
Wikidata Hierarchy for Named Entity Type Discovery in
the Climate Change Domain
Andrija Poleksić1,2,∗, Sanda Martinčić-Ipšić1,2

1Faculty of Informatics and Digital Technologies (University of Rijeka), Radmile Matejčić 2, Rijeka, 51000, Croatia
2Center for Artificial Intelligence and Cybersecurity

Abstract
Named Entity Recognition (NER) is a fundamental task in information extraction, yet general-purpose NER
categories often fail to capture the specificity required for specialized domains such as climate change research.
This paper presents a methodology for the automatic construction of a domain-specific NER type set with
minimal supervision, leveraging a schema-based bottom-up approach to knowledge graph construction. The
process begins with the identification of 655 core climate change-related terms, sourced from authoritative
domain-specific resources. These terms are then semi-automatically aligned with Wikidata using SPARQL queries
to take advantage of its hierarchical structure. A neighbourhood graph is constructed based on instance of (P31)
and subclass of (P279) properties, forming the basis for community detection via the weighted Louvain algorithm.
The resulting 59 communities are manually analyzed to derive a final set of 21 NER types, including Ecosystem,
Energy Source, Natural Disaster, Meteorological Phenomenon, and Chemical. Validation against existing ontologies
and terminological knowledge base (SWEET, ENVO, and EcoLexicon) reveals that the SWEET ontology provides
the highest coverage, containing 57.25% of core terms and 65.38% of the proposed NER types. The findings
demonstrate that integrating knowledge graphs, NLP-based information extraction, and community detection
provides an effective approach for domain-specific NER schema construction.
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1. Introduction

Climate change is a global threat that affects various sectors and poses serious risks to sustainability
[1]. The agricultural sector is facing declining food production due to unpredictable weather patterns,
endangering food security, especially in economies that depend on agriculture [2]. Shifts in temperature
ranges threaten biodiversity and accelerate species extinction and ecosystem degradation. Climate
change is also increasing the spread of foodborne, waterborne and vector-borne diseases, with rising
antimicrobial resistance compounding the health crisis. Additionally, extreme weather events and
changing environmental conditions have increased in frequency and intensity [3]. Addressing these
challenges requires urgent mitigation and adaptation efforts to prevent further economic, social and
environmental consequences.

Climate change research, like other areas of scholar interest, has seen a significant increase in research
literature. Motivated by this growing body of literature, many research domains [4, 5, 6, 7, 8] have turned
to natural language processing (NLP) methods, particularly tasks surrounding information extraction,
to levarage structuring capabilities of these methods on a large amount of unstructured textual data.
A well established solution to represent textual information in a structured, machine-interpretable
manner is a knowledge graph (KG). Knowledge graphs can be formally defined as a directed graph
(G), where G = (V , E) [9]. V refers to the vertices (V) or nodes that represent the real-world entities.
E refers to the edges (E) or links between the nodes that represent the relations between the entities
[10]. Pairs of entities (e ∈ V), together with an edge that describes their relation form a triple in the KG.
Core schema of the knowledge graph is defined as an ontology or taxonomy, depending on the use of
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the knowledge graph itself [11, 12]. When building a KG, it is desirable to define classes or types of
(named) entities and relations. For example, cumulonimbus and stratocumulus could be combined with
the class clouds, further, clouds and the entity El Niño Southern Oscillation could be defined as elements
of the class meteorological phenomenon - [METP]. With regard to the newly defined class, it is possible
to set specific restrictions for individual relations, e.g. for the relation ”causes” a restriction ([METP],
causes, [METP]) can be set.

Named entity recognition (NER) is an information extraction (IE) component that plays a fundamental
role in the automated analysis of scientific literature [13, 14]. Traditionally framed as a sequence labeling
task, NER aims to assign predefined entity types - such as location, organization, and person - to text
spans. However, such coarse-grained categories are often insufficient to capture the domain-specific
nuances required for specialized domains such as climate change research. To address this issue, this
work focuses on refining the NER for the automatic construction of KGs from textual data in the climate
change domain. We utilize existing resources (i.e. climate change terminology dictionaries) to develop
a domain-specific set of NER types that are consistent with the Wikidata types terminology [15]. Our
approach grounds derived entity types in a corpus of scientific publications in the climate change
domain curated by [16] to ensure consistency with real-world climate change research discourse.

Specifically, the contributions are:

• NER types discovery methodology for a selected domain (e.g. climate change) with minimal
supervision;

• Derived set of NER types for the climate change domain;
• An alignment of derived entity types with Wikidata supported by coverage in existing climate
change domain ontologies.

The paper is structured as follows. Section 2 discusses the principles of KG construction with a focus
on the construction of domain-specific KGs and problems. Section 3 covers related work discussing
the use of existing resources (dictionaries and KGs) for various information extraction tasks with a
emphasis on NER. Section 4 discusses existing NLP resources in climate change domain that can be
utilized. Section 5 follows with entity type discovery methodology, in particular the creation of a core
entity set for climate change and the use of the Wikidata hierarchy for (named) entity type discovery.
In Sections 6 the results are presented. We conclude with Section 7 and discuss the limitations and
future work in Section 8.

2. Knowledge Graph Construction

The creation of general, comprehensive, encyclopedic knowledge graphs is a long-term and continuous
process that requires a large amount of resources, and traditionally relies on the scientific research
results and projects based on community collaboration. Examples of such knowledge graphs are
DBpedia [17] (2007), YAGO [18] (2007), BabelNet [19] (2012), and Wikidata [15] (2014) as the currently
largest knowledge graph with 114,097,305 nodes and 24,190 active users1.

In the work of Abu-Salih [9], the creation of a knowledge graph is divided into a schema-based,
a schema-free and a hybrid approach, of which the first approach is applicable for the aims of this
research. In addition, the schema-based approach can be realized based on two strategies: bottom-up
and top-down [10, 20]. The top-down approach implies the initial construction of an ontology/schema
or the use of an existing schema and the extraction of knowledge based on a given schema. An example
of this approach is the YAGO knowledge graph with strictly defined, non-redundant types of entities
and relations and logical constraints on them. In the bottom-up approach, the focus of creation is on the
content itself, i.e. the data. Potential entities and relations are first extracted, and the initial knowledge
graph schema or ontology is created based on the extracted data. Tamašauskaitė and Groth [10] in a
systematic review of 57 scientific papers on the process of creating knowledge graphs, find that 70% of

1https://www.wikidata.org/wiki/Wikidata:Statistics
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the papers describe a bottom-up approach, an approach that corresponds to the current data-centric
trend that we follow in our research as well.

So far, only encyclopedic, (i.e. cross-domain) knowledge graphs (e.g. Wikidata, DBpedia and YAGO)
have been mentioned, but there are also increasingly popular domain-specific knowledge graphs such as:
KnowLife [4], PaintKG [21] and CS-KG [5] in the fields of health, art and computer science respectively.
The creation of knowledge graphs for the selected domain encounters domain-specific challenges in
addition to the general problems of building knowledge graphs:

• Complexity of domain terminology - a specific domain usually has a specialized vocabulary
and technical terms that are not correctly represented in multi-domain (general) knowledge bases;

• The need for expert domain knowledge - for the evaluation and validation of knowledge
graphs, it is necessary to ensure a domain expert evaluation, and expertise is also required when
creating the schema/ontology of the knowledge graph itself;

• Limitations of existing models for information extraction - specific domains have their
specific entities and relations, which general models fail to extract (i.e. they have not learned the
domain-specific relations and entities and are not capable of distinguishing nuanced meanings of
domain phrases);

• Lack of domain ontology - usually, in a specific domain, there is no clearly defined ontology,
which makes it difficult to structure and organize knowledge graph schema. Without an estab-
lished domain ontology, it becomes difficult to define relations between entities, while ensuring
consistency and enabling coherent integration of new information.

To overcome these challenges, automation of the domain knowledge graphs construction, in terms of
developing NLP (natural language processing) methods in information extraction, plays a central role.

3. Related Work

The automation of knowledge graph construction is based on unsupervised and/or semi-supervised
information extraction procedures, reducing the need for time-consuming and expensive manual data
labeling. When building a domain knowledge graph, it is necessary to utilize existing (digital) resources
to automate the process and reduce the amount of manual labeling.

