
AI-driven Security as Code for software development
using multi-agent systems
Oleksandr Vakhula1,*,†, Ivan Opirskyy1,†

1Lviv Polytechnic National University, Stepan Bandera Str.,12, Lviv, 79000, Ukraine

Abstract
Security as Code (SaC) integrates security controls into code and configuration, enabling automated enforcement
throughout the software development lifecycle. This paper explores an AI-driven SaC framework utilizing
multi-agent systems to enhance the Secure SDLC (SSDLC). We present an approach in which intelligent agents
automatically generate, enforce, and adapt security policies within DevSecOps pipelines. Key contributions
include AI-powered security policy generation and enforcement using large language models, autonomous
multi-agent collaboration for continuous threat monitoring and response, and seamless integration of these
agents into CI/CD workflows for real-time security. In experiments, the AI-driven approach achieved faster
policy implementation and improved compliance compared to manual methods. Our findings demonstrate
that multi-agent AI systems can proactively harden software systems by embedding adaptive security as code,
reducing human error and responding to evolving threats in real-time. This work advances automated security
enforcement in DevSecOps, illustrating practical benefits of AI and multi-agent systems for creating more secure
and resilient software.

Keywords
Security as Code (SaC), secure software development lifecycle, DevSecOps, multi agent systems, Large Language
Models, continuous integration, continuous development

1. Introduction

The Secure Software Development Lifecycle (SSDLC) is essential for ensuring security at every stage of
modern software development. As organizations adopt cloud-native architectures and rapid release
cycles, traditional reactive security measures—such as post-development audits—struggle to mitigate
evolving cyber threats. Industry studies indicate that fewer than 20% of enterprise DevOps teams have
fully integrated security practices into their workflows, although DevSecOps adoption is rising (over
40% of teams by 2022). To bridge this gap, DevSecOps promotes shifting security left – addressing
security earlier in the process – which emphasizes treating security as a shared responsibility integrated
into development and operations.

Security as Code (SaC) has emerged as a key DevSecOps practice to embed security policy enforcement
into code and configuration. SaC involves codifying security policies, configurations, and checks so
they are automatically applied in development pipelines. By automating security controls through SaC,
organizations can reduce human error, accelerate compliance checks, and ensure that security is not an
afterthought but rather built-in by design. For example, infrastructure provisioning tools now support
policy-as-code to enforce best practices (e.g. HashiCorp’s IaC security guides). Despite its benefits,
implementing SaC at scale faces challenges such as managing complex policies, avoiding configuration
drift, and overcoming developer resistance to security processes.

Recent advances in artificial intelligence (AI) offer promising solutions to augment Security as Code.
AI-driven security automation can dynamically analyze code and configurations for vulnerabilities,
generate recommended security policies, and adapt to new threats in real-time. For instance, an AI-

CH&CMiGIN’25: Fourth International Conference on Cyber Hygiene & Conflict Management in Global Information Networks,
June 20–22, 2025, Kyiv, Ukraine
*Corresponding author.
†
These authors contributed equally.
$ oleksandr.p.vakhula@lpnu.ua (O. Vakhula); ivan.r.opirskyy@lpnu.ua (I. Opirskyy)
� 0009-0008-5367-3344 (O. Vakhula); 0000-0002-8461-8996 (I. Opirskyy)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:oleksandr.p.vakhula@lpnu.ua
mailto:ivan.r.opirskyy@lpnu.ua
https://orcid.org/0009-0008-5367-3344
https://orcid.org/0000-0002-8461-8996
https://creativecommons.org/licenses/by/4.0/deed.en


based system can scan a codebase and automatically suggest least-privilege access policies or detect
misconfigurations continuously. Major cloud providers have begun integrating AI to improve security
– e.g., Google Cloud applies ML for anomaly detection in logs and threat intelligence, and Microsoft
leverages AI to identify risks and defend cloud workloads. This trend aligns with research showing that
AI-driven methods can significantly enhance cybersecurity operations by automating detection and
response tasks.

