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Abstract
In digital communication, the correct identification of modulation types has huge importance, and it can enhance
the reliability of signal processing. This work describes an approach to recognizing digital modulation types when
the signal parameter, carrier frequency, initial phase, etc., is uncertain. The basis of the classification method is
the 9th order of cumulants— indeed, it is the key feature enabling an accurate classification. This article employs
a multilayer neural network, which, in turn, is combined with a data normalization scheme to determine possible
modulation type factors (i.e., QAM–8, APSK–8, QAM–64, PSK–8) even when the corresponding parameter factors
are unknown. The results of the simulation study indicate that suboptimal performance of the system has
almost been eliminated concerning present inaccuracies in carrier frequency offset or initial phase offset. Thus,
this methodology can easily be used as a firm base extending to other modulation types and, thus, to similar
uncertainties in other signal parameters.
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1. Introduction

In a previous paper, we formulated and solved the problem of the recognition of digital modulation in
5G systems under the assumption of perfectly synchronous receivers. That study had been motivated
by the need for ultra-precise classification of signals in the context of advanced communication and
had proposed a neural-network-based approach that secures fairly good identification of very weak
signals—if accompanied by statistical features of the signals—at low SNR values [1, 2]. Statistical features
that were chosen are high-order mixed cumulants 𝐶𝑛,𝑚, which could be described in formulas of their
relation to mixed moments 𝐸𝑛,𝑚 up to the 9-th order from 𝐶2,0:

𝐶2,0 = 𝐸2,0, (1)

to 𝐶5,4:

𝐶5,4 = 𝐸5,4 − 10𝐸4,4𝐸2,0 − 20𝐸4,3𝐸1,1 − 6𝐸5,2𝐸0,2 − 10𝐸4,2𝐸3,0 − 40𝐸3,3𝐸2,1 − 30𝐸4,2𝐸1,2

−3𝐸5,1𝐸0,3 − 𝐸5,1𝐸0,2 − 5𝐸1,4𝐸4,0 − 40𝐸3,2𝐸3,1 − 60𝐸4,1𝐸2,2 − 20𝐸4,1𝐸1,3 − 𝐸5,0𝐸0,4+

30𝐸1,4𝐸
2 + 60𝐸2,3𝐸1,1𝐸2,0 + 180𝐸4,2𝐸0,2𝐸2,0 + 240𝐸4,1𝐸3,1𝐸2,0 + 120𝐸3,2𝐸2,0𝐸1,1+ (2)

111𝐸4,1𝐸1,0𝐸0,2 + 4𝐸5,0𝐸0,2 + 10𝐸4,1𝐸1,1 + 2𝐸5,0𝐸0,2 + 300𝐸2,2𝐸1,2𝐸2,0 + 60𝐸2,2𝐸1,1𝐸2,0+
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270𝐸2𝐸1,2𝐸2,0 + 720𝐸1,1𝐸1,2𝐸2,0 − 360𝐸1,2𝐸2,0𝐸0,2 − 720𝐸1,1𝐸1,2.

The architecture and implementation of an MLP were specifically optimized for modulation recogni-
tion is described. The network takes signal features through an input layer, nonlinearly transforms
the inputs via multiple hidden layers with ReLU activations and makes a probability-based classifica-
tion through a Softmax output layer. That is, the processing stages, which is in weighted sums and
application of nonlinear transformations as discussed in:

𝑑𝑓𝑗 = act(𝑗,1) = 𝑤
(𝑗,1)
0 +

𝑛∑︁
𝑖=1

𝑤
(𝑗,1)
𝑖 𝑥𝑖 (3)

where 𝑤(𝑗,1) =
(︁
𝑤

(𝑗,1)
0 , 𝑤

(𝑗,1)
1 , 𝑤

(𝑗,1)
𝑛

)︁
, 𝑗 = (1, 𝑁1) - row vector of synaptic connections for the 𝑗-th

neuron 𝑁1 - Number of neurons in the input layer, 𝑛 - Number of input features, 𝑥𝑖 - Row vector of the
𝑖-th input.