Thus, Cai et al. [22] use an existing, more general (coarse), medical domain knowledge graph to
create a specific (fine) knowledge graph for the oncology domain. The authors address three types of
triples: overlapping triples, where both the coarse and fine domain KGs contain certain triples; triples
of new relations but overlapping entities, where the fine domain KG includes both entities but lacks
the relation between them; and triples of new entities, where at least one entity does not exist in the
coarse KG. To tackle coarse-to-fine KG domain adaptation, they propose an end-to-end KG domain
adaptation (KGDA) framework using distant supervision. This framework enables the construction
of a KG from fully unlabeled raw text data under the guidance of an existing KG. While this system
provides promising results, it relies on the assumption that both KGs have the same types of entities
and relations.

Wang et al. [6] use a dictionary and classification of terminology from the geology and mineral
resources domain and create a directed graph based on the frequency of bigrams and the order of words
in the sentence.

Yuan et al. [7] argue that most existing knowledge graph construction methods are based on large
knowledge graphs or existing extensive ontologies/taxonomies, and therefore use the available UMLS
thesaurus [23], based on which they recognize domain entities. High-frequency pairs of entities in
sentences become potential facts (i.e. triples: entity - relation - entity) for which latent groups (clusters)
of relation types are obtained using contextualized embeddings. The clusters of potential relation types
are then manually labeled. This significantly reduces annotation cost without loss of quality (instead of
labeling each instance of relations, the entire group or all instances of a type are labeled simultaneously).



Frei and Kramer [24] integrate Wikipedia2 and Wikidata to systematically extract text data and
annotation information for Named Entity Recognition (NER). Their approach utilizes the graph relations
(properties) of Wikidata to derive NER types. In particular, they use properties such as P2176 (drug or
therapy used for treatment) to identify entities - e.g. diseases with known treatments - and assign them
the NER type TREATABLE_HEALTH_ISSUE. This method shows how structured knowledge graphs can
be effectively used to generate domain-specific NER categories and improve the annotation of entities
in specialized corpora.

Lippolis et al. [25] introduce two approaches for entity alignment between ArtGraph and Wikidata.
The first method, Wikidata Entity Search (WES), uses simple SPARQL queries to establish entity
correspondences. The second approach, pArtLink, leverages the generative capabilities of large language
models in conjunction with established entity-linking techniques such as GENRE [26] and Wikimapper3

to increase alignment accuracy. ArtGraph, a domain-specific knowledge graph created from WikiArt
and DBpedia, encapsulates structured representations of concepts related to works of art.

Nie et al. [13] present the Know-Adapter framework for few-shot NER. The authors emphasize the
benefits of incorporating explicit knowledge from external sources, such as knowledge graphs, while
addressing the heterogeneity between knowledge graph entity types and NER types. Specifically, for a
given mention in a sentence, they build a retriever to find its closest match in Wikidata. They then
construct a 3-hop subgraph around the matched entity by traversing Wikidata properties (relations).
This approach creates a structured mapping from multiple Wikidata entities that differ in specificity to a
single NER type and utilizes the Wikidata hierarchy to improve entity type classification. In contrast to
their approach, which expands entity types to improve the few-shot entity classification, our research
focuses on the compression and standardization of entity types. By refining a broad and diverse set
of entities into a finite set of well-defined NER types. Specifically, we aim to create a structured and
domain-relevant taxonomy of the climate change research that ensures consistency and usability in
automated knowledge graph construction.

Inspired by these lines of research, we use existing resources such as dictionaries [6, 7], which
presumably contain domain entities of different granularity, and combine them with a more general
knowledge graph (Wikidata) [22, 25] to construct a hierarchy [13] to produce a final set of NER types
for the climate change research domain.

4. Existing Resources

As discussed in Section 3, knowledge-intensive research benefits from available resources. In this sense,
this section looks at existing sources that have been used directly or as a reference point in this research,
especially existing domain dictionaries, terminologies and ontologies.

Full Weather Glossary4 from National Oceanic and Atmospheric Administration (NOAA) - National
Weather Service (NWS) contains a total of 355 terms with definitions. There is also an extension of
this glossary with more than 2000 terms, phrases and abbreviations used by the NWS5. Glossary of
Meteorology6 from American Meteorology Society (AMS) is the authoritative source for definitions of
meteorological terms. From the AMS and NWS glossaries we have extracted a total of 9,511 climate-
change related terms and corresponding definitions.

Webersinke et al. [27] expand the vocabulary when pretraining their models, they add a list of 255
terms7 (tokens) with the highest frequency in their climate-change related pretraining corpus to the
original DistilRoBERTa𝐵𝐴𝑆𝐸 [28] vocabulary. We add these 255 terms to our dictionary of climate-change
related terms.

2https://www.wikipedia.org/
3https://github.com/jcklie/wikimapper
4https://www.weather.gov/otx/Full_Weather_Glossary
5https://forecast.weather.gov/glossary.php?
6https://glossary.ametsoc.org/wiki/Welcome
7https://huggingface.co/climatebert/distilroberta-base-climate-f

https://www.wikipedia.org/
https://github.com/jcklie/wikimapper
https://www.weather.gov/otx/Full_Weather_Glossary
https://forecast.weather.gov/glossary.php?
https://glossary.ametsoc.org/wiki/Welcome
https://huggingface.co/climatebert/distilroberta-base-climate-f


Reimerink et al. [8] construct a new multilingual terminological knowledge base (TKB) on the
environment science - EcoLexicon8. The construction of EcoLexicon began in 2003 with a core list of
794 environmental terms in Spanish and English. For each term, definitions were elaborated, reflecting
the level of generality or specificity of the concept as well as its relations with other concepts within the
same knowledge domain. The original list of terms was enriched by the addition of new terms as well
as by its transformation into a conceptual network. Currently, EcoLexicon contains 4,654 concepts of
environmental science and 24,968 terms in eight languages (English, Spanish, German, French, Dutch,
Modern Greek, Russian and Arabic) [29]. The EcoLexicon data includes concepts, terms, and semantic
relations organized within a frame-like structure called the Environmental Event.

The Environment Ontology (ENVO)9 is a community-driven ontology that supports the representation
of environments beyond the biological and biomedical domains [30, 31]. ENVO consists of classes
(terms) that refer to the main types of environments and can facilitate the retrieval and integration of a
wide range of biological data. The authors follow the principles of the Open Biomedical and Biological
Ontologies (OBO) Foundry and align their ontology with the Basic Formal Ontology (BFO) [32]. ENVO
consists of 7,030 classes (terms), such as ENVO’s biome, environmental feature, and environmental
material hierarchies – the ontology’s most developed branches and of the greatest interest to annotators.
Recently, when adapting to BFO, some of the hierarchies were revised and made obsolete, such as
environmental features.

SemanticWeb for Earth and Environmental Terminology (SWEET)10 [33] is a highlymodular ontology
suite with 10,23911 concepts (classes) in 200 separate ontologies covering Earth system science. SWEET
is a mid-level ontology and consists of nine top-level concepts that can be used as a foundation for
deriving domain-specific ontologies that start from extending these top-level SWEET components.

In [16] we elaborate upon our climate research corpus, consisting of research papers from renowned
journals on climate change, that we use in this work. We showed an exploratory prestudy in which we
applied a readily available NER model and a POS tagger from flair12 on a sample of 10,000 research
papers (∼ 5% of the corpus). With the insights gained from this preliminary experiment, we have
decided to experiment with LLM-assisted annotation; in particular, using Phi-3-mini-4k-instruct13

deployed locally for sentence-level triple extraction task.

5. Entity Discovery

5.1. Core Entity Set

Building upon authoritative sources, including the Full Weather Glossary, the Glossary of Meteorology,
Wikipedia glossaries and term expansions in ClimateBERT (dictionary), as well as our prior research [16],
which includes NER results (NER), exploratory LLM-based annotations (Phi3) and extracted keywords
(keywords), we systematically construct a core entity set for the climate change domain. This selection
process is based on a majority overlap criterion that requires an exact match of at least three out of
four sources. In the initial experiments, we include POS tagging results (POS), treating noun phrases
as candidate entity terms. However, this approach resulted in a noisy set of instances, which did not
contribute to the expansion of the core set, therefore POS-derived votes are excluded. In refinement
steps, we experimented with different overlap ratios and case sensitivity. Ultimately, with a majority
(three out of four) votes, we settled on a case-sensitive overlap strategy that balances corpus-driven
entity selection (NER, Phi3 and keywords) with the integration of terminologies from authoritative
sources (dictionary).

This process results in a set of 818 core terms, which subsequently undergo cleaning and deduplication.

