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Abstract
Natural languages evolve over time and with increasing digitalization these evolutions are quantitively studied in
humanities and social sciences. One important observable is the frequency of individual words, as well as word
tuples (n-grams) over time. Different tools exist to analyze these changing frequencies in large text corpora, with
different levels of complexity and efficiency. However, a systematic overview and evaluation of the expressiveness
and practical usability of these different tools is missing. In this article, we present a structured approach to
such an evaluation by defining a query algebra and a set of information needs expressed therein, followed by a
comparison of 12 different query systems. Overall, we identify several systems as similar to the Google Books
Ngram Viewer (GBNV) or as systems specific to a subcorpus, and find that the theoretically most potent and
flexible systems lack a practical implementation, pointing out further research needs.
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1. Introduction

The development of word frequencies over time can give researchers insight into linguistic and cultural
shifts. Many such analyses have been published in recent years [1, 2, 3, 4, 5, 6], an interesting future
application could be the analysis of changes Large Language Models (LLMs) bring into written language.
Different tools exist to support researchers in their work with large text corpora. For pure frequency
analyses, however, a different and simpler kind of corpora can be used: temporal n-gram corpora (TNC)
like the Google Books Ngram Corpus (GBNC) [7, 8, 9]. Instead of full texts, they only contain n-grams
and their respective frequencies over time, and—while losing information—have two main advantages:
(1) reduced memory usage, making the analysis of larger document collections possible, and (2) fewer
copyright issues, allowing for the inclusion of more recent texts which cannot be freely published in
full.

The most well-known tool for analyzing TNCs is the Google Books Ngram Viewer1 (GBNV) [7], but it
is not the only one. Over the years, other query systems have been developed and published, mostly
independent of each other. Our goal with this work is to collect information about such systems, to
organize it and to give researchers interested in TNCs a concise overview of the available tools they
can choose from. To achieve this, several steps and contributions are necessary:

• a thorough literature survey to identify existing TNC query systems,
• a formal data model and query algebra to precisely express query types across different systems,
• a systematic review of the existing query systems regarding their expressiveness and practical
usability; finally leading to

• a concise overview of existing TNC query systems and their capabilities.

Related work Our review focuses on query systems specifically built for TNCs. More generic corpus
analysis tools like the Sketch Engine [10] or Korp [11] are not included, as their scope is much broader
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and they focus more on the analysis of full texts. Metadata search engines and query systems like
SchenQL [12, 13] and LexiDB [14, 15] are also not included into our review. Even though some of the
TNC query operators defined in the following rely on metadata, it is not the core concept of TNCs.

Paper outline In Section 2, we define a formal model of TNCs and a query algebra for them. Section
3 presents the results of our query system review, with a focus on expressive power in Section 3.3 and
practical usability concerns in Section 3.4. Section 4 discusses limitations of our review and gives an
outlook on future work.

2. Fundamentals

In this section, we first describe a formal data model for TNCs. We then define a query algebra operating
on that data model, which will later be used to express common information needs across different
query systems.

2.1. Data model

In this section, we construct a formal model of temporal n-gram corpora, starting from diachronic
document collections and leading up to an extension of relational algebra [16]. This model allows us to
precisely express abstract information needs and query types across different concrete systems.

Definition 1 (Temporal text corpus). A temporal text corpus 𝐶 consists of documents 𝑑𝑖 = (𝑡𝑖, 𝑚𝑖, 𝜏𝑖).
Document 𝑑𝑖 comprises the text 𝑡𝑖, its metadata as a (partial) key-value-mapping 𝑚𝑖, and a specific
metadata entry 𝜏𝑖, the timestamp. The set of all timestamps in 𝐶 is called 𝑇 and must admit a natural
ordering. Furthermore, we use 𝐶𝜏 ≔ {𝑑𝑖 ∈ 𝐶 | 𝜏𝑖 = 𝜏} to denote the set of all documents with the specific
timestamp 𝜏 ∈ 𝑇.

Typical keys for the metadata map 𝑚𝑖 are, e.g., author or title, and the timestamp usually represents
the publication date. The metadata of a document is modeled as a partial key-value-mapping because
not every metadata field needs to be populated for every document. We do not specify a granularity
of the timestamps in 𝑇. For the GBNC, the timestamps correspond to years, while other corpora and
systems might use finer-grained timestamps or coarser aggregates.

Definition 2 (n-gram). Given a set Σ, 𝑔 ∈ Σ𝑛 is a tuple of length 𝑛 over Σ, an n-gram. To denote the set
of all n-grams over Σ, without fixing 𝑛, we write Σ∗. Given some document 𝑑, we use 𝑓𝑑(𝑔) ∶ Σ∗ → ℕ0
to obtain the number of occurrences of an n-gram 𝑔 in the document’s text.