And the subsequent related formulas which govern the activations of the neurons, and also the
backpropagation weight updates are presented. The principal novelty of this research emanates from the
aviation of high-order cumulants as good descriptors to take into consideration the inherent statistical
properties of modulated signals. Some of the properties of cumulants that have been revealed include
their resistance to the characteristic Gaussian noise and ability to resolve distinctions between various
modulation schemes. This difference summarized the moments and that was a positive groundwork
toward distinguishing the different modulations, for example, QAM and PSK, among several others
[3, 4, 5].

That dataset comprised 10,000 signal samples for training and was later broken down into training,
validation, and testing datasets. The optimization of the neural network used the Adam algorithm.
Another model that reported having an SNR of 5 dB and three hidden layers configured to give just
about 99% recognition accuracy was reported [6, 7]. That subsection also elaborates on how changes in
the architecture of the network and the hidden layer number influence performance; this injects more
evidence towards the effective performance of cumulant-based feature extraction and neural training
process.

A multilayer perceptron optimized with Adam using high-order cumulants for feature descriptors
presents itself as a dependable methodology for recognition of digital modulations under ideal synchrony.

In modern information transmission systems, the transmitted signal may contain service information
for synchronization between the transmitter and receiver, but often upon reception of the signal
its carrier frequency and initial phase are known with some error. For example, this occurs when
analyzing the received signal in the case of the Doppler effect, when the frequency of the received
oscillations changes according to a law associated with the movement of the transmitter and receiver
of these oscillations, or, for example, due to the instability of the frequencies of the transmitter and the
heterodynes of the receiver [8, 9, 10].

In this article, we study the problem of recognizing the types of digital modulation of the received
signal with parametric a priori uncertainty, in particular, uncertainty of the carrier frequency or initial
phase. The received high-frequency signal is subjected to preliminary processing, where the received
signal is transferred to the zero frequency by multiplying by the oscillations cos(2𝜋𝑓0𝑡 + 𝜑0), and
sin(2𝜋𝑓0𝑡+ 𝜑0), generated by the heterodyne, the received signal is passed through a low-pass filter
and discretized for further digital processing. As a result of preliminary processing, the received signal
can be expressed as follows:

𝑟𝑘(𝑡) =
1

2
𝐴(𝑡) {cos [2𝜋Δ𝑓𝑡+ 𝜃(𝑡) + Δ𝜃0]− 𝑖 sin [2𝜋Δ𝑓𝑡+ 𝜃(𝑡) + Δ𝜃0]} = 𝐼𝑘(𝑡) + 𝑖𝑄𝑘(𝑡), (4)

where Δ𝑓 is the carrier frequency offset, and Δ𝜃0 is the initial phase offset.
The obtained in-phase 𝐼𝑘(𝑡) and quadrature 𝑖𝑄𝑘(𝑡) components are grouped into a complex signal

𝑟𝑘(𝑡) = 𝐼𝑘(𝑡) + 𝑖𝑄𝑘(𝑡) and its complex conjugate 𝑟*𝑘(𝑡) = 𝐼𝑘(𝑡)− 𝑖𝑄𝑘(𝑡), which are the initial data for
calculating the moments and cumulants. To overcome a priori uncertainty, it is proposed to continue



Figure 1: Algorithm for recognizing types of digital signal modulation with parametric a priori uncertainty.

using the capabilities of a neural network. This requires an increase in the number of hypotheses tested
by the neural network. For example, with completely known signal parameters, there was only one
hypothesis that the signal had PSK-8 modulation. With the unknown signal frequency, the hypotheses
have appeared that the signal modulation is PSK-8, and the frequency shift is 0 Hz; that the signal
modulation is PSK-8 and the frequency shift is 500 Hz; and so on. Figure 1 shows an algorithm for
recognizing modulation types and estimating the value of the detuning from the carrier frequency or
the initial phase using high-order cumulants as informative features [11, 12, 13].