8https://ecolexicon.ugr.es/en/index.htm
9https://sites.google.com/site/environmentontology/
10https://github.com/ESIPFed/sweet
11https://bioportal.bioontology.org/ontologies/SWEET
12https://github.com/flairNLP/flair
13https://huggingface.co/microsoft/Phi-3-mini-4k-instruct
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After removing duplicates, 766 unique terms remain. These terms are then validated against entire
corpus [16] by computing the occurrence frequency. Terms that occur less than 10 times are excluded
from further analysis. This process corresponds to entity detection in phase one of building a knowledge
graph, corresponding to the discovery section proposed in [34].

Next, inspired by [25], we perform an automatic alignment of the core terms with Wikidata using
three SPARQL queries: exact match, case-invariant match, and a substring-based (”contains”) query
(see Appendix A). This automated process yields preliminary results, which are then manually curated.
During curation, the results are categorized into four distinct groups: (1) Out of scope: 4 terms; (2)
Requires disambiguation: 144 terms; (3) Manually corrected (fixed item): 255 terms; (4) Good match: 363
terms. We successfully matched 47.39% of the terms withWikidata using a simple automatic comparison.
The subsequent manual alignment corrects an additional 33.29%, bringing the total number of aligned
terms to 618 (80.68%). For the ambiguous group, we align relevant climate-change related terms from
Wikidata that are similar to the ambiguous entries and add 37 more terms to the set. As a result, we
obtained a final set of 655 core terms aligned with Wikidata items. An example of the alignment is in
Table 1, with some terms that have an inherent domain-specific contextualization. For instance, the
term Barber, which is conventionally associated with an occupational role, is instead categorized within
the meteorological domain as a specific type of wind.

5.2. Wikidata Subgraph

Wikidata incorporates several hierarchical (vertical) relations, referred to as properties, such as instance
of (P31) and subclass of (P279). Using the core terms aligned with Wikidata items and these two
relations, we construct a neighbourhood graph. In this graph, for each core term, we identify (𝑛, −𝑚)-
hop neighbours in each direction, where 𝑛, 𝑚 ∈ ℕ, with 𝑛 representing height and 𝑚 representing depth.
Height refers to the number of hops in the abstraction direction (towards top), while depth refers to
the number of hops in the concretization direction (towards bottom). Specifically, for each core term,
we recursively search for items that are instances of or subclasses of the given term. Conversely, we
also search for items that the given term is an instance of or a subclass of, based on the P31 and P279
relations. This process enables us to capture the hierarchical structure and the relationships between

Table 1
Core entity set examples: An exemplary list of core entities (terms) is compiled, including the corresponding
Wikidata item, label and description which are automatically assigned. During manual curation, the Wikidata
description is systematically compared with dictionary definitions from relevant glossaries to ensure accuracy
and consistency. Based on the comparison, a category (cat.) is assigned and, if possible, necessary corrections
are made.
Term Wikidata Item Wikidata Label Dictionary Definition Wikidata Description Correction Cat.
anticyclone Q177414 anticyclone A region of relatively high atmospheric *pres-

sure, also known as a high. On a *synoptic
chart, it appears as a set of closed, approxi-
mately circular or elliptical ...

opposite to a cyclone 4

carbon cycle Q167751 carbon cycle The set of processes by which carbon is ex-
changed between the various global reser-
voirs: sedimentary rocks, the *atmosphere,
*...

biogeochemical cycle by
which carbon is exchanged
among the biosphere

4

cloud Q113100 Cloud A visible accumulation of minute water
droplets or ice crystals (or both) suspended in
the atmosphere, created by the condensation
or freezing of ...

2005 indie puzzle video
game

Q8074 3

frost heave Q125822121 Frost heave The disturbance of the surface of the ground
when water, freezing in the form of ice lenses,
expands with consequent movement of the
soil. The mechanism is involved in the forma-
tion of polygonal ground (regular patterns of
stones) in Arctic and ...

scientific article published
in 2010

Q1432833 3

Barber Q107198 barber A wind that is carrying *sleet, *snow, or spray,
when the air temperature is close to freezing.
Named for the ...

person whose occupation is
mainly to cut, dress, groom,
style and shave males’ hair

Q47209908 2

2 Q200 2 3 natural number 1



the terms within the graph.
Figure 1 illustrates a neighbourhood graph for five terms - mistral, jet stream, sea breeze, westerlies

and katabatic wind - with height 𝑛 = 2 and depth 𝑚 = 1. In this graph, the instance of (P31) relations
are represented by solid lines, while the subclass of (P279) relations are shown with dashed lines. In
this case, the concretization direction is not relevant, as the starting terms (i.e. at level 0) are already
sufficiently specific. However, moving in the direction of abstraction (i.e. towards the top) reveals a
wealth of valuable instances. In particular, the level 2 instance wind serves as a direct abstraction for
two starting terms (sea breeze and westerlies), while indirectly encompassing the remaining three terms
(jet stream via thermal wind, katabatic wind via fall wind and air current, andmistral via katabatic wind).
The wind effectively encapsulates the meaning of all starting terms in this context, suggesting that it
could serve as a representative entity type. A further step in the abstraction can be a viable solution in
the form of meteorological phenomenon. In this way, we proceed to identify potential Named Entity
Recognition (NER) types for identified core entity set (i.e. 655 detected core terms) by utilising the

Figure 1: Neighbourhood Graph: A simplified preview of the neighbourhood graph for five terms - mistral,
jet stream, sea breeze, westerlies and katabatic wind - with height 𝑛 = 2 and depth 𝑚 = 1. The instance of (P31)
relations are represented by solid (blue) lines, and the subclass of (P279) relations are shown with dashed (green)
lines.



hierarchical structure of the Wikidata graph that guides the discovery of relevant entity categories.
Note that Figure 1 is a simplification of the original structure that would be created based on five terms
used, a full preview is in the Appendix E.

The hierarchical structure of the Wikidata subgraph is rich and valuable. Still, it contains a large
number of nodes and edges, making it difficult to manually navigate and identify an optimal repre-
sentative node (i.e. a Wikidata item) for NER classification. To overcome this challenge, we utilized
Graphia14, an open-source visual analytics application designed to facilitate the interpretation of large
and complex datasets. By leveraging Graphia’s graph analysis and transformation capabilities, we refine
the subgraph to improve its interpretability. To achieve this, we apply the following preprocessing
steps:

• Removal of leaf nodes - not candidates for NER types;
• Filtering based on node height- removing all nodes with a height of 𝑛 ≥ 4 - height value indicates
a term that is too abstract, e.g. metaclass (Q19478619);

• Removal of nodes with in-degree ≤ 1- terms do not contribute to the abstraction.

The height of the node is determined depending on its position to the initial core term. Specifically,
for each term, we compute its outgoing 𝑛-hop neighbourhood using the instance of (P31) and the
subclass of (P279) relations, as well as its incoming 𝑚-hop neighbourhood. Each term that appears
in the neighbourhood is assigned a value based on the number of hops from the initial term. These
assigned values are then averaged across occurrences to obtain a measure of overall height, which
quantifies the level of abstraction of a given term (see Appendix C).

After these preprocessing steps, we perform a weighted Louvain algorithm [35] with a granularity
parameter set to 1, using edge weights to reflect relation importance. We argue that the instance of
(P31) should be considered more significant than the subclass of (P279) relation and, therefore assign
it weights of 1.0 and 0.5, respectively. This weighting ensures that the communities formed by the
Louvain algorithm better reflect meaningful entity groupings for NER classification. In this way, we
obtain 59 components (i.e. communities) that are potential NER types for the climate change research
domain. After manual inspection of each community we identified a central node (i.e. the node that has
a high in-degree centrality), with many connected terms abstracting to it. We also favor nodes with a
lower height value whenever possible, as this provides an optimal balance between over-abstraction
and over-specificity. This ensures that the selected node serves as a well-generalized yet meaningful
representative term within its community, making it a suitable candidate for NER type determination.
Examples with the five highest in-degree values in three communities are in Table 2.

After acquiring 59 community or cluster representatives, we conducted a manual inspection to refine
the selection. First, we merge similar classes, such as mathematical expression and mathematical concept.
Additionally, we eliminate community representatives that are either overly abstract or unrelated to the
field, including metaclass, telecommunication network and second-order class (refer to central row Table
2). Finally, we review and remove the majority of communities containing only a single instance, as
they do not contribute to the overall classification structure. After this step, we retain 26 representative
terms as potential NER types (classes). In the results Section (6), we ensure alignment with existing
domain-specific classifications by manually comparing the extracted terms with established ontologies
and terminological knowledge bases, including EcoLexicon, ENVO, and SWEET (see Section 4). Further,
we compute the number of terms occurring in each domain-related KG, and we validate the NER types
by counting the number of instances under each category. Finally, we preview Louvain clustering
results with community statistics.