In the context of natural language processing, the set Σ in Definition 2 is usually the vocabulary of a
natural language, possibly annotated with linguistic metadata, e.g., part-of-speech tags [7, 8]. An n-gram
is then an ordered sequence of 𝑛 words from that vocabulary.

Definition 3 (Temporal n-gram corpus (TNC)). Consider a temporal text corpus 𝐶 and the set 𝑇 of its
timestamps. Let Σ be the set of all words that occur in the texts of 𝐶. We then construct

𝑓𝐶 ∶ Σ∗ × 𝑇 → ℕ0, (𝑔, 𝜏 ) ↦ ∑
𝑑∈𝐶𝜏

𝑓𝑑(𝑔)

to capture the number of occurrences of an n-gram 𝑔 in all documents 𝑑 with timestamp 𝜏. Fixing 𝐶 and
an n-gram 𝑔, 𝑓𝑔 ≔ 𝑓𝐶(𝑔, ⋅) becomes a function over 𝑇, a time series. We say that 𝑔 ∈ 𝐶 if and only if
there is some 𝜏 ∈ 𝑇 such that 𝑓𝑔(𝜏 ) ≠ 0. Letting 𝐺 ≔ {𝑔 ∈ Σ∗ | 𝑔 ∈ 𝐶} and 𝐹 ≔ {𝑓𝑔 | 𝑔 ∈ 𝐺}, 𝐶′ ≔ (𝑇 , 𝐺, 𝐹 )
is the temporal n-gram corpus over 𝐶.

Constructing a TNC 𝐶′ out of a temporal text corpus 𝐶 may seem redundant, but it greatly simplifies
notation and analysis in the following sections. Furthermore, in practice, 𝐶may not always be available,
even if 𝐶′ is. This is the case for the GBNC.
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Finally, we define a relation 𝑅𝐶′ in the sense of [16] and using notation from [17] that represents a
TNC 𝐶′ = (𝑇 , 𝐺, 𝐹 ), as follows: 𝑅C′(𝐺, 𝐹 ) = {(𝑔𝑖, 𝑓𝑔𝑖)}𝑖 ⊆ 𝐺 × 𝐹. Neither of the two attributes of 𝑅C′ are
atomic, as the first one represents an n-gram, so a tuple of words, and the second one a frequency map
from 𝑇 to ℕ0. In both cases, we use square brackets to denote member access, either via the 1-based
tuple index or the map key, i.e., for some n-gram 𝑔, 𝑔[2] shall represent the second word in 𝑔, and
𝑓𝑔[2025] its frequency at timestamp 2025.

2.2. Query types

After defining our data model for TNCs, we now present different abstract query types. These are
derived from the capabilities of existing query system implementations. First, we focus on filtering
TNCs, using different types of constraints. Then, we focus on analytic queries. Finally, we describe
how to incorporate external knowledge into queries and how to construct TNCs for specific purposes.
Even though we introduce the different kinds of queries and operators independently, the underlying
algebra allows for flexible combinations.
In the following, a TNC 𝐶′ over a text corpus 𝐶 is always given through its corresponding relation

𝑅𝐶′(𝐺, 𝐹 ). We use (𝑔, 𝑓𝑔) to refer to specific elements of 𝑅𝐶′(𝐺, 𝐹 ).

2.2.1. Filtering

A user is not necessarily interested in the full TNC 𝐶′, but maybe rather a subset of it or even a single
time series. We express this subcorpus filtering as a selection 𝜎𝑝(𝑅𝐶′), where 𝑝 is an arbitrary boolean
predicate on n-grams and their frequencies. The general semantics of this operation is as follows:

𝜎𝑝(𝑅𝐶′) = {(𝑔, 𝑓𝑔) | 𝑝(𝑔, 𝑓𝑔) = true}.

The structure of 𝑝 can be used to further categorize filtering operations. For example, some 𝑝 may only
consider 𝑔 and be independent of 𝑓𝑔, or vice versa. This is an important distinction, as many of the
existing query systems only allow for the first, but not the second kind of predicates In our abstract
algebra, this strict distinction does not exist and predicates can be freely mixed.

n-gram filtering First, we focus on filter predicates 𝑝 that are independent of 𝑓𝑔 and only depend on
𝑔 itself. The simplest kind is strict equality with a given n-gram 𝑔ref :