Table 1
Values of Cumulants of Different Orders for QAM-64 and PSK-8 Modulation

Cumulant QAM-64 PSK-8
Δ𝑓 = 0 and Δ𝜃0 = 0 Δ𝑓 = 900 Hz Δ𝜃0 = 0.04 rad. Δ𝑓 = 900 Hz

𝐶2,0 -0.00914 -0.00631 0.012098 -0.01226
𝐶3,0 -0.03608 0.047022 -0.04646 0.040557
𝐶2,1 -0.00801 0.004393 0.013821 0.013631
𝐶4,0 -0.56475 -0.01767 3.126333 3.203364
𝐶4,2 -0.61434 -0.98048 0.920861 0.85352
𝐶5,0 -0.20752 0.092887 0.044091 0.058086
𝐶3,2 -0.00931 -0.00627 -0.05668 0.013849
𝐶6,0 0.050119 -0.06521 0.977919 1.334189
𝐶3,3 1.629901 3.845417 -0.99971 -0.56647
𝐶7,0 -1.56306 -0.4735 -1.01194 0.513651
𝐶6,1 0.599746 -0.50621 -1.2013 -1.02816
𝐶4,3 -0.12934 0.010309 -0.3314 -0.7638
𝐶8,0 -12.8893 -1.42314 -192.062 -202.193
𝐶6,2 -11.6764 0.01108 -28.292 -22.645
𝐶4,4 1357.575 1414.858 1412.948 1360.68
𝐶9,0 -8.1217 4.105405 -28.8553 -15.8736
𝐶8,1 6.432584 5.206349 27.08937 -7.69605
𝐶6,3 -121.758 114.9256 535.0172 368.783
𝐶5,4 2470.2 2219.866 5224.992 4881.125

In contrast to the algorithm studied in previous work, in this case the cumulants for different types
of modulation are calculated at a specific SNR value, and the offset from the carrier frequency varies
from 0 Hz to 2000 Hz with a step of 500 Hz, and the offset from the initial phase - from 0 rad. to 0.09



Figure 2: Graph of the distribution of the 𝐶5,4 value for GMSK at different values of Δ𝑓 .

Figure 3: Distribution graph of the 𝐶5,4 value for GMSK at different values of Δ𝑓 .

rad. with a step of 0.01 rad. Despite the fact that in this case it is necessary to have a large number
of databases for the ANN input, this method does not require an additional algorithm for estimating
the value of the carrier frequency and the initial phase [14, 15]. This algorithm is uniform and allows
recognizing the types of digital modulation of the received signal with an acceptable time spent in the
process of processing the received signal. Table 1 shows examples of cumulant values up to the 9th
order for QAM-64 and PSK-8 modulation with different values of the carrier frequency offset Δ𝑓 and
the initial phase Δ𝜃0 at SNR = 3 dB. The analysis of the obtained cumulant values allows us to assert
that the information content of one or another cumulant about the type of signal modulation depends
significantly on the offsets Δ𝑓 and Δ𝜃0. For example, in the absence of offsets, the first cumulant 𝐶2,2

in the table for both distinguished types of modulation QAM-64 and PSK-8 has the same negative sign,
at Δ𝑓 = 900Hz the signs of the cumulants are different, at Δ𝜃0 = 0.04 rad the signs of the cumulants
are positive [16, 17, 18].

Figures 2 and 3 show the dependencies of the cumulant values 𝐶2,2 and 𝐶5,4 for the GMSK signal
with different values of Δ𝑓 . At Δ𝑓 = 0 Hz (curve 1), Δ𝑓 = 500 Hz (curve 2) and Δ𝑓 = 1000 Hz
(curve 3), the values of the cumulants 𝐶2,2 and 𝐶5,4 remain virtually unchanged for different signal
realizations, although the values depend on the frequency shift. In the case of Δ𝑓 = 1500 Hz (curve 4),
the values of the cumulants 𝐶2,2 and 𝐶5,4 begin to change noticeably for different realizations.

Figure 4 shows the values of the cumulant 𝐶5,3 for the GMSK signal at different values of Δ𝑓 .



Figure 4: Distribution graph of the 𝐶5,3 value for GMSK at different values of Δ𝜙0.