In this paper, we explore an AI-driven Security as Code framework that utilizes a multi-agent system
to enforce security throughout the SSDLC. Our approach introduces collaborative AI agents into the
DevSecOps pipeline, each specialized in security tasks such as code vulnerability scanning, policy
generation, and compliance monitoring. We hypothesize that these AI agents can work in concert
to proactively harden systems – identifying vulnerabilities early, injecting security fixes and policies
into CI/CD workflows, and continuously improving the security posture. The goal of this research is
to evaluate the effectiveness of such an AI-powered SaC framework in reducing vulnerabilities and
ensuring compliance, with minimal human intervention. We implement a prototype with AI agents
integrated into a DevSecOps environment and assess its impact on security enforcement speed, accuracy,
and resilience. The results demonstrate the practical benefits of augmenting Security as Code with
AI and multi-agent systems, contributing to a more proactive and autonomous approach to securing
software systems.

2. Literature overview

2.1. Security as Code in modern DevSecOps

Security as Code (SaC) has become a fundamental pillar of DevSecOps, enabling security integration
into fast-paced development workflows. SaC entails writing security policies and checks as code, which
are version-controlled and automatically executed in pipelines [1]. This approach ensures that security
controls (configuration hardening, access rules, etc.) are consistently applied across environments.
Studies have shown that SaC improves visibility and consistency of security enforcement. For example,
codified policies can automatically verify compliance with standards (e.g., OWASP guidelines) during
each build or deployment. Organizations adopting SaC report streamlined deployments and fewer
misconfigurations, as secure defaults are baked into infrastructure provisioning and application code
[2].

However, implementing SaC enterprise-wide is not without challenges. One issue is policy manage-
ment complexity – writing and maintaining many security policies as code requires skilled security
engineers and tooling support [3]. As environments evolve, policies must be kept up to date to avoid
“policy drift.” There is also cultural resistance; developers may view security checks as impediments to
agility if not seamlessly integrated. Ensuring that SaC scales with the pipeline is another concern –
running extensive security tests or scans on every code change can introduce pipeline delays. Current
research is addressing these challenges by developing smarter policy engines and better integration
techniques. For instance, policy-as-code frameworks like Open Policy Agent (OPA) provide a unified
way to declare and enforce security rules across cloud-native platforms. Recent industry best practices
recommend embedding lightweight security checks at multiple pipeline stages (plan, code, build, test,
deploy) to incrementally enforce SaC without significant overhead [4].

Modern DevSecOps pipelines leverage the above to treat security controls as code artifacts. By doing
so, deployments can automatically include security steps such as static code analysis, dependency
vulnerability scanning, configuration compliance checks, and policy enforcement gates [5]. This
codification and automation of security yield a more consistent and repeatable security process, as
evidenced by organizations like Netflix and Etsy who pioneered “security automation” in their DevOps
practices. Still, research in SaC continues to evolve, exploring how to simplify policy authoring and
how to verify that SaC implementations themselves are secure [6]. Approaches like security unit tests
(security test cases coded alongside functional tests) and automated policy generation (using templates
or AI, as discussed next) are emerging to further ease adoption of Security as Code [7].



2.2. AI and ML in cybersecurity

Artificial intelligence (AI) and machine learning (ML) have increasingly been applied to cybersecurity
challenges, complementing traditional rule-based approaches. In the context of SSDLC and DevSecOps,
AI techniques are used to enhance threat detection, incident response, and even security policy creation.
AI-driven cybersecurity systems can analyze vast amounts of data (code repositories, logs, network
traffic) to identify patterns or anomalies indicative of security issues. For example, ML models have
been trained to detect vulnerabilities in source code by learning from past insecure code patterns. These
models can assist code reviewers by flagging potential SQL injection or XSS flaws in new code commits.

Research has demonstrated the effectiveness of AI in automating routine security tasks. Sarker et al.
(2021) provide a comprehensive overview of how machine learning and deep learning can be harnessed
for intelligent cybersecurity services [8]. Key capabilities include automated malware detection using
classification algorithms, anomaly-based intrusion detection with clustering or neural networks, and
user behavior analytics to detect account compromise. AI-based tools can also prioritize security
alerts by learning from incident data which findings are most critical [8]. According to IBM Research,
integrating AI into security operations centers has reduced response times and helped filter false
positives by correlating alerts with threat intelligence [9].