6. Results

As mentioned in Section 5.1, we calculated the frequency of occurrence for 766 unique terms (including
the final 655 core entity terms) in the entire corpus. The top 10 most frequently occurring terms

14https://graphia.app/
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Table 2
Weighted Louvain algorithm results: An exemplary overview of the weighted Louvain algorithm results,
showcasing the top five nodes by in-degree within three detected communities (separated by horizontal lines).
The bolded Wikidata label indicates the selected community representative; if none is bolded, the community
was discarded during manual postprocessing. The table also provides additional node metrics, including height,
total degree, in-degree, out-degree, and the overall size of the respective cluster.

Wikidata ID Wikidata label height node degree node in-degree node out-degree community size
Q107715 physical quantity 2.79999995231628 15 13 2 28
Q71758646 general quantity 3.39393949508667 10 10 0 28
Q181175 scalar quantity 3.21951222419739 10 8 2 28
Q71550118 individual quantity 3.484375 6 5 1 28
Q110653654 kind of quantity 3.28571438789368 4 4 0 28
Q24017414 second-order class 3.57894730567932 13 13 0 16
Q21871294 group or class of organisms 3 2 1 1 16
Q67015883 group or class of enzymes 2 2 1 1 16
Q108149 nuclide 3 2 1 1 16
Q112965645 symptom or sign 2.5 2 1 1 16
Q2041172 measuring instrument 3.6538462638855 4 4 0 9
Q3099911 scientific instrument 2.95000004768372 3 2 1 9
Q850281 radiometer 2.5 2 1 1 9
Q3743695 meteorological instrument 2.29999995231628 2 1 1 9
Q115797427 camera and optics product 3.75 1 1 0 9

are water, model, Time, temperature, analysis, precipitation, climate, low, soil and level. The bottom 10
are Advanced Weather Interactive Processing System, dry line, red beds, pseudoboehmite, Tramontana,
geomagnetism, North Greenland Ice Core Project, Advanced Baseline Imager, small hail and pressure jump.
The full list is reported in Table 5 (Appendix B).

Further, we perform a case-insensitive match of identified 655 core terms to other ontologies. In
particular, we search for the core term in two available ontologies SWEET and ENVO, excluding
EcoLexicon as it is not accessible via the API and can not be used locally. For the SWEET ontology,
we find a match for 375 core terms (57.25 %), and for ENVO we find a match for 117 (17.86 %). Of
the 117 terms that match in ENVO, 105 (89.74 %) are in the SWEET ontology. This limited alignment
indicates that the SWEET ontology is a better candidate for future development, as in [22], where a
coarse domain knowledge graph (i.e. SWEET) could be used to construct a more specific fine domain
KG (i.e. KG for climate change research domain).

As elaborated in Section 5.2, we apply the Louvain algorithm for community detection, yielding
a total of 59 communities. For each identified community, we designate a representative node as a
potential NER type. The community size distribution is as follows: four large communities contain more
than 20 nodes, 19 medium-sized communities have between 10 and 20 nodes, and 34 small communities
consist of fewer than 10 nodes. Notably, half of the smallest communities are singleton nodes, that
are omitted for further processing. Details are listed in Table 6 (Apendix D). Next, we compare the
selected 26 communities (i.e. their representative terms) with SWEET, ENVO and EcoLexicon. The
comparison results are shown together with the final selected class names (i.e. NER types) in Table 3.
This process was carried out by manual examination of two ontologies (SWEET and ENVO) as well
as a terminological knowledge base (EcoLexicon). SWEET and EcoLexicon have a better coverage
of 26 representative terms (17 out of 26). Based on the occurrence of representative terms in other
knowledge bases, we retain terms that occur at least once, with the exception of Natural Phenomena,
which we believe is important for the climate change domain. We also merge several similar classes; in
particular, geographic region, geographic location and geographic entity are merged into a single class
Location. In this way, we create a final set of 21 NER types with the following classes: Ecosystem,
Energy Source, Natural Disaster, Meteorological Phenomenon, Quantity, Astronomical Object, Body of
Water, Disease, Location, Measurement Unit, Physical Phenomenon, Chemical, Time Period, Organization,
Natural Phenomenon, Field of Study, Mathematical Expression, Measuring Device, Geographical Feature,
System and Satellite.
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For each NER type, we calculate the number of core entity terms that have a path in the Wikidata
subgraph (Section 5.2) to Wikidata items corresponding to that NER type. The results are presented in
Table 4. Note that we allow each term to have paths to multiple representative Wikidata items (NER
types). In this way, we also gain insight into possible redundant classes. The top five class pairs in
terms of overlap are: Geographical Feature - Location (77), Field of Study - Quantity (71), Meteorological
Phenomenon - Natural Phenomenon (65), Natural Phenomenon - Physical Phenomenon (45) and Field of
Study - Physical Phenomenon (37). On the other hand, we can also observe the terms with the largest
number of classes to which they belong. The top five are: typhoon and tropical cyclone with six and
upwelling, cyclone and polar vortex, all of which have five classes (types) to which they correspond.

7. Conclusion

This paper proposes a methodology for discovery of Named Entity Recognition (NER) types tailored to
the climate change domain with minimal supervision, leveraging a schema-based bottom-up approach to
knowledge graph construction. We use existing resources such as dictionaries [6, 7], which presumably
contain domain entities of different granularity, and combine them with a more general knowledge
graph (Wikidata) [22, 25] to construct a hierarchy [13] to produce a final set of NER types for the climate
change research domain. This process begins with the identification of 655 core climate-change related
terms, sourced from authoritative domain-specific resources. These terms are then semi-automatically
aligned with Wikidata to fertilize from its hierarchical structure. The weighted Louvain algorithm is
engaged for the community detection on a neighbourhood graph constructed from instance of (P31)
and subclass of (P279) Wikidata properties. The resulting 59 communities are manually analyzed to
derive a final set of 21 NER types in the climate change domain, including Ecosystem, Energy Source,
Natural Disaster, Meteorological Phenomenon, and Chemical.

Validation against existing ontologies and terminological knowledge base (SWEET, ENVO, and
EcoLexicon) reveals that the SWEET ontology provides the highest coverage, containing 57.25% of
core terms. Similarly, SWEET also demonstrates strong alignment with the candidate NER types,
covering 17 out of 26 types (65.38%). The final set of 21 NER types for the climate change research
domain includes: Ecosystem, Energy Source, Natural Disaster, Meteorological Phenomenon, Quantity,
Astronomical Object, Body of Water, Disease, Location, Measurement Unit, Physical Phenomenon, Chemical,
Time Period, Organization, Natural Phenomenon, Field of Study, Mathematical Expression, Measuring
Device, Geographical Feature, System, and Satellite. Finally, we report the occurrence frequency of core
entities in the climate change research corpus. The cutoff threshold of 10 is an indicator that corpus
will be well suited for downstream training of domain NER model. The findings demonstrate that
refining a broad and diverse set of entities into a finite set of well-defined NER types can contribute to

Table 4
NER type core entity term frequency: Frequency of occurrence for each of the 21 NER types in 655 core
terms, sorted descending.

NER label # NER label #
Field of Study 181 Organization 21
Physical Phenomenon 126 Time Period 16
Natural Phenomenon 110 Satellite 13
Location 84 Body of Water 12
Geographical Feature 77 Natural Disaster 8
Quantity 71 Energy Source 6
Meteorological Phenomenon 65 Ecosystem 5
Chemical 46 Measurement Unit 3
System 44 Astronomical Object 2
Mathematical Expression 36 Disease 2
Measuring Device 26 TOTAL: 954



alignment with existing climate ontologies and subsequently to automated climate change knowledge
graph construction.

8. Limitations and Future Work

As described in Section 5.2, we construct a neighbourhood graph based on two Wikidata properties
- instance of (P31) and subclass of (P279). This construction is based on the assumption of Wikidata
completeness, i.e. if information on these two relations is not available in theWikidata knowledge graph,
terms remain unused and thus potentially impact the overall quality of the results. Some exemplary
terms from our core entity set that have neither P31 nor P279 properties are absolute humidity, Action for
climate empowerment, Shortwave radiation and pressure jump. This problem can be tackled in two ways:
firstly, by manually adding the missingWikidata hierarchical properties (relations), thereby contributing
to a valuable community-maintained resource, and secondly, by exploring other hierarchical relations
such as part of (P361), has part (Q65964571), facet of (P1269) and broader concept (P4900). Incorporating
these alternative properties could enhance the representation of hierarchical structures for a given
domain.