Figure 5: The result of assessing the accuracy of signal modulation recognition at Δ𝜃0 equals 0, 0.02, 0.05, and
0.09 rad.

From the graphs, it is evident that at Δ𝑓 = 0 rad. (curve 1) and Δ𝑓 = 0.02 rad. (curve 2) the value
of 𝐶5,3 changes insignificantly for different implementations, but the value of cumulants itself depends
significantly on the phase shift. And at Δ𝜃0 = 0.05 rad. (curve 3) the value of the cumulant begins
to change significantly for different implementations. From the results of cumulant behavior analysis,
it may be said that the approximated to cumulant features improve the recognition accuracy of the
types of digital modulation of signals for nonzero offsets from the carrier frequency and initial phase
[19, 20, 21]. Modeling of a multilayer neural network was done in the Python program. At an SNR
of 5 dB, four databases were created for the recognition of types of digital modulation with a priori
uncertainty of initial phase. Each database includes 10,000 signals (1000 signals per modulation type),
where 7200 signals are for training, 1800 for validation, and 1000 for testing.

Figures 5 show the results of the experimental evaluation of the average value of the accuracy of
recognizing types of digital modulation of signals for different values of Δ𝜃0.

It follows from the graphs that at SNR = 5 dB and a value of Δ𝜃0 = 0.02 rad. the average accuracy is
0.891, at Δ𝜃0 = 0.05 rad. for QAM-8, APSK-16, APSK-32 and BPSK modulation the accuracy is 0.99, and
for GMSK, QAM-16, QAM-64, QPSK, 8-PSK-8 and FSK-2 modulation the accuracy drops due to the fact



Figure 6: Dependence of recognition accuracy from SNR for different values of Δ𝜃0.

Figure 7: Dependence of recognition accuracy from Δ𝜃0 at SNR = 3 dB.

that the cumulant values have unstable behavior for different signal implementations, and the cumulant
values themselves for these types of modulation differ insignificantly [22, 23, 24]. Even at Δ𝜃0 = 0.09
rad., recognition of digital modulation types is practically impossible; the average accuracy is 0.112.
To study the influence of the SNR value on the accuracy of recognition of digital modulation types at
different values of offset from the initial phase, 71 databases were formed. Each database corresponds
to one SNR value, which varies from -20 dB to 14 dB with a step of 0.5 dB. The simulation result is
shown in Figures 6 and 7. It is evident from the graphs that with an increase in the offset from the initial
phase, the average accuracy of recognition of digital modulation types decreases because high-order
cumulants at a large offset from the initial phase have large values [25], which is evident in Figures 2–4.

Similarly, with a priori uncertainty of the carrier frequency, four databases were formed. Figure 8
shows the results of the experimental evaluation of the average value of the accuracy of recognizing
types of digital signal modulation for different values of Δ𝑓 at SNR = 5 dB.

The graphs clearly show that at Δ𝑓 = 500 Hz and Δ𝑓 = 1000 Hz, the average accuracy for GMSK,



Figure 8: Result of assessing the accuracy of signal modulation recognition at Δ𝑓 equals 500, 1000, 1500, and
2000 Hz.

Figure 9: Dependence of recognition accuracy from SNR for different values of Δ𝑓 .

8-QAM, APSK-16, APSK-32, BPSK and QPSK modulation is greater than 0.94, and for other types of
modulation it is significantly lower. At large frequency offsets, for example, at Δ𝑓 = 1500 Hz and
Δ𝑓 = 2000 Hz, the average accuracy is low. 71 databases were created to study the effect of the
SNR value on the accuracy of recognizing digital modulation types at different offsets from the carrier
frequency. Each database corresponds to one SNR value, which varies from -20 dB to 14 dB with a step
of 0.5 dB. The simulation result is shown in Figure 9.

From graphs 6 and 9, we can conclude that in order to ensure acceptable reliability of modulation
type recognition by the neural network, the maximum value of Δ𝑓 should not exceed 1.5 kHz, and the
phase shift Δ𝜃0 should not be greater than 0.05 rad.