In secure software development, one notable AI application is code analysis and synthesis for
security. Large Language Models (LLMs) like Mistral-7B (self-hosted) have shown promise in generating
secure code snippets or fixing vulnerabilities. Recent work by Bae et al. (2024) investigated advanced
LLMs (Mistral-7B (self-hosted), Claude) for vulnerability detection in code, finding that careful prompt
engineering allows these models to identify many security weaknesses automatically [10]. These AI
models can act as intelligent assistants, reviewing code for known flaw patterns (like hard-coded secrets
or unsafe function calls) and recommending fixes. Some industry tools (e.g., GitHub’s CodeQL with ML,
or Amazon CodeGuru/CodeWhisperer) now incorporate AI to provide developers real-time security
feedback. For instance, Amazon’s CodeWhisperer can suggest code that avoids common vulnerabilities
by referencing secure coding practices (like OWASP Top 10). This demonstrates how AI can embed
security knowledge into the development phase proactively.

Despite the advancements, there are challenges in relying on AI for security. Studies have noted
that AI models themselves can sometimes miss subtle vulnerabilities or even introduce insecure code if
not properly guided . Gong et al. (2024) showed that while Mistral-7B (self-hosted) can repair many
insecure code instances, it struggled with certain context-specific security issues, highlighting “blind
spots” where human expertise is still needed [11]. Moreover, attackers can also weaponize AI (for
example, to generate polymorphic malware), which raises the stakes for defensive AI. Ensuring that AI
decisions are interpretable is another active research area – security teams may be hesitant to trust an AI
recommendation without understanding its rationale. Overall, AI and ML are becoming indispensable
in cybersecurity, but they work best in conjunction with expert oversight. In this work, we leverage
AI not to replace security engineers, but to automate routine tasks and augment human capabilities,
particularly through a collaborative multi-agent framework described next.

2.3. Multi-agent systems for security automation

Multi-agent systems (MAS) involve multiple intelligent agents that interact and collaborate (or compete)
to achieve objectives. In cybersecurity, MAS architectures allow different specialized agents to handle
various aspects of security, working together to protect systems. A multi-agent approach is natural
for complex security scenarios – for example, one agent might monitor network traffic for intrusions,
another agent ensures compliance by scanning configurations, while a third agent responds to detected
incidents by applying patches or blocking IPs. By dividing tasks among agents, MAS can provide a
more scalable and flexible security solution. Collaboration among agents also enables a form of “defense
in depth,” where agents cross-validate and enrich each other’s findings [12, 13].

Researchers have explored MAS in contexts such as intrusion detection, distributed system security,
and autonomous cyber defense. Kassimi et al. (2017) proposed a multi-agent framework for security in



big data systems, where agents were assigned roles like authentication control and intrusion detection
across a Hadoop cluster. Their results illustrated that multi-agent coordination improved the security
of the data pipeline without significant performance degradation [14]. More recently, multi-agent
architectures have been applied to cloud container security. For instance, an MAS might consist of
a Policy Agent that ensures cloud resources meet security policies, an Enforcement Agent that can
quarantine or reconfigure resources on the fly, and a Monitoring Agent that continuously collects
system telemetry for anomalies. These agents communicate to share situational awareness – if the
monitoring agent detects unusual behavior, it can alert the enforcement agent to take action according
to policies that the policy agent provides.

Multi-agent systems are particularly powerful when combined with AI, creating an ensemble of
smart agents each with specialized intelligence. A recent example is Fujitsu’s multi-AI agent security
technology. Fujitsu developed a system with multiple AI agents - one focused on simulating attacks,
one on defense strategies, and one on system validation - to proactively identify and mitigate threats.
This collaborative approach reportedly reduced response times to new vulnerabilities and allowed
proactive “blue team vs. red team” simulations via automated agents. Such results echo broader research
sentiments that multi-agent systems can significantly advance cyber defense by handling complex,
distributed decision-making tasks that are difficult for a single monolithic system [15, 16].

There is, however, complexity in designing effective security MAS. Agents must have clearly defined
communication protocols and trust boundaries – a poorly coordinated MAS could otherwise introduce
gaps or conflicts in security coverage. Ensuring the MAS itself is secure (agents cannot be compromised
or spoofed) is another consideration. Research is ongoing into secure agent communication and
using consensus or blockchain techniques to harden MAS coordination. Despite these challenges, the
consensus in recent literature is that multi-agent systems, equipped with AI, hold great promise for
creating adaptive and autonomous security solutions. This paper builds on these ideas by implementing
a multi-agent security framework within a DevSecOps pipeline, as detailed in the next section. Our
framework assigns distinct security roles to different AI agents and orchestrates them to collectively
enforce Security as Code policies in real-time.