𝜎𝑔=𝑔ref (𝑅𝐶′) = {(𝑔ref , 𝑓𝑔ref )},

which yields the singleton set of 𝑔ref and its frequency series. In a similar way, one can define 𝑝 as
strict set membership for some set 𝐺ref to filter for several n-grams at once. An example for this is
shown in Figure 1, showing the frequencies of the 3 2-grams information retrieval, digital humanities,
and machine learning.
A more complex type of filtering employs external or internal wildcards. When employing the

external wildcard operator ∗, two n-grams do not need to be exactly equal, but only in all non-wildcard
positions. For an n-gram 𝑔ref = (𝑤1, … , ∗, … , 𝑤𝑛), the semantics of equality up to wildcards (ormatching)
is as follows:

𝑔 ≃ 𝑔ref ≡ ∀0 < 𝑖 ≤ 𝑛 ∶ 𝑔ref [𝑖] = ∗ ∨ 𝑔ref [𝑖] = 𝑔[𝑖],

with 𝜎𝑔≃𝑔ref (𝑅𝐶′) as above. Another type of wildcards, which we call internal wildcard and denote as ∗̂,
does not operate on n-grams themselves, but on the words therein: For example, ‘∗̂ing’ matches all
words that end with ‘ing’; and consequentially, (∗, ∗̂ing) matches all 2-grams starting with an arbitrary
word and ending with a word that ends in ‘ing’.

While strict equality and wildcards are the most straightforward methods, n-gram filtering is not
limited to these. Aleksandrov and Strapparava [18] include linguistic information fromWordNet [19, 20],
allowing for queries about, for example, synonym or antonym relationships between words. Willkomm
et al. [6] apply sentiment analysis to identify and select n-grams carrying positive or negative sentiments.
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Figure 1: Frequencies of information retrieval, digital humanities, and machine learning as plotted by the GBNV

Frequency filtering Second, we introduce predicates operating on the n-grams’ frequencies. A
simple example for a frequency-based predicate is a pointwise threshold: Setting 𝑝 = (𝑓𝑔[2000] ≥ 100),
for example, selects only those n-grams that occurred at least 100 times at timestamp 2000. Another
option is a global threshold, i.e., selecting n-grams 𝑔 where∑𝑡∈𝑇 𝑓𝑔(𝑡) > 𝑐 for some fixed value 𝑐.

A more complex predicate uses information about all of 𝐶′, to select the 𝑐 most frequent n-grams in
the corpus:

top(𝑐, 𝑔) ≡ ∑
𝜏∈𝑇

𝑓𝑔(𝜏 ) < ∑
𝜏∈𝑇

𝑓𝑔′(𝜏 ) for fewer than 𝑐 n-grams 𝑔′.

Frequency filtering can become almost arbitrarily complex: Willkomm et al. [6] introduce a kNN
operator, that selects, for a given reference n-gram and some constant 𝑘, the 𝑘 most similar n-grams
according to the Euclidean distance of their frequencies. Frequency filtering can also be combined with
different operators, for example those presented in the next section.

2.2.2. Data analysis and computation

While the frequency of a single n-gram can be interesting in some research applications, being able to
combine different n-grams’ frequencies into aggregate time series or even single statistical values opens
up many new possibilities. For example, it becomes possible to not only analyze specific words, but
rather concepts, by summing the frequencies of synonyms. Another possibility is to identify n-grams
with similar frequency patterns by computing pairwise correlations.

Arithmetic operations The easiest way to combine the frequencies of two n-grams is applying
pointwise arithmetic operations, as follows:

(𝑔1, 𝑓𝑔1) ∘ (𝑔2, 𝑓𝑔2) ≔ (𝑔1 ∘ 𝑔2, 𝑓𝑔1∘𝑔2[𝜏 ] = 𝑔1[𝜏 ] ∘ 𝑔2[𝜏 ], 𝜏 ∈ 𝑇 ), ∘ ∈ {+, −, ⋅, /}.

Here, 𝑔1 ∘ 𝑔2 denotes a symbolic identifier for the combination of 𝑔1 and 𝑔2 using ∘, which is not an
n-gram in itself, but ensures compatibility with other frequency-based operators of our algebra. An
example of this can be seen in Figure 2, showing the ratio of the frequencies of machine learning and
artificial intelligence, which was close to 0 in 1980, but has rapidly increased since then—showing a
significant increase in popularity for the term machine learning over artificial intelligence. Replacing
(𝑔2, 𝑓𝑔2) with a constant 𝑐 and using multiplication as operation defines a constant scaling operator.

Since the result of an arithmetic operation in this sense is structurally similar to its operands—albeit
with a symbolic identifier instead of an n-gram—arithmetic operations can be nested and combined
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Figure 2: Ratio of the frequencies of machine learning and artificial intelligence as plotted by the GBNV

following the usual rules of arithmetics. The definition of other operations to use as ∘ is also possible,
as long as their signature fits the same pattern.