2. Multilayer perceptron in the problem of recognizing QAM and PSK
modulation under parametric a priori uncertainty

The study of the algorithms for recognizing modulation types showed that, compared to the recognition
of other modulation types, the separation of QAM-8 and APSK-16, as well as QAM-64 and PSK-8 at
low SNRs occurs with less reliability. In this section, a study is conducted on the recognition of these
modulation types with uncertainty in the carrier frequency and initial phase [26, 27, 28]. From the
graphs of the previous section, it is clear that with large offsets from the carrier frequency or initial
phase, the average accuracy of correct recognition of these modulation types decreases due to the fact
that high-order cumulants under this condition have a large value compared to low-order cumulants,
therefore, the efficiency of the cumulant separation property decreases [29, 30]. For example, in Table 1
at Δ𝑓 = 900 Hz for the QAM-64 signal, the value of the cumulant 𝐶5,4 is greater than the cumulant
𝐶2,2 in 5225.74

0.921 ≈ 5680 times.
It is resolved by applying the Database Standardization process available in the ANN. The stan-

dardization method (Standard Scaler) in ML is one of the data preprocessing methods used to scale
all original values in the dataset based on values drawn from a distribution with a mean of zero and
standard deviation of one. The two steps are appending columns and fitting the model. In the first step,
the mean and standard deviation of each feature in the data set are calculated. In the second step, each
feature value is transformed according to the formula:

𝑍 =
𝑥− 𝜇

𝜎
, (5)

where 𝑥 is the original feature value, 𝜇 and 𝜎 are the mean and standard deviation of the feature.
The standardization method results in a standardized scale that determines the place of each value in

the data set by measuring its deviation from the mean in standard deviation units. This makes the data
comparable and usable for machine learning. As an example, the cumulant values obtained as a result
of standardization for QAM-64 and PSK-8 modulation and certain frequency and initial phase detuning
of the signal are presented in Table 2.

Table 2
Cumulant Values Obtained as a Standardization Result

Cumulant QAM-64 PSK-8
Δ𝑓 = 0 and Δ𝜃0 = 0 Δ𝑓 = 900 Hz Δ𝜃0 = 0.04 rad. Δ𝑓 = 900 Hz

𝐶2,0 -0,04023 -0,03522 0,092938 -0,07588
𝐶3,0 0,001786 -0,04106 -0,03308 0,03591
𝐶2,1 0,023648 0,009617 0,017193 0,01704
𝐶4,0 -0,43625 -0,43415 -0,42418 -0,42408
𝐶4,2 -0,4352 -0,43881 -0,42107 -0,42168
𝐶5,0 -0,00614 -0,00639 -0,00661 -0,00656
𝐶3,2 -0,00893 -0,00817 -0,00862 -0,00799
𝐶6,0 -0,00173 -0,00179 -0,00152 -0,00143
𝐶3,3 0,035202 0,036431 0,033832 0,034062
𝐶7,0 -0,00902 -0,00903 -0,00904 -0,00901
𝐶6,1 -0,01063 -0,01064 -0,01066 -0,01066
𝐶4,3 -0,00694 -0,00697 -0,00699 -0,00701
𝐶8,0 0,375218 0,375228 0,375183 0,375079
𝐶6,2 0,322667 0,322727 0,322649 0,322549
𝐶4,4 -0,38261 -0,38257 -0,3825 -0,38248
𝐶9,0 -0,00205 -0,00205 -0,00205 -0,00205
𝐶8,1 -0,0083 5.-0,0083 -0,00829 -0,0083
𝐶6,3 -0,02269 -0,02227 -0,02227 -0,02228
𝐶5,4 -0,37805 -0,37809 -0,37811 -0,3781

As a result of standardization of the database for the QAM-64 signal, the ratio between the cumulants
𝐶5,4 and 𝐶2,2 decreases to −0.3782/− 0.4208 ≈ 0.9.



Figure 10: Results of QAM-8 and APSK-16 modulation recognition for different values of Δ𝑓 .

Figure 11: Results of recognition of QAM-64 and PSK-8 modulation for different values of Δ𝑓 .