Table 1 show comparative analysis of Traditional vs. AI-Driven Multi-Agent Security for Software
development lifecycle.

3. Methodology

3.1. AI agents roles in SSDLC

We propose a multi-agent system where each agent is an AI-driven component focusing on a particular
security function in the SSDLC. The agents collaborate to provide end-to-end security coverage from
development through deployment. The four primary AI agents in our framework are:

1. Code Security Agent – Uses AI (e.g., an LLM or trained model) to scan application source code and
Infrastructure-as-Code scripts for vulnerabilities and misconfigurations. It functions as an intelligent
SAST tool, flagging issues like hard-coded secrets, insecure API usage, or missing encryption. When
the developer opens a pull request or pushes new code, the Code Security Agent analyzes the diff and
comments on potential security flaws, akin to a bot code reviewer.

2. Policy Generator Agent – Automatically generates security policies and configurations based on
best practices and compliance requirements. For example, this agent can produce a Terraform AWS IAM
policy with least privilege or a Kubernetes network policy restricting pod communication. It leverages
learned security knowledge (templates, ML models trained on secure configs) to suggest policies. The
generated policies are then version-controlled as code (SaC). This agent also updates existing policies
as applications and threats evolve, ensuring the “security as code” remains current.

3. Enforcement Agent – Responsible for enforcing security policies during build, deployment, and
runtime. It integrates with CI/CD pipelines and orchestration platforms. For instance, during the CI
phase, it checks that the build output meets security criteria (no critical vulnerabilities per scanning).
During CD, it can prevent deployment if policies are violated (using tools like OPA/Gatekeeper). In



Table 1
Traditional Security vs. AI-Driven Multi-Agent Security.

Criteria Traditional Security Approach AI-Driven Multi-Agent Security

Detection Method Signature-based, manual AI-powered dynamic analysis,
reviews, static rules real-time inference

Policy Generation Manual, predefined by Automated, dynamically generated
human security teams by AI agents

Response Speed Slow; relies on Real-time; automatic
human intervention threat response

Scalability Limited; dependent on Highly scalable through
manual effort automated agents

Adaptability Low; requires High; continuously learns
manual updates and updates automatically

False Positive Generally high due to Significantly reduced due to
Rate static rule complexity intelligent inference

Proactive Security Reactive; typically responds Proactive; predicts and mitigates
after attacks threats in advance

Integration Complexity Complex and Simple and efficient
resource-intensive via automation

Resource Requirements High; large teams Lower; fewer manual
manual effort through automation

Cost Efficiency Expensive (labor-intensive, Cost-effective (reduced manual
slow response) work, quick response)

Compliance Management Manual audits, Continuous and automatic
tedious documentation policy validation

runtime, the Enforcement Agent interfaces with cloud or container platforms (via admission controllers
or API calls) to remediate issues – e.g., isolating a non-compliant container or rotating credentials that
the Policy Generator Agent marked as expired.

4. Monitoring/Analytics Agent – Continuously monitors system telemetry (logs, metrics, events)
to detect anomalies or incidents. It employs anomaly detection ML models on application logs and
uses threat intelligence feeds to identify suspicious activities. If an anomaly or threat is detected, this
agent alerts the other agents. For example, upon detecting an abnormal privilege escalation attempt in
a container, it might trigger the Enforcement Agent to enforce a mitigation (like restart the container
with restricted privileges) and prompt the Policy Generator Agent to tighten the relevant policy.

Each agent operates semi-autonomously but communicates through a secured message bus [15].
The multi-agent coordination ensures a feedback loop: the Monitoring Agent’s findings inform policy
updates by the Policy Agent; the Code Agent’s reports feed into enforcement actions, etc. In essence,
the agents collectively implement a continuous “sense-decide-act” cycle for security in the SSDLC.
Table 2 qualitatively compares this AI-driven multi-agent approach to a traditional manual security
approach in software development.