Statistical analysis The general goal of statistical analysis is to extract knowledge from data. This
can take many different forms, we want to focus on numerical knowledge: Given one or several n-
gram frequency series, compute a number representing an ‘interesting’ property 𝑣; or, more formally
𝑓𝑣 ∶ 𝐹 𝑘 → ℝ is a 𝑘-ary function mapping 𝑘 n-grams to one real number quantifying the property 𝑣.
Examples for 𝑓 include unary (𝑘 = 1) functions like min, max and mean, as well as binary (𝑘 = 2)
functions like 𝜌 (Pearson’s Correlation Coefficient) or Mutual Information [21].

2.2.3. External knowledge integration

TNCs are based on textual data, usually written in natural languages. There exists a wealth of linguistic
knowledge that one might want to include into queries on TNCs, for example by grouping synonyms
together or matching different spellings of the same word.
External knowledge can take many forms, so it is difficult to give a general formalization. The

relational data model [16] has, however, proven to be flexible enough to represent almost any kind of
data. It is therefore reasonable to assume that the external knowledge is available as some relation
𝐾(𝐾1, … , 𝐾𝑚). Then, combining 𝑅𝐶′ and 𝐾 can be expressed as

𝑅𝐶′ ⋈𝑝 𝐾 ≔ 𝜎𝑝(𝑅𝐶′ × 𝐾),

an (inner) join over some predicate 𝑝—or, equivalently, a cartesian product followed by a selection.

2.2.4. Metadata and corpus construction

Until now, 𝐶 and 𝐶′ have been fixed. In some cases, users might want to restrict a large text collection
𝐶 to some smaller text collection 𝐶̂ and then consider the TNC 𝐶̂′ separately. This is fundamentally
different from the previously described operators, as the filtering here does not operate on n-grams, but
on entire documents and texts. On a purely conceptional level, however, the algebraic operators are
similar: Instead of operating on 𝑅𝐶′ , we now consider 𝑅𝐶(𝑇 ,𝑀), where 𝑇 contains the texts and 𝑀 the
metadata map (including the timestamp 𝜏𝑖) of the documents 𝑑𝑖. A selection on 𝑅𝐶 then yields a smaller
relation 𝑅𝐶̂, which in turn defines the smaller TNC 𝐶̂′.
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3. Query system review

Having defined our data model and a formal framework for query formulation, we can now proceed to
review 12 existing query systems for TNCs. We begin by describing our literature research process and
justifying our selection of the 12 query systems. We then consider different properties of these systems:
the corpora they are meant to analyze, the expressive power of their query languages, and finally their
practical usability.

3.1. Literature selection

Ngram Search Engine

GBNV

NgramQuery

PoliticalMashup
Ngramviewer

GB-Adv Slash/A

NB N-gram

CHQL

(an:a)-lyzer Icelandic Gigaword
n-Gram Viewer

ParlaMint Ngram
Viewer

2015

2010

2020

2025

Meta Trend Viewer

Figure 3: Citation graph of publications related to different query systems

For selecting the literature relevant for our review, we attempted to perform targeted keyword
searches in Google Scholar. This, however, proved problematic: The GBNV is significantly more popular
than any competitors, and thus heavily dominates the result sets. Excluding terms like ‘Google’ was
not useful to restrict the result, as competing query systems almost necessarily mention the GBNV.
The most useful query we found was ["ngram viewer" -intitle:google], yielding NB N-Gram by
Birkenes et al. [26] and Slash/A by Todorova et al. [25]. Following bi-directional citation links from
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Table 1
Existing TNC query systems

Year Query System Website (last accessed March 18, 2025)
2010 Ngram Search Engine [22] http://nlp.cs.nyu.edu/nsearch (unavailable)
2011 GBNV [9, 7, 8] https://books.google.com/ngrams/
2012 NgramQuery [18] —
2013 PoliticalMashup Ngramviewer [23] http://ngram.politicalmashup.nl (unavailable)
2014 GB-Adv [24] https://www.english-corpora.org/googlebooks/
2014 Slash/A [25] http://linguistics.chrisculy.net/lx/vistola/tools/slasha.html
2015 NB N-gram [26] https://www.nb.no/ngram/
2018 CHQL [27, 6, 28] —
2020 (an:a)-lyzer [1] https://osf.io/ht8se/
2020 Icelandic Gigaword n-Gram Viewer [29] https://n.arnastofnun.is/
2022 Meta Trend Viewer [30] https://meta-trend-viewer.elte-dh.hu/
2024 ParlaMint Ngram Viewer [31] https://debateabase.wooverheid.nl/ (unavailable)