Additionally, the results are potentially sensitive to parameter choices, such as the granularity
parameter (set to 1) and the weighting of the instance of (1.0) and subclass of (0.5) relations in the
weighted Louvain algorithm. Exploring alternative granularity values or different weighting schemes
may lead to different community detection results and consequently to different NER types. The
introduction of additional hierarchical relations further amplifies this sensitivity.

Finally, for future work, we plan to integrate the GLiNER model [36] with our generated NER types.
This integration will facilitate the labeling of a larger corpus within the climate change research domain,
further refining entity classification and improving automated knowledge extraction.
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A. SPARQL queries

Inspired by the Wikidata Entity Search (WES) approach from [25] we construct three Wikidata SPARQL
queries for automatic alignment of Wikidata items to our dictionary terms. For this task, we use the
library SPARQLWrapper15, which serves as a SPARQL endpoint interface to Python. Three queries -
exact match, case-invariant match and substring-based (”contains”) match - are each listed below.

Listing 1: Exact Match: Exact match SPARQL query used for automatic alignment.

SELECT ? i tem ? i t emLabe l ? i t emDe s c r i p t i o n (GROUP_CONCAT(DISTINCT
? itemType ; s e p a r a t o r = ” , ␣ ” ) AS ? i temTypes ) (GROUP_CONCAT(
DISTINCT ? i t emSub c l a s s ; s e p a r a t o r = ” , ␣ ” ) AS ? i t emSub c l a s s e s )
WHERE {
SERVICE wik i b a s e : mwapi {

bd : s e rv i c ePa r am wik i b a s e : endpo in t ”www. w ik i d a t a . org ” ;
w ik i b a s e : a p i ” E n t i t y S e a r c h ” ;
mwapi : s e a r ch ” { i n p u t _ t e x t } ” ;
mwapi : l anguage ” en ” .

? i t em wik i b a s e : ap iOutpu t I t em mwapi : i t em .
}
OPTIONAL { ? i t em wdt : P31 ? itemType . } # R e t r i e v e e n t i t y

t y p e ( i n s t a n c e o f )
OPTIONAL { ? i t em wdt : P279 ? i t emSub c l a s s . } # R e t r i e v e

s u b c l a s s o f
OPTIONAL { ? i t em schema : d e s c r i p t i o n ? i t emDe s c r i p t i o n . FILTER

( lang ( ? i t emDe s c r i p t i o n ) = ” en ” ) } # R e t r i e v e
d e s c r i p t i o n

OPTIONAL { ? i t em r d f s : l a b e l ? i t emLabe l FILTER ( lang ( ?
i t emLabe l ) = ” en ” ) } # R e t r i e v e l a b e l s

FILTER ( ? i t emLabe l = ” { i n p u t _ t e x t } ” ) # En su r e t h e l a b e l
e x a c t l y matche s t h e i n p u t term

}
GROUP BY ? i tem ? i t emLabe l ? i t emDe s c r i p t i o n
LIMIT 10

15https://github.com/RDFLib/sparqlwrapper
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Listing 2: Case-Invariant Match: Case-invariant match SPARQL query used for automatic alignment.

SELECT ? i tem ? i t emLabe l ? i t emDe s c r i p t i o n (GROUP_CONCAT(DISTINCT
? i t emTypeLabe l ; s e p a r a t o r = ” , ␣ ” ) AS ? i temTypes ) (

GROUP_CONCAT(DISTINCT ? i t emSub c l a s s L a b e l ; s e p a r a t o r = ” , ␣ ” ) AS
? i t emSub c l a s s e s ) WHERE {

SERVICE wik i b a s e : mwapi {
bd : s e rv i c ePa r am wik i b a s e : endpo in t ”www. w ik i d a t a . org ” ;

w ik i b a s e : a p i ” E n t i t y S e a r c h ” ;
mwapi : s e a r ch ” { i n p u t _ t e x t } ” ;
mwapi : l anguage ” en ” .

? i t em wik i b a s e : ap iOutpu t I t em mwapi : i t em .
}
OPTIONAL { ? i t em wdt : P31 ? itemType . ? i temType r d f s : l a b e l ?

i t emTypeLabe l . FILTER ( lang ( ? i t emTypeLabe l ) = ” en ” ) }
OPTIONAL { ? i t em wdt : P279 ? i t emSub c l a s s . ? i t emSub c l a s s r d f s :

l a b e l ? i t emSub c l a s s L a b e l . FILTER ( lang ( ? i t emSub c l a s s L a b e l
) = ” en ” ) }

OPTIONAL { ? i t em schema : d e s c r i p t i o n ? i t emDe s c r i p t i o n . FILTER
( lang ( ? i t emDe s c r i p t i o n ) = ” en ” ) }

OPTIONAL { ? i t em r d f s : l a b e l ? i t emLabe l FILTER ( lang ( ?
i t emLabe l ) = ” en ” ) }

FILTER ( regex ( ? i t emLabe l , ” ^ { i n p u t _ t e x t } $ ” , ” i ” ) )
}
GROUP BY ? i tem ? i t emLabe l ? i t emDe s c r i p t i o n
LIMIT 10

Listing 3: Substring-Based (”contains”) Match: Substring-based (”contains”) query match SPARQL
query used for automatic alignment.

SELECT ? i tem ? i t emLabe l ? i t emDe s c r i p t i o n (GROUP_CONCAT(DISTINCT
? itemType ; s e p a r a t o r = ” , ␣ ” ) AS ? i temTypes ) (GROUP_CONCAT(
DISTINCT ? i t emSub c l a s s ; s e p a r a t o r = ” , ␣ ” ) AS ? i t emSub c l a s s e s )
WHERE {
SERVICE wik i b a s e : mwapi {

bd : s e rv i c ePa r am wik i b a s e : endpo in t ”www. w ik i d a t a . org ” ;
w ik i b a s e : a p i ” E n t i t y S e a r c h ” ;
mwapi : s e a r ch ” { i n p u t _ t e x t } ” ;
mwapi : l anguage ” en ” .

? i t em wik i b a s e : ap iOutpu t I t em mwapi : i t em .
}
OPTIONAL { ? i t em wdt : P31 ? itemType . } # R e t r i e v e e n t i t y

t y p e ( i n s t a n c e o f )
OPTIONAL { ? i t em wdt : P279 ? i t emSub c l a s s . } # R e t r i e v e

s u b c l a s s o f
OPTIONAL { ? i t em schema : d e s c r i p t i o n ? i t emDe s c r i p t i o n . FILTER

( lang ( ? i t emDe s c r i p t i o n ) = ” en ” ) } # R e t r i e v e
d e s c r i p t i o n

OPTIONAL { ? i t em r d f s : l a b e l ? i t emLabe l FILTER ( lang ( ?
i t emLabe l ) = ” en ” ) } # R e t r i e v e l a b e l s

FILTER ( CONTAINS ( LCASE ( ? i t emLabe l ) , LCASE ( ” { i n p u t _ t e x t } ” ) ) )
# En su r e t h e l a b e l c o n t a i n s t h e i n p u t te rm

}



GROUP BY ? i tem ? i t emLabe l ? i t emDe s c r i p t i o n
LIMIT 10

B. Core Entity Terms

Table 5: Core entity term corpus frequency: Frequency of occurrence of each of the 655 core terms,
sorted by highest occurrence (#) with corresponding Wikidata item ID,