The multi-agent system brings autonomous, around-the-clock vigilance to the SSDLC. For example,
in our framework if a developer inadvertently introduces a vulnerable dependency, the Code Security
Agent flags it and the Enforcement Agent can block the build or replace the dependency with a safer
version. Meanwhile, the Monitoring Agent would already be scanning dependency feeds and could
alert if that library has known exploits, prompting the Policy Agent to perhaps mandate an update.
This level of automation and inter-agent collaboration helps ensure that security is continuously upheld
without solely relying on human intervention at each step.

3.2. System architecture and workflow

Figure 1 illustrates the architecture of the proposed AI-driven Security as Code framework. The system
is integrated into a typical DevOps pipeline (code, build, test, deploy, and monitor stages) with the four



Table 2
Security as Code Components and Example Tools.

Component Description Example Tools

Static Code Analysis Analyzes source code for SonarQube, Semgrep, Checkmarx,
vulnerabilities before runtime Snyk, CodeQL

Dynamic Analysis & Monitors applications during Falco, Sysdig Secure,
Runtime Security runtime for security issues Aqua Security, Twistlock

Policy Enforcement Defines and automatically enforces Open Policy Agent (OPA),
security policies Kyverno, Gatekeeper

CI/CD Automation Integrates security checks and GitHub Actions, GitLab
deployments into CI/CD pipelines CI/CD, Jenkins, CircleCI

Infrastructure as Defines secure infrastructure Terraform, CloudFormation,
Code (IaC) through code Pulumi, Ansible

Secret Management Safely manages secrets HashiCorp Vault, AWS Secrets
and sensitive credentials Manager, CyberArk, Azure Key Vault

AI & Machine AI-powered detection and CodeBERT, GPT-4,
Learning Models security policy generation Mistral-7B, LLaMA, Falcon

Security Reporting & Visualizes security status Grafana, Prometheus,
Dashboarding and compliance metrics AWS Security Hub, Splunk
Container & Secures containerized and Falco, Aqua Security,

Kubernetes Security Kubernetes workloads NeuVector, Sysdig, Clair
Compliance & Automates compliance and Chef Compliance, InSpec,

Audit auditing processes AWS Config, Scout Suite

AI agents embedded at relevant points. The core components include:
1. Input Sources: The agents draw from various data sources – source code repositories, configuration

files (IaC templates, CI/CD configs), build artifacts, deployment manifests, runtime logs, and external
threat intelligence feeds. All these serve as inputs that the agents analyze to make security decisions
[17].

2. AI Processing: The heart of the system where each agent’s AI/ML logic runs. For instance, the
Code Security Agent uses a transformer-based model trained on secure coding patterns to assess new
code. The Policy Agent might use a knowledge base of compliance rules (e.g., CIS Benchmarks) to draft
policies. Agents also have communication channels here to share context (e.g., Monitoring Agent can
send an event to Policy Agent).

3. Security Knowledge Base: A centralized repository of security rules, best practices, and models
that agents reference. This includes compliance standards (NIST SSDF, ISO/IEC 27001 controls), known
vulnerability signatures, and previously learned incident responses [18]. It ensures all agents oper-
ate with a consistent understanding of “what is secure.” The knowledge base is maintained as code
(YAML/JSON rules, model files) so it can be versioned and updated [19, 20, 21].

4. Enforcement Hooks: Points in the CI/CD and runtime environment where the Enforcement Agent
applies actions. These include a pre-commit or pre-build hook (to run static analysis via the Code
Agent), a deploy admission controller (to enforce policies before releasing to production), and runtime
watchdogs (to execute mitigating actions like killing a process, scaling down a service, or triggering an
incident response playbook).