there, we further identified the Icelandic Gigaword n-Gram Viewer (Steingrímsson et al. [29]) and the
Meta Trend Viewer (Indig et al. [30]).
This motivated the following selection procedure: Starting from 8 seed articles (including the two

mentioned above, [26] and [25]) we were aware of from previous research, we followed bi-directional
citation links to other articles describing query systems. We did not include the GBNV itself into the
seed set, as its corresponding papers have been cited several thousand times, but most of these citations
do not describe query systems. We intended to continue this procedure transitively—but the only
further query system we found was the PoliticalMashup Ngramviewer [23]. This may be a consequence
of the generally sparse citation graph between the considered articles: Figure 3 illustrates that many of
the query system articles do not cite others, except for the GBNV. This fragmentation makes it difficult
to systematically identify and evaluate relevant literature, finally leading us to settle on our selection of
12 systems.

3.2. Underlying text corpora

Table 2
Different query systems and their underlying text corpora and TNCs

Query system Text corpus TNC
Ngram Search Engine English Wikipedia
GBNV library collections, unknown GBNC
NgramQuery crawled websites, unknown Google Web 1T
PoliticalMashup Ngramviewer Dutch parliament proceedings
GB-Adv same as GBNV GBNC, 10-year aggregates
Slash/A customizable
NB N-Gram Norwegian National Library
CHQL same as GBNV GBNC (2012)
(an:a)-lyzer same as GBNV GBNC, partial
Icelandic Gigaword n-Gram Viewer Icelandic Gigaword Corpus [32, 33]
Meta Trend Viewer customizable
ParlaMint Ngram Viewer ParlaMint.ana 3.0 [34]

One of the first decisions to make for any n-gram frequency analysis is which corpus is suitable for
the concrete research questions. This already restricts the choice of available query systems, as most of
the existing ones operate on one, predefined corpus and cannot easily be applied to other corpora, as
summarized in Table 2. If the table lists no TNC, it is the one constructed from the corresponding text
corpus as described in Section 2.1. While, in theory, all systems could be applied to any TNCs, most
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implementations do not allow changing the corpus and might not scale well.
The GBNC is the most well-known and by far the biggest TNC. It is based on numerous library

collections, digitized as part of the Google Books project. It spans more than 500 years and contains at
least around 6% of all books ever published [8]. Due to copyright reasons, neither the full texts nor
any metadata of the included documents are available, making it impossible to reconstruct the GBNC’s
exact composition. Thus, the GBNC is a case where the TNC 𝐶′GBNC is available, even though the text
corpus 𝐶GBNC is not. Nonetheless, it has attracted widespread attention from researchers.
A similar, but older and smaller corpus, is the Google Web 1T 5 corpus [35, 36]. Released in 2006, it

contains 1 trillion tokens, extracted from crawled websites. Lacking a temporal dimension, it is not
strictly a TNC in our sense, but rather a snapshot of a single point in time. Again, the underlying
documents are unavailable.

Most of the other query systems operate on smaller, domain-specific corpora: a corpus of international
European parliament proceedings for the ParlaMint Ngram Viewer; specifically Dutch parliament
proceedings for the PoliticalMashup Ngram Viewer; Norwegian and Icelandic texts for NB-N-Gram and
the Icelandic Gigaword n-Gram Viewer, respectively; and the English Wikipedia for the Ngram Search
Engine.
One special case are Slash/A and the Meta Trend Viewer. While their demos contain predefined

corpora, letters between Elizabeth Barrett and Robert Browning for Slash/A, and Hungarian news
articles for the Meta Trend Viewer, both are explicitly designed for different corpora as well. Slash/A
uses the TCF format2 for its corpora, the Meta Trend Viewer stores them in a relational database and
can import a format also used by the Sketch Engine [10]. Four systems have source code available,
so local instances of these systems can potentially also handle custom corpora (more detail is found
in Section 3.4, under Extensibility). Another special case are NgramQuery and CHQL, for which no
implementations are available at all—in this case, Table 2 lists the corpora the systems were designed
for.

3.3. Expressive power of query languages

The expressive power of a query language defines what kinds of queries and information needs can be
formulated within it. In this section, we investigate the languages of the different query systems and
give insights into their expressive powers.

First, we define a set of information needs we want to evaluate. This set is shown in Table 3. It covers
the types of information needs we defined in Section 2 and sufficiently differentiates the query systems.