Term Item ID # Term Item ID #
water Q283 1,862,744 confluence Q723748 7,982
model Q1979154 1,847,373 NAT Q83320 7,837
Time Q11471 1,345,502 ISCCP Q6052840 7,753
temperature Q11466 1,046,955 Kriging Q225926 7,685
analysis Q217602 1,009,806 biome Q101998 7,660
precipitation Q25257 772,605 tropical cyclone Q8092 7,652
climate Q7937 769,060 carbon cycle Q167751 7,630
low Q209190 757,646 lapse rate Q66900467 7,620
soil Q36133 741,357 diurnal variation Q1469559 7,508
level Q3686031 733,721 sunshine Q193788 7,398
Energy Q11379 686,232 dew Q41097 7,234
period Q2642727 597,095 diatoms Q162678 7,085
Si Q670 554,688 heat capacity Q179388 7,061
Wind Q8094 493,122 IMERG Q121747699 7,032
rainfall Q7925 423,591 thermodynamics Q11473 7,013
SEA Q11708 377,630 spectrophotometer Q3492906 6,997
Power Q25342 365,343 GPM Q3108963 6,935
observations Q193181 363,108 supersaturation Q334104 6,844
Day Q573 360,935 savanna Q42320 6,817
Correlation Q186290 358,478 water vapour Q190120 6,765
frequency Q11652 347,994 National Oceanic and Atmo-

spheric Administration
Q214700 6,740

Current Q5195029 341,183 transparency Q487623 6,722
Ocean Q9430 335,148 AVHRR Q300146 6,684
cloud Q8074 333,025 Acetonitrile Q408047 6,630
Ice Q23392 326,662 SLR Q841083 6,617
Carbon Q623 319,829 thunderstorm Q2857578 6,567
pressure Q39552 304,875 PSC Q216417 6,463
resolution Q3937033 302,930 CMA Q906716 6,460
CO Q2025 302,116 percolation Q1367555 6,432
summer Q1313 297,519 Prairie Q194281 6,414
Sample Q485146 289,046 microclimate Q215108 6,302
Source Q31464082 275,979 general circulation model Q650994 6,282
index Q1738991 272,002 Intergovernmental Panel on

Climate Change
Q171183 6,276

variation Q106645015 268,946 MISR Q3867036 6,274
SST Q1507383 268,895 Graupel Q213202 6,077
Standard Q367293 263,275 WMO Q170424 6,071
Winter Q1311 259,672 Walker Circulation Q2142205 6,062
season Q24384 242,303 steppe Q123991 6,058
Ph Q40936 237,393 subtropical high Q972926 5,994



Term Item ID # Term Item ID #
Stress Q123414 222,831 APS Q466113 5,950
temperatures Q11466 216,572 Stratocumulus Q40564 5,873
biomass Q2945560 212,304 sea breeze Q81242 5,765
Basin Q813672 208,916 precipitable water Q778526 5,742
aerosol Q104541 206,552 MOC Q4652675 5,718
drought Q43059 195,902 Nevada Q432381 5,690
Groundwater Q161598 188,300 AMV Q756835 5,624
Atmosphere Q8104 187,837 internet Q75 5,560
Sensitivity Q521783 183,995 accretion Q1402738 5,395
radiation Q18335 178,900 p300 Q3136081 5,367
Age Q568683 178,387 deuterium Q102296 5,284
extreme Q845060 173,728 brightness temperature Q4538627 5,139
Channel Q1210950 165,731 cloud amount Q830457 5,121
thermal Q752823 161,853 sublimation Q131800 5,091
observation Q193181 161,770 LLJ Q11850562 5,069
probability Q9492 158,667 European Centre for

Medium-Range Weather
Forecasts

Q1274195 5,037

spring Q1312 155,658 trade winds Q160603 5,035
evolution Q1063 153,963 North Atlantic Oscillation Q1137345 5,027
Accuracy Q1298969 152,585 Alkanes Q41581 5,018
CO2 Q1997 148,561 PMC Q7209090 5,008
Runoff Q66486514 147,941 tornado Q8081 4,944
Snow Q7561 147,532 storm surge Q121742 4,941
measurement Q12453 140,638 specific heat Q487756 4,935
weather Q11663 140,578 plankton Q25367 4,897
ozone Q36933 136,774 planetary boundary layer Q1757268 4,886
ENSO Q14524818 136,475 adenovirus Q193447 4,769
Variance Q175199 135,933 desertification Q183481 4,737
Li Q568 135,068 Kuroshio Q53842 4,725
gradient Q173582 131,432 CFC Q23748224 4,630
Stability Q2325497 130,248 Cretaceous Q44626 4,629
threshold Q29051774 130,137 power spectrum Q1331626 4,611
dust Q129129 128,726 glia Q177105 4,581
Nitrogen Q627 128,278 desiccation Q903071 4,551
Vector Q13471665 126,526 response time Q578372 4,467
pollution Q58734 122,509 GOME Q1425042 4,426
accumulation Q116844065 121,632 carbon monoxide Q2025 4,317
Irrigation Q21893647 120,674 Hadley Circulation Q338589 4,315
Monsoon Q42967 118,045 coalescence Q2071902 4,292
assessment Q123304503 117,212 treeline Q207762 4,233
hypothesis Q41719 115,864 Gulf Stream Q130905 4,221
rain Q7925 112,331 monsoon climate Q122933063 4,157
force Q11402 112,030 photochemistry Q188651 4,152
humidity Q180600 110,184 CGCM Q650994 4,145
anomaly Q567555 109,919 nitric oxide Q207843 4,127
deposition Q871279 109,532 Newton Q12438 4,098
convection Q160329 109,012 cyclogenesis Q245472 3,963
amplitude Q159190 105,901 drainage area Q166620 3,933
elevation Q2633778 105,434 SPCZ Q5977788 3,920
Latitude Q34027 105,131 AGL Q323170 3,904



Term Item ID # Term Item ID #
feedback Q183635 104,950 radioactivity Q11448 3,879
Oxygen Q629 101,342 solar cycle Q49385 3,868
Fluorescence Q191807 98,686 solar activity Q7297568 3,862
Validation Q359176 96,631 planetary wave Q1053589 3,860
Image Q478798 94,192 lichen Q43142 3,789
soil moisture Q889507 92,774 MM5 Q1516983 3,789
forecast Q748250 91,639 POP Q1564294 3,763
equilibrium Q11061286 89,713 Copernicus Q1531636 3,750
storm Q81054 88,557 Argon Q696 3,743
theory Q17737 86,270 volatile organic compounds Q910267 3,724
altitude Q190200 85,317 stratus Q40526 3,702
Earth Q2 83,341 Moon Q405 3,641
aerosols Q104541 82,000 refraction Q72277 3,624
Spectrum Q654182 81,830 eccentricity Q208474 3,477
absorption Q332828 80,604 overcast Q1055865 3,472
diffusion Q163214 80,602 SAF Q7649638 3,464
evaporation Q132814 78,605 IASI Q1623073 3,459
hydrogen Q556 77,660 helium Q560 3,456
troposphere Q40631 77,339 icing Q12060664 3,442
sea ice Q213926 76,405 MOPITT Q1638480 3,385
Plasma Q10251 71,480 occlusion Q747330 3,383
fusion Q106080 69,258 meridional circulation Q463223 3,361
oxidation Q1786087 67,928 atmospheric chemistry Q287919 3,330
convergence Q1783472 66,736 knot Q128822 3,307
productivity Q3289687 66,615 dew point Q178828 3,244
jet Q202325 65,669 anemometer Q175029 3,207
adsorption Q180254 63,735 MOS Q1453537 3,185
watershed Q166620 63,685 savannas Q42320 3,174
salinity Q179615 63,146 Intertropical Convergence

Zone
Q753858 3,145

Albedo Q101038 62,609 Rocky Mountains Q5463 3,135
surface tempera-
ture

Q56297886 61,249 flash flood Q860333 3,134

scattering Q210028 60,496 nitrogen oxides Q424418 3,101
Probe Q96093522 59,052 critical point Q111059 3,084
oscillation Q170475 55,187 cold pool Q104862831 3,066
p53 Q14818098 54,934 Firn Q828861 3,054
autumn Q1314 54,117 Headwaters Q7376362 2,989
MJO Q1170041 54,066 LIS Q128405384 2,913
Nitrate Q49916468 53,413 nitrous oxide Q905750 2,871
Stratosphere Q108376 52,329 avalanche Q7935 2,838
NAO Q1137345 51,719 tsunami Q8070 2,836
boundary layer Q752193 51,021 swell Q185411 2,831
advection Q379788 50,803 World Meteorological Orga-

nization
Q170424 2,827

El Niño Q7939 49,885 phase change Q185357 2,804
Divergence Q85900110 49,567 Berg Q8502 2,786
front Q189796 48,813 sprite Q904961 2,778
vortex Q732722 48,788 Pliocene Q76259 2,768
Streamflow Q29425295 48,533 AOGCM Q650994 2,749
climatology Q52139 48,482 Pacific Decadal Oscillation Q2033747 2,729



Term Item ID # Term Item ID #
MODIS Q676840 48,362 continental shelf Q134851 2,708
sodium Q658 47,313 SPC Q751874 2,655
evapotranspira-
tion