The typical workflow is as follows: When developers commit code, the Code Security Agent analysis
is triggered in the CI pipeline. If issues are found, they are reported back as annotated code reviews
and logged in the security knowledge base. Assuming the build proceeds, the Policy Generator Agent
consults the latest code and config to ensure security policies are up to date – for example, generating a
new firewall rule for a new microservice. Those policies are checked into the repository (Infrastructure-
as-Code) and fed to the Enforcement Agent. During deployment, the Enforcement Agent validates
that the infrastructure and application meet all required security policies (no open security gates).
If a policy violation occurs (say an open S3 bucket is about to be deployed), the Enforcement Agent



Figure 1: Component diagram of the proposed AI-driven Security as Code framework.

blocks the deployment and notifies DevOps and the Policy Agent. In production, the Monitoring Agent
continuously analyzes telemetry. If it detects, for instance, an unusual login pattern or a container
breakout attempt, it immediately informs the Enforcement Agent to act (perhaps isolate the affected
container) and the Policy Agent to strengthen relevant policies (maybe enforce MFA or tighten container
privileges). The agents operate iteratively, learning from each incident; over time the Policy Agent
might automatically refine policies based on patterns the Monitoring Agent observed (with human
approval as needed).

This architecture effectively injects intelligent security checks and responses at every phase of
software delivery. It aligns with the DevSecOps principle of making security seamless and continuous.
Importantly, our design keeps humans in the loop for oversight: all agent decisions and actions are
logged and explainable. Security engineers can review any automated policy changes or incident
responses after the fact, and they can configure thresholds for when agents should escalate to a human
(for example, if the fix for a vulnerability is unclear, the agents will notify a human rather than guess).
The next subsection details the technologies and tools we used to implement this prototype system,
mapping them to the architecture components.



Table 3
Implementation Technologies for AI-Driven SaC Framework.

Agent/Component Role in the System Implementation
Technologies

Code Security Identifies code vulnerabilities Mistral-7B (self-hosted),
Agent (OWASP Top 10, CERT Secure Coding) Semgrep

using AI and static analysis
Policy Agent Dynamically generates and OPA (Rego policies),

updates security policies Fine-tuned Mistral-7B
(e.g., Kubernetes, IAM roles) (AWS IAM policies)

Enforcement Enforces policy compliance HashiCorp Sentinel
Agent (CI) in infrastructure as code (Terraform policy

(IaC) before deployment enforcement)
Enforcement Validates Kubernetes deployments OPA Gatekeeper
Agent (CD) and prevents insecure (Kubernetes Admission

resources from running Controller)
Monitoring Agent Detects runtime anomalies Elastic Stack (Elasticsearch,

and security events Logstash, Kibana), Isolation
using ML models Forest anomaly detection

Agent Integration Facilitates communication between Shared database (temporary
and Communication agents for real-time coordination flag system), planned

and policy updates future use of Kafka
message bus

Human-in-the-loop Enables human review GitHub Pull Requests,
Interface and approval of critical Web-based review

automated security decisions interface (manual policy
review and overrides)

3.3. Implementation technologies

We implemented a prototype of the above framework using a combination of open-source tools and
custom AI models. Table 3 outlines the main technologies chosen for each agent and component in our
system.

In our setup, the Code Security Agent uses the Mistral-7B (self-hosted) API to analyze code diffs. We
provided it with a prompt containing secure coding guidelines (covering OWASP Top 10, CERT Secure
Coding standards) and ask it to highlight any violations. This worked in tandem with Semgrep (a static
analysis tool with security rules) to ensure we catch both AI-detectable patterns and explicitly coded
patterns [22]. The Policy Agent was backed by OPA – we wrote generic Rego policies for common
scenarios (e.g., “no public S3 buckets” or “all pods must have resource limits”) and the agent instantiates
or updates these based on context [23]. Additionally, we fine-tuned a Mistral-7B (self-hosted) model
on a dataset of AWS IAM policies to generate least-privilege policies from service access logs. This
allowed the Policy Agent to suggest IAM role policies for new microservices automatically, which we
then reviewed and tested.

The Enforcement Agent in CI used Sentinel (policy-as-code engine) to enforce that Terraform changes
did not violate any rules before applying. In the CD stage on our Kubernetes test cluster, we used
OPA Gatekeeper to enforce cluster admission policies (for example, disallowing images with critical
vulnerabilities – the Enforcement Agent updates this policy if the Monitoring Agent flags a new CVE).
The Monitoring Agent pipeline was built with the Elastic Stack: all logs and metrics from applications
and the cluster are forwarded to Elasticsearch [24]. We trained an Isolation Forest model on several
weeks of baseline telemetry to identify outlier events (like surges in failed logins or unusual process
executions) [25]. When such outliers are detected, a Python script triggers responses via the Enforcement
Agent’s hooks (using Kubernetes API or cloud API to execute response) [26].