Table 3
Common information needs and their formalizations

Information need Algebraic expression

n-
gr
am

op
er
at
io
ns

(i) keyword search 𝜎𝑔=𝑔ref (𝑅𝐶′)
(ii) single wildcard 𝜎𝑔≃𝑔ref (𝑅𝐶′), 1 ∗ in 𝑔𝑟𝑒𝑓
(iii) multiple wildcards 𝜎𝑔≃𝑔ref (𝑅𝐶′), multiple ∗ in 𝑔𝑟𝑒𝑓
(iv) internal wildcard 𝜎𝑔≃𝑔ref (𝑅𝐶′), where some 𝑤𝑖 in 𝑔𝑟𝑒𝑓 contains ∗̂
(v) edit distance 𝑑edit(𝑔1, 𝑔2)

fr
eq
ue
nc
y

op
er
at
io
ns

(i) frequency threshold 𝜎∑𝑡∈𝑇 𝑓𝑔(𝑡)>𝑐(𝑅𝐶′), for some constant 𝑐
(ii) most frequent 𝜎top(𝑐,𝑔)(𝑅𝐶′), for some constant 𝑐
(iii) similarity search 𝑑sim(𝑓𝑔1 , 𝑓𝑔2)
(iv) correlation 𝜌(𝑓𝑔1 , 𝑓𝑔2)
(v) arithmetic (𝑔1, 𝑓𝑔1) ∘ (𝑔2, 𝑓𝑔2)

kn
ow

le
dg

e,
m
et
ad

at
a (i) synonym grouping 𝑅𝐶′(𝐺, 𝐹 ) ⋈𝑅.𝐺=𝑆.𝐺 𝑆(𝐺, Syn), where Syn is a list of synonyms of 𝐺.

(ii) dictionaries 𝜎𝑔∈𝐷(𝑅𝐶′), for some dictionary 𝐷
(iii) sentiment 𝑅𝐶′(𝐺, 𝐹 ) ⋈𝑅.𝐺=𝑆.𝐺 𝑆(𝐺, 𝑉 ), where 𝑆 is a sentiment dictionary
(iv) metadata filtering 𝜎𝑚(𝑘)=𝑥(𝑅𝐶), for some metadata key 𝑘 and value 𝑥

2https://weblicht.sfs.uni-tuebingen.de/englisch/tutorials/html/index.html
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Table 4
Different query systems and supported query types as reported (GBNV-like systems in blue, subcorpus-oriented
systems in red)

Query system n-gram operations frequency operations knowledge, metadata
i ii iii iv v i ii iii iv v i ii iii iv

Ngram Search Engine 3 3 3 3
GBNV 3 3 3
NgramQuery 3 3 3 3 3 3
PoliticalMashup Ngramviewer 3 3
GB-Adv 3 3 3 3 3
Slash/A 3 3 3
NB N-Gram 3 3 3 3 3
CHQL 3 3 3 3 3 3 3 3 3 3 3 3
(an:a)-lyzer 3
Icelandic Gigaword n-Gram Viewer 3 3 3 3 3
Meta Trend Viewer 3 3
ParlaMint Ngram Viewer 3 3

The results of our review regarding expressive power are summarized in Table 4. First, we want to
highlight common patterns across different systems, and then go into further detail on some of the
systems that do not fit those patterns.

The first group of systems we identified are the GBNV-like systems. This group comprises the GBNV
itself, the Ngram Search Engine, GB-Adv, Slash/A, NB N-Gram and the Icelandic Gigaword n-Gram
Viewer. While there are some differences within the group, they share common characteristics: Search
and filtering operations are (mostly) limited to n-grams and cannot take frequencies into account. Most
of the systems support simple arithmetic operations to aggregate a small number of frequency series
into a combined one. Their output is usually a visualization of frequencies over time, most often as
a line plot. Within this group, the main difference between the systems is their flexibility regarding
wildcards.

The second group are the subcorpus-oriented systems. This group includes the PoliticalMashup
Ngramviewer, the Meta Trend Viewer and the ParlaMint Ngram Viewer. Their unifying characteristic
is their focus on subcorpora: They offer the possibility to construct subcorpora according to documents’
metadata, and operators to visualize and compare frequencies across these subcorpora. Their user
interfaces are similar, offering exact keyword searches and separate fields for metadata-based restrictions.

The three remaining systems are NgramQuery, the (an:a)-lyzer and CHQL. The (an:a)-lyzer is a very
specific case. Its focus is the investigation of one very specific linguistic phenomenon, the pronunciation
of the letter h at the beginning of English words. It is not a general-purpose query system, so it stands
out compared to all the others, not even offering keyword searches on its corpus. NgramQuery focuses
mainly on combining TNCs with WordNet. It offers a rich selection of operators mapping relations in
WordNet, e.g., synonym and antonym relationships between words. Finally, CHQL is a very flexible
query language and offers a lot of unique operators. An actual system implementing this language is,
however, not available, only the formal definitions of these operators. A query system based on CHQL
would be vastly more expressive than any of the other systems we investigated.