Q828158 47,288 aegypti Q1148004 2,645

GCM Q650994 47,127 ice shelf Q46966 2,619
tropics Q42530 47,009 Deconvolution Q1183700 2,595
relative humid-
ity

Q2499617 46,154 STP Q102145 2,589

lidar Q504027 45,011 SSI Q81382741 2,587
tendency Q55919789 44,877 Arctic Oscillation Q674041 2,465
drop Q185789 43,806 SEVIRI Q117778573 2,465
eddy Q994122 43,764 ocean acidification Q855711 2,455
blocking Q1540250 43,002 filopodia Q14859810 2,396
Cd Q83216 42,547 Jacobian Q506041 2,287
turbulence Q190132 40,596 ONI Q117235275 2,264
NCEP Q1966999 40,270 Paris Agreement Q21707860 2,224
recombination Q3373825 40,220 arid climate Q190946 2,185
lightning Q33741 39,991 GMS Q2246672 2,175
Met Q25261 39,857 greenhouse effect Q41560 2,175
isotope Q25276 39,605 stratopause Q205397 2,147
nucleus Q677070 39,474 TOGA Q3540622 2,134
Methane Q37129 38,440 hydrologic cycle Q81041 2,129
aggregation Q85248618 37,869 glomeruli Q909882 2,118
Aspect Q355730 37,612 NLDN Q28458090 2,100
cyclone Q79602 37,215 climate simulation Q117829810 2,090
NOAA Q214700 37,152 global radiation Q1531731 2,090
Ir Q11388 36,372 zonal flow Q219838 2,087
Persistence Q922395 36,162 photosynthetically active ra-

diation
Q900892 2,060

reconstruction Q116146313 36,009 tropical climate Q135712 2,028
remote sensing Q199687 35,667 inversion layer Q25615856 2,026
Sun Q525 34,997 low-level jet Q11850562 2,008
Longitude Q36477 34,765 synoptic scale Q1233837 1,977
inversion Q190096 34,714 thermohaline circulation Q463223 1,964
global warming Q7942 34,616 ODS Q16607840 1,947
Forestry Q38112 34,217 QuikSCAT Q1734511 1,937
Nt Q95976921 33,973 Meteosat Q1429889 1,925
Equator Q23538 33,730 Indian Ocean Dipole Q1574518 1,901
instability Q405372 32,678 laminar flow Q189452 1,878
Wetlands Q170321 31,762 AABW Q3913650 1,815
nucleation Q909022 31,459 continental climate Q185005 1,807
latent heat Q207721 30,008 levoglucosan Q6535767 1,789
Seawater Q184395 29,337 ozone hole Q183140 1,789
dissociation Q189673 29,180 carbon tax Q288401 1,773
photosynthesis Q11982 29,134 foehn Q12314 1,753
desert Q8514 28,743 melting point Q15318 1,730
hydrolysis Q103135 28,535 nitrogen dioxide Q207895 1,717
tropopause Q186433 28,013 ceilometer Q1027486 1,659
phytoplankton Q184755 27,616 convective available poten-

tial energy
Q1129355 1,591

dry season Q146575 27,064 xenon Q1106 1,586



Term Item ID # Term Item ID #
eye Q640404 26,844 POPS Q912951 1,543
condensation Q166583 26,827 UTCI Q30347503 1,500
ECMWF Q1274195 26,773 solar wind Q79833 1,499
tracer Q15835484 26,492 temperate zone Q167466 1,495
glacier Q35666 26,132 lithosphere Q83296 1,468
Grass Q643352 25,778 SMOS Q280068 1,463
entropy Q45003 25,384 long-wave radiation Q82340792 1,458
ITCZ Q753858 24,941 cryosphere Q493109 1,443
deforestation Q169940 24,806 geostrophic wind Q929043 1,366
friction Q82580 24,776 El Niño Southern Oscillation Q14524818 1,352
IPCC Q171183 24,750 National Weather Service Q1066823 1,348
PDO Q2033747 24,281 Atlantic Meridional Over-

turning Circulation
Q4652675 1,343

rotor Q11998503 24,038 acid rain Q40178 1,313
Ecology Q7150 23,632 scatterometer Q905295 1,309
radiative forcing Q1463606 23,347 calving Q868757 1,282
ammonia Q4087 23,267 sintering Q844613 1,278
AO Q674041 23,079 Southern Oscillation Index Q1550887 1,275
PG Q2414143 22,305 photodissociation Q16814 1,262
geopotential
height

Q12432978 21,961 climate classification Q267474 1,255

Pan Q3342203 21,840 World Climate Research Pro-
gramme

Q3407026 1,240

Autocorrelation Q786970 21,576 SeaWiFS Q2261857 1,231
greenhouse gas Q167336 21,408 meteorite Q60186 1,221
upwelling Q215915 21,373 geomagnetic field Q6500960 1,210
wind stress Q8024052 21,099 zeaxanthin Q169337 1,205
smoke Q130768 20,878 Little Ice Age Q190530 1,191
elastic Q62932 20,620 megafauna Q730371 1,161
TGF Q1584373 20,588 orographic precipitation Q11689358 1,155
diffraction Q133900 20,533 gelsolin Q18297560 1,147
depression Q209190 20,465 Advanced Very High Resolu-

tion Radiometer
Q300146 1,143

CAPE Q185113 20,294 ozone layer Q79995 1,140
fog Q37477 20,006 NHC Q1329523 1,120
curvature Q214881 19,949 MHS Q17125174 1,115
hydrology Q42250 19,853 acclimatization Q419763 1,092
transpiration Q167980 19,672 NEXRAD Q3088597 1,090
La Niña Q642867 19,552 GARP Q16251355 1,084
attenuation Q2357982 19,409 Kyoto Protocol Q47359 1,073
intensification Q38178665 19,332 bortezomib Q419319 1,059
snowfall Q7561 19,121 ODP Q900522 1,049
PBL Q1757268 19,113 land breeze Q31374425 1,043
typhoon Q140588 18,983 lamellipodia Q3092607 1,028
reflection Q165939 18,812 WRCC Q30687889 1,027
TRMM Q2001116 18,676 zonal circulation Q3353804 1,025
AMOC Q4652675 18,668 methane hydrate Q389036 1,014
Permafrost Q179918 18,554 Younger Dryas Q944279 1,011
mixing ratio Q171293 18,422 FAA Q335357 979
FA Q62008854 18,287 nitrogen cycle Q82551 970
life cycle Q67657988 17,931 Envisat Q49692 950



Term Item ID # Term Item ID #
Cirrus Q185638 17,852 geophysics Q46255 948
teleconnection Q3982797 17,815 ultraviolet radiation Q11391 923
phenology Q272737 17,445 International Satellite Cloud

Climatology Project
Q6052840 917

sensible heat Q1480581 17,300 Western Pacific Warm Pool Q7846140 900
peat Q184624 17,278 Cyclohexane Q211433 898
CAT Q1101409 17,214 sea-surface temperature Q1507383 882
Landsat Q849791 17,019 cumulonimbus Q182311 871
influenza Q2840 16,872 freezing rain Q11120024 863
GPS Q18822 16,787 neon Q654 853
entrainment Q15733549 16,778 aldolase Q421968 850
turbidity Q898574 16,681 extratropical cyclone Q1063457 848
rainy season Q3117517 16,675 western boundary current Q38178435 845
PAR Q900892 16,651 absolute humidity Q1048298 836
air mass Q216823 16,640 meniscus Q898732 828
surge Q287381 16,550 synthetic aperture radar Q740686 818
thermocline Q849599 16,499 automatic weather station Q846837 796
wet season Q3117517 16,487 closed system Q1468684 776
subsidence Q2091656 16,480 EUMETSAT Q692163 766
hurricane Q34439356 16,426 Barber Q47209908 752
soil temperature Q889769 16,303 South Pacific Convergence

Zone
Q5977788 739

carbon dioxide Q1997 16,188 CCB Q5133390 737
dissolution Q3133701 16,031 Thermistor Q175973 722
meteorology Q25261 15,972 Somali Jet Q122574051 706
GOES Q976688 15,801 subtropical anticyclone Q177414 685
ablation Q322177 15,773 docetaxel Q420436 670
AMO Q756835 15,693 mean free path Q756307 670
VOC Q910267 15,396 wind rose Q2336098 659
specific humid-
ity

