237
test set, only 10% of queries benefit from contextual paths), which may obscure their true impact.
A potential solution could be utilizing an LLM to generate decision paths when compositions are
unavailable.

Another limitation is that the reported results in Table 2 were not extracted under the same settings,
which is not ideal for a fair comparison. Additionally, the extraction of contextual facts could benefit
from refinements, such as selecting the most semantically similar facts to the query.

A further arguable point is the limited improvement of our framework on the FB15k-237 dataset
and the overall performance lagging behind knowledge graph embeddings. This could be attributed to
the reduction of trainable parameters to 42M (0.92%), which may limit the LLM’s ability to memorize
newly learned facts or patterns. This reinforces the idea that LLMs alone cannot fully replace KGC
models but should rather be optimized to complement KGE models.

5. Conclusion

In this work, we introduced PrO-KGC, a framework for prompt optimization in LLM-based Knowl-
edge Graph Completion (KGC). PrO-KGC follows a structured approach to extracting and integrating
structural context from the KG into prompts, leveraging LLMs to bridge the gap between structured
knowledge and LLM capabilities.

We first extract composition patterns, validate them using a knowledge base LLM, and harness them
to support link prediction queries with relevant subgraphs. In addition, we generate new descriptions
when needed and refine relation representations to make the prompt more natural, language-friendly,
and semantically rich.



Through a set of experiments, we demonstrated the effectiveness of our approach across three
different benchmarks. However, we also conclude that LLMs are still far from replacing embedding
models; rather, they should be used jointly. Our work contributes to fostering a more effective synergy
between LLMs and Knowledge Graph Embedding (KGE) models.

For future work, we plan to assess the impact of varying composition pattern lengths on model
performance and explore transforming the PrO-KGC textual input into embeddings as an initial input
for embedding-based models. Another promising direction is evaluating our approach on multiple KGC
tasks and investigating new strategies to further optimize prompt design.

6. Declaration on Generative Al

During the preparation of this work, the author(s) used ChatGPT in order to: spelling check, paraphrase
and reword. After using these tool(s)/service(s), the author(s) reviewed and edited the content as needed
and take(s) full responsibility for the publication’s content.
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A. Appendix

A.1. Prompt used for Pattern Validation

Pattern Validation Prompt

Instruction: Given a relation pattern (r1, r2, r3)and two examples of paths using these
relations, determine whether this represents a valid or invalid composition pattern.

A valid composition pattern means that Fact1 and Fact2 necessarily imply Fact3. If this
implication does not universally hold or if there are exceptions, classify it as invalid.

Your response should be in the following format: valid/Invalid. Explanation:
Pattern: (diplomatic relation, member of, member of)

Example 1:

Factl: (Senegal, diplomatic relation, Germany)

Fact2: (Germany, member of, International Telecommunication Union)
Fact3: (Senegal, member of, International Telecommunication Union)
Example 2:

Factl: (Senegal, diplomatic relation, Germany)

Fact2: (Germany, member of, African Development Bank)

Fact3: (Senegal, member of, African Development Bank)

Response: Invalid. Explanation: If a country has a diplomatic relation with another that is
a member of an organization, it does not necessarily imply that it is also part of that organization.

A.2. Hyperparameters of Models used for Link Prediction

Table 5
Hyperparameters of finetuned models

Hyperparameter LLaMA T5
Maximum Sequence Length 2048 512
Learning Rate 2e-4 le-3
Batch Size 4 16
Optimizer paged_adamw_8bit AdamW
Gradient Accumulation Steps 4 8
LoRA Rank 16 16
LoRA Alpha 16 8
LoRA Dropout 0 0.05
Number of epochs 3 3

Gradient Accumulation Steps 4 -




A.3. Extraction of supporting facts from the KG

Algorithm 2 Extract Supporting Facts from a Graph

Input: A query (h,r,?), a set of composition patterns patterns, and a knowledge graph G.
Output: A supporting triplet or triplet pair.
Identify patterns where relation r appears.
for each matching pattern do
Determine the position of 7 in the pattern.
if r appears as the last relation then
Retrieve the preceding relations (r1,72): (11,72, 7) < patterns.
Find entities nq connected to h via r1 in G.
for each n; do
Store (h,r1,n1) as a potential supporting fact.
Check if n; is linked to another entity ng via ro.
if (n1,792,n2) exists in G then
Store the pair ((h,71,n1), (n1,72,n2)).
end if
end for
end if
end for
if 3(h,7r1,n1), (n1,7r2,n2) € G then return randomly chosen ((h,71,n1), (n1,72,n2)).
else if 3(h,r1,n1) € G then return randomly chosen (h,r1,n1).
elsereturn None.

end if
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