3.4. Practical usability

We consider four dimensions of practical usability: availability extensibility, scalability, and query
language complexity. As already mentioned in Section 3.2, implementations of NgramQuery and CHQL
are not available, so in the following we assume these systems would behave in the way they are
described in their corresponding articles.

26



Availability A query system can only be used if some implementation of it is available to researchers.
This usually comes in one of two forms: as a hosted web application or as a repository of source code.3

Both options have their own advantages: A hosted web application requires no user setup and entry
barriers are very low, but it is usually less flexible. A source code repository is more difficult to set
up and requires the user to have sufficiently powerful hardware, but can be more easily adapted for
specific use cases. The ideal case is therefore a combination of both: a web demonstrator of the query
system, together with source code allowing for modifications.

NgramQuery and CHQL are not available in any form. At the time of writing, hosted web applications
are accessible for the GBNV, GB-Adv, NB N-gram, the Icelandic Gigaword n-Gram Viewer and the Meta
Trend Viewer. The web demonstrators of the Ngram Search Engine, PoliticalMashup Ngramviewer,
(an:a)-lyzer and the ParlaMint Ngram Viewer exist or existed in the past, but could not be accessed.
Source code is available for Slash/A, the Icelandic Gigaword n-Gram Viewer, the Meta Trend Viewer
and the ParlaMint Ngram Viewer. Web demonstrators or source code archives, respectively, are linked
in Table 1.

Extensibility No query system developer is able to anticipate all potential information needs of their
users. Therefore, extensibility of such systems is useful in adapting them for a wider range of research
questions. We consider three kinds of extensibility: (1) the possibility to analyze custom corpora, (2)
extensions of the query language itself, and (3) the export of data to enable processing in different tools.
(1) None of the web demonstrators support the upload of custom corpora, so we focus on the four

systems for which source code is available. Slash/A and the Meta Trend Viewer address user-defined
corpora explicitly and the required file format is documented in the respective papers [25, 30]. The
Icelandic Gigaword n-Gram Viewer is based on Korp [11] and the Stuttgart Corpus WorkBench (CWB)
[37]. It might be possible to adapt the viewer to custom corpora stored within these tools, but this is
not intended and the required effort is unclear. The ParlaMint Ngram Viewer is based on XML files and
ElasticSearch [38]—a potentially flexible technology, but the exact process to use the viewer for custom
corpora is not described.

(2) None of the systems we reviewed offers any defined mechanisms for query language extensions.
For pure web applications, this makes any extensions impossible, as it would require the execution of
custom code on foreign servers, which is usually not allowed. The systems available as source code
might offer the possibility to be extended, but not in a documented and intended way, so a deeper
technical understanding of their implementations is required—a significant effort.
(3) Being able to export query results from a query system to a common format like CSV enables

further analyses which are not possible within the system itself. Of the systems we investigated, 2 offer
this possibility: NB N-Gram and the Icelandic Gigaword n-Gram Viewer. While not the raw data, at
least plots can be exported from Slash/A, the (an:a)-lyzer and the Meta Trend Viewer. For other systems,
workarounds to extract numerical data sometimes exist,4 but these are not an official part of the query
system and potentially outdated.

Scalability Experimentally evaluating the scalability of different query systems would require access
to comparable implementations of the systems in question. Since that is not available, we take a more
theoretical approach towards evaluating scalability, based on the size of the corpora the systems were
designed for. These sizes are shown in Table 5, in terms of number of distinct n-grams or number of
documents, depending on what was reported by the respective authors. We want to highlight two
main points about the table: (a) the corpus sizes differ by several orders of magnitude, so it is to be
expected that not all query systems can efficiently handle the bigger corpora; and (b) there is no clear
trend towards larger corpora over time—recall from Table 1 that the rows are ordered by year of first
publication.

3A third option would be the distribution of compiled binary files and non-disclosure of source code, but none of the systems
we investigated follow that model.
4https://github.com/econpy/google-ngrams, https://github.com/prasa-dd-vp/google_ngram_api
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Table 5
Corpus sizes for different query systems, as reported

Query System Number of n-grams Number of documents
Ngram Search Engine 4.6 billion [22] -
GBNV ≥ 860 billion [28] ≥ 8.1 million [8]
NgramQuery 3.8 billion [22] -
PoliticalMashup Ngramviewer 2.2 billion [23] -
GB-Adv 7̃30 million [24] -
Slash/A - 557 [25]
NB N-Gram - 770,000 [26]
CHQL 860 billion [28] 8.1 million [8]
(an:a)-lyzer 233 million [1] -
Icelandic Gigaword n-Gram Viewer 120 million [32] -
Meta Trend Viewer - 2.8 million [30]
ParlaMint Ngram Viewer 5.8 billion [31] 7.5 million [31]

Query language complexity Measuring the complexity of a query language is not trivial. We will
not define a formal model for it, but rather give a plausible intuition regarding the different query
systems. By ‘complexity’, we do not mean the computational complexity, but rather complexity in the
process of query formulation.