Four databases have been formed to recognize two modulation groups: QAM-8 and APSK-16, QAM-
64 and PSK-8. The first two databases have been formed to recognize these modulation types under
carrier frequency offset conditions; each database consists of 12,800 signals (800 signals for each carrier
frequency offset value). Under initial phase offset conditions, two databases have also been formed;
each database consists of 16,000 signals (800 signals for each initial phase offset value). The results of
modeling the recognition of the modulation type under carrier frequency offset conditions are shown
in Figure 10 and 11.

The figures are in the form of tables, the rows and columns of which correspond to the signal



Figure 12: Results of QAM-8 and APSK-16 modulation recognition for different values of Δ𝜃0.

modulation type and carrier frequency offset. The cells contain the results of recognizing the modulation
type. For example, for Figure 10: when recognizing QAM-8 signals with a zero-frequency shift (the
first row in the figure is QAM-8 0), all 80 signals involved in the computer experiment were recognized
correctly. When recognizing a QAM-8 signal with a frequency shift of 1800 Hz (QAM-8 1800), 75 signals
were recognized correctly, and an erroneous decision was made for five signals that it was APSK-16
1800. The figures clearly show that the use of a multilayer neural network allows not only recognizing
modulation types, but also determining the carrier frequency offset values [31, 32]. Above, the accuracy
of recognizing a certain modulation type was understood as the probability of correctly identifying this
type of signal modulation among all the modulation types under consideration. In the modeling, this
probability was estimated as a sample average, i.e., as the ratio of the number of correctly recognized
signals with a given modulation type to the total number of realizations of different signals involved in
the computer experiment [33, 34, 35]. Recognition accuracy is of QAM-8 and APSK-16 modulations
with different values, thus, 0.96. Figure 12 and Figure 13 show recognition results when an Initial Phase
Offset condition was used.

It can be seen from Figures 11 and 13 that the accuracy of QAM-64 and PSK-8 modulation recognition
decreases at large frequency and phase detuning. Values of multiple cumulants at large detuning
show unstable behavior when it comes to different implementations of signals, whereas the values of
these multiple cumulants for particular modulation types vary insignificantly. However, the use of a
multilayer neural network ensures high accuracy in estimating the values of Δ𝑓 and Δ𝜑0.

Figure 14 shows the results of an experiment on recognizing a received signal with an unknown
value of Δ𝑓 . The experiment showed that the accuracy of recognition is 0.53 for QAM-64 modulation
and 0.47 for PSK-8 modulation. At the same time, the value of detuning from the carrier frequency Δ𝑓 ,
equal to 600 Hz, is determined by the algorithm with high reliability.



Figure 13: Results of QAM-64 and PSK-8 modulation recognition for different values of Δ𝜃0.

Figure 14: Modulation Recognition Accuracy for Different QAM-64 and PSK-8 Modulation Types with Varying
Frequency Offsets.

3. Conclusions

This article considers the approach to recognize digital modulation types of signals in cases of inaccurate
knowledge of signal parameters, including the carrier frequency and initial phase. It shows that to
recognize signal modulation types, it is preferable to use cumulants up to the 9th order. The simulation
results have confirmed that in the region of small values of either the carrier frequency offset or the
initial phase of the signal, this method indeed ensures high accuracy in recognizing modulation types.
Furthermore, the results of the simulation give us the possibility and advisability of expanding the list
of classified modulation types. A method of recognizing digital modulation types (QAM–8, APSK–8,
QAM–64, PSK–8), in the case of inaccurate knowledge of signal parameters, including the carrier
frequency and initial phase, is considered. A multilayer neural network is built. Data normalization
is used as a data preparation technique. Simulation results confirm that in the case of inaccurate
determination of carrier frequency and initial phase, a multilayer neural network using cumulants as an



information feature can not only recognize types of digital modulation with high probability but also
estimate the very values. The technique applied to solving the problem of a priori uncertainty about
the parameters of the signal can be applied to the case of simultaneous uncertainty about values of the
carrier frequency and initial phase, as well as the amplitude of the signal, its time position, etc.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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