Q2253551 15,010 dendrochronology Q80205 646

agarose Q390697 15,000 California Current Q281655 623
Isoprene Q271943 14,764 anvil cloud Q1358304 621
zebrafish Q169444 14,745 ensemble forecasting Q3433888 618
Holocene Q25445 14,724 heat index Q2141844 606
radiosonde Q852817 14,589 Agulhas Current Q398548 601
anticyclone Q177414 14,479 Antarctic Circumpolar Cur-

rent
Q55828 598

Sahel Q66065 14,406 carbon capture and storage Q41491 596
kinetic energy Q46276 14,254 North Atlantic Current Q211798 593
MCS Q660968 14,093 hypothermia Q1036696 587
frost Q4590598 14,089 supercooling Q213659 582
hydroxyl Q104116 13,943 magnetosphere Q6915 560
water table Q3342272 13,843 North Atlantic Deep Water Q921070 557
Cumulus Q14189 13,821 Atlantic Niño Q4816419 546
pandemic Q12184 13,809 coupled general circulation

model
Q650994 524

Radiance Q1411145 13,733 speleothems Q154507 504
termination Q23582432 13,614 time-series analysis Q11850042 498
Hf Q15115271 13,575 planetary scale Q124101881 493
visibility Q654068 13,518 Mistral Q193742 481



Term Item ID # Term Item ID #
Haze Q643546 13,436 AATSR Q4649950 480
mass balance Q121278173 13,375 mass balance model Q121278173 472
wind shear Q1027878 13,182 downburst Q4847219 467
magnetic field Q11408 12,951 frost heave Q1432833 465
westerlies Q12343832 12,947 Northern Annular Mode Q674041 464
buoyancy Q6497624 12,872 Maunder Minimum Q827568 457
potential tem-
perature

Q760765 12,727 katabatic wind Q212903 441

loess Q22723 12,663 mesoscale convective system Q660968 409
ionization Q190382 12,398 Antarctic Oscillation Q3288815 395
eukaryotes Q19088 12,167 sudden stratospheric warm-

ing
Q1583422 394

longwave radia-
tion

Q82340792 12,152 bombykol Q425845 378

BT Q225561 11,921 gamma radiation Q11523 366
shortwave radia-
tion

Q7502259 11,745 olaparib Q7083106 360

mercury Q925 11,704 global dimming Q211627 348
residence time Q177453 11,642 Advanced Microwave Sound-

ing Unit
Q4686237 345

ice sheet Q12599 11,108 Nimbostratus Q202278 326
Southern Oscil-
lation

Q1423047 11,003 Oceanic Niño Index Q117235275 325

subtropics Q16305538 10,894 cut-off low Q60967643 316
conduction Q14946524 10,639 plate tectonics Q7950 302
polar vortex Q1197111 10,591 fibrillin-1 Q17927651 299
rain gauge Q190052 10,432 Global Ozone Monitoring Ex-

periment
Q1425042 296

carbon seques-
tration

Q15305550 10,417 Upper Atmosphere Research
Satellite

Q534401 287

AGCM Q650994 10,313 Loop Current Q377116 275
ACE Q30717004 10,252 National Lightning Detec-

tion Network
Q28458090 253

return period Q2627230 10,221 CYGNSS Q5198802 250
SAR Q740686 10,196 Equatorial Undercurrent Q1190478 248
Lf Q17156810 10,041 Tropical Rainfall Measure-

ment Mission
Q2001116 240

insolation Q216973 9,972 mesocyclone Q2002856 227
tundra Q43262 9,943 dendroclimatology Q2294113 215
cloudiness Q830457 9,937 South Equatorial Current Q1072306 202
adiabatic Q182453 9,856 Benguela Current Q59676 200
radon Q1133 9,263 ketoconazole Q407883 171
mantle Q101949 9,252 synoptic meteorology Q130221760 157
tilt Q179745 9,179 pollen analysis Q2737544 153
Skewness Q9051521 9,156 Jason-1 Q1970012 150
CERES Q1102659 9,127 COP26 Q7888355 141
gyre Q1250263 8,881 Universal Thermal Climate

Index
Q30347503 137

CCS Q41491 8,802 glaciology Q52120 126
NWP Q837552 8,796 iridescence Q957208 123
half-life Q47270 8,794 turbidity current Q1756774 120



Term Item ID # Term Item ID #
biosphere Q42762 8,632 International Polar Year Q784374 114
Acetone Q49546 8,596 pressure jump Q7241727 108
Cal Q26708069 8,522 small hail Q3229952 104
Aqua Q17397 8,445 Advanced Baseline Imager Q110822048 94
black carbon Q3233590 8,334 North Greenland Ice Core

Project
Q9063437 90

hydrological cy-
cle

Q81041 8,310 geomagnetism Q114591 85

mass spectrome-
ter

Q1327691 8,300 Tramontana Q453122 75

hail Q37602 8,264 pseudoboehmite Q2115715 67
Terra Q584697 8,204 red beds Q2065586 63
harmonics Q1148098 8,060 dry line Q2742789 49
SOI Q1550887 8,043 Advanced Weather Interac-

tive Processing System
Q4686330 12

jet stream Q202325 7,997 TOTAL: 36,516,003

C. Node Depth and Node Height

Building upon the examples provided in this work, we consider five initial Wikidata terms: mistral,
katabatic wind, jet stream, sea breeze, and westerlies. We perform a recursive search with a maximum
height of 𝑛 = 2 (two hops upward along instance of (P31) and subclass of (P279)) and a maximum depth
of 𝑚 = 1 (one hop downward along these relations).

For example, starting from jet stream, we identify air current as a one-hop neighbour. In turn, wind is
a one-hop neighbour of air current, reaching the two-hop limit. Conversely, in the opposite direction
(where jet stream is the object of P31 or P279 relations), we find jet streak as a direct neighbour. This
procedure is applied to all starting terms, producing the following exemplary results:

a) (-1) jet streak -> (0) jet stream -> (1) air current -> (2) wind
b) (-1) ______ -> (0) mistral -> (1) katabatic wind -> (2) fall wind
c) (-1) mistral -> (0) katabatic wind -> (1) fall wind -> (2) air current
d) (-1) Sundowner -> (0) sea breeze -> (1) wind -> (2) meteorological phenomena
e) (-1) Shrieking Sixties -> (0) westerlies -> (1) west wind -> (2) wind

From this limited set of terms, we can compute each node’s overall height as the average of all depths
(or heights) at which it appears. For example, consider the node katabatic wind, which appears as a
starting term at height 0 (example a) and as a one-hop neighbour at height 1 (example b). Its overall
height is thus calculated as: 0+1

2 = 0.5.



D. Louvain Algorithm Results

Table 6
Louvain cluster results: Results of the Louvain algorithm on Wikidata subgraph with core entity terms. For
each cluster/community the reported size is the number of nodes in the cluster and the selected representative
node (the node with the highest in-degree centrality value, with several corrected nodes after manual inspection)
is listed. The bolded node representatives are further used in the development of the final NER types, while
the underlined nodes represent manually merged communities. Multiple representative terms separated by a
semicolon indicate multiple potential NER types from a single community.

size representative size representative
28 physical quantity 4 artificial satellite
25 structural class of chemical entities 4 SI unit
23 mathematical expression 4 astronomical object type
22 material 3 type of structure
19 type of meteorological phenomenon 2 statistic
19 organization 2 chronostratigraphic unit
18 geographic location 2 gene
17 academic discipline 2 production environment factor
16 process 2 radiation
16 second-order class 2 telecommunications network
14 metaclass 2 document
14 body of water; geographical feature 1 scientific model
14 philosophical concept 1 publishing company
14 system; ecosystem; physical system; social system; knowledge system 1 shell of an astronomical object
14 chemical element (structural class of chemical entities) 1 layer
13 physical phenomenon 1 computer simulation
13 legal concept 1 scientific law
13 energy source 1 circle
12 geographic region 1 geostationary satellite
11 result 1 differential operator
11 occurrence 1 beginning
11 field of study (academic discipline) 1 sense
11 time interval 1 s-block
10 natural phenomenon 1 observance
10 class of disease; natural disaster; 1 solution
9 measuring instrument 1 ecological unit
9 mathematical concept (mathematical expression) 1 mechanical wave
8 variable-order class 1 pigment
8 third-order class
7 product category
7 geographic entity



E. Neighbourhood Graph

Figure 2: Neighbourhood Graph: A preview of the neighbourhood graph for five terms - mistral, jet stream,
sea breeze, westerlies and katabatic wind - with height 𝑛 = 2 and depth 𝑚 = 1. The instance of (P31) relations are
represented by solid (blue) lines, and the subclass of (P279) relations are shown with dashed (green) lines.
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