On one end of the spectrum are simple keyword queries within a graphical interface: Users only have
to supply an n-gram they are interested in to retrieve a plot of its frequency. Most of the GBNV-like
systems follow this pattern. The syntax of wildcard queries is equally simple within these systems,
replacing words or parts of words with the respective wildcard characters.

Two systems with significantly more complex query language are NgramQuery and CHQL. Ngram-
Query contains many operators relating to WordNet and semantic similarity, for example the query
‘~#food#n’ “retrieves the hyponyms of the noun food for all of its senses” [18] and ‘food#L#15#0.6’
“retrieves the similar terms of food with cosine value at least 0.6 among the first 15 most similar terms”
[18]. A summary of all the operators defined in the language is given in [18]. CHQL, as already
mentioned in Section 3.3, defines a query algebra instead of a query language implementation. A query
language representing that algebra would be of similar complexity to a relational query language like
SQL, so significantly more complex than the other systems.

3.5. Summary of review findings

We have reviewed 12 different query systems for TNCs with regards to their expressive power, scalability
and practical usability. We identified two groups of systems, namely the GBNV-like and the subcorpus-
oriented systems. We found that most systems support keyword and wildcard queries, with different
levels of flexibility. Of the 12 systems we investigated, 5 were accessible as web demonstrators at
the time of writing, 4 more offered web demonstrators in the past that could not be accessed any
more. Source code is available for 4 of the systems. None of the systems offer defined mechanisms for
extension, but some let users analyze custom corpora and export data for use in different systems. The
size of the underlying corpora varies significantly between the different systems, with no clear trend
towards larger corpora over time. Most of the systems offer simple query languages through graphical
user interfaces, making them attractive to users without a strong technical background.

When conducting a study on TNCs, the choice of a suitable tool is mainly limited by three factors: (1)
the corpus of interest, as most systems are specifically tailored to one corpus; (2) the complexity of the
research question itself, as not every tool’s query language is expressive enough for any information
need; and (3) the complexity of expressing the specific information needs within a system, including the
willingness and ability of researchers to do so. Furthermore, an implementation of the chosen system
needs to be available.
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4. Conclusion

We conclude by giving a brief summary of our work, discussing its limitations and give an outlook
towards future research.

Summary We have defined a data model and query algebra for TNCs. We used this query algebra
to express abstract information needs that can be satisfied using specific query systems. A literature
review of these systems allowed us to categorize them and evaluate their capabilities, emphasizing
different aspects: the corpora the systems can analyze, their expressiveness, and their practical usability.
While the GBNV is by far the most popular tool to analyze TNCs, similar tools exist for smaller

corpora. Furthermore, there are query systems which are significantly more flexible in what information
needs they can express. Our review is the first to systematically evaluate these systems and bring them
together in a concise way, summarizing the state of the art for TNC query systems.

Limitations While we are confident to have given a proper overview of the field of TNC query
systems, we are aware of limitations of our approach:

• The literature survey we conducted was not systematic. For reasons we detailed in Section 3.1,
a systematic study was not feasible. Nonetheless, we cannot guarantee that we did not miss
potentially interesting query systems. Our selection of query systems is rooted in an unsystematic,
but thorough literature research. The systems are diverse and implement very different query
languages, so we are confident that our review covers the most important classes, even if we may
have missed certain systems.

• We only investigated existing query systems, so some interesting ideas for potential query systems
could not be included. For example, to the best of our knowledge, there has been no investigation
into whether pure SQL can be used to query TNCs efficiently and flexibly. While relational
databases are the backend for several systems [24, 30], none of these systems allow free query
formulation. Another example is due to the recent development of Large Language Models
and their impressive performance on query synthesis tasks [39, 40]: No existing query system
leverages these new capabilities, but being able to transfer natural language queries into actual
database queries might lower the user-facing complexity of such tasks considerably.

• We evaluated practical usability in a rather abstract manner instead of conducting user studies.
We consider our criteria to be well-defined and objective enough to still yield valuable insights,
especially because a user study to compare 12 different systems would be a very substantial effort.

Future work We plan to make use of our results by implementing a query system based on the
algebra we defined in Section 2. Such a system would combine the strengths of the existing query
systems into one unified interface, and—if implemented efficiently—enable more complex TNC analyses
than previously possible.
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