During implementation, we prioritized integration points where the agents communicate. For



instance, when the Monitoring Agent’s anomaly detector fires, it creates a flag in a shared database that
the Enforcement Agent’s policy check reads – simulating a message bus. In future iterations, this could
be a Kafka event or similar. We also implemented a simple interface for human security engineers to
approve or override agent decisions. For example, if the Policy Agent wants to enforce a very strict rule
that could impact operations, it creates a pull request to the policy repo for a human to review, rather
than pushing directly. This balances autonomy with control [27].

4. Experimental results

To evaluate the effectiveness of the AI-driven SaC approach, we conducted a case study on a demo web
application deployed via Infrastructure-as-Code. In the traditional setup, developers manually wrote
security configurations (IAM roles, network rules) and the security team performed code reviews and
audits. We then applied our AI multi-agent framework to the same application’s CI/CD pipeline and
observed improvements in several metrics [28].

One key result was in security policy implementation time. In the manual approach, creating an initial
security configuration (cloud IAM roles, resource policies) took on average 2–3 days of coordination
between developers and the security team for our demo app. Using the Policy Generator Agent, baseline
security policies were generated in under 2 hours after the app architecture was defined – a reduction of
over 80% in policy development time. For example, the agent produced a Kubernetes NetworkPolicy and
AWS IAM role for the app’s microservices with minimal human edits. This demonstrates the potential
of AI to accelerate SaC adoption [29, 30].

We also measured vulnerability detection and remediation rates. With manual processes, some
vulnerabilities (like an outdated vulnerable library) were only caught in quarterly scans or after deploy-
ment. Under the AI-driven pipeline, the Code Security Agent flagged such issues at commit time. In one
instance, a developer introduced a package with a known critical CVE [31]; our Code Security Agent
(powered by Mistral-7B (self-hosted) and dependency data) immediately warned and the Enforcement
Agent prevented that build from progressing until the library was updated. In effect, the AI agents
helped catch 5 out of 5 injected test vulnerabilities in code and config before deployment, versus 3 out
of 5 caught by traditional static analysis tools in the manual pipeline (the remaining 2 were only found
post-deploy). This proactive identification led to zero critical vulnerabilities in the deployed application
in the AI-driven approach, compared to several that slipped through in the manual scenario (which
required hotfixes later).

To assess compliance, we checked alignment with a security baseline (based on CIS Benchmarks and
internal policies). The AI-driven framework ensured 100% of infrastructure and container configuration
checks passed the compliance baseline (we defined 20 checks such as “encryption enabled on DB” or “no
privileged containers”) before deployment. In contrast, the manual approach had about 85% compliance
in initial deploys, with some gaps (like a storage bucket missing encryption) that were only fixed after
security review [32]. The Enforcement Agent’s continuous checks and the Policy Agent’s automated
updates contributed to this improvement in compliance adherence.

From a performance and overhead perspective, introducing the AI agents did not significantly slow
down the CI/CD pipeline. The Code Security Agent’s analysis added roughly 2–3 minutes to the CI run
(for a codebase 50k lines), which was acceptable. The deployment gate checks with OPA took only
seconds. The Monitoring Agent’s anomaly detection ran in near real-time with negligible overhead
on the logging pipeline. This suggests that the AI enhancements can be integrated without sacrificing
delivery speed, a crucial factor for DevOps teams [33].

Qualitatively, developer reception to the AI-driven security was positive. Developers appreciated
automated security feedback in merge requests, with the Code Security Agent’s comments being seen as
“AI pair reviewer” suggestions. There was an initial learning curve to trust the agent recommendations,
but as the AI proved accurate (with low false positives after tuning), developers found it streamlined the
fix process. The security team, on the other hand, could shift focus to higher-level risk assessment since
the agents handled many routine tasks. They used the agents’ output (reports, logs) to perform oversight.



We did note that for very novel or complex security issues, the AI sometimes flagged something it
wasn’t sure how to fix – in those cases it tagged a human for review, as designed. This fallback ensured
that the AI did not overstep its bounds.

Overall, the case study demonstrated that our AI-powered SaC framework improved the security
posture of the application without slowing down development. All critical vulnerabilities were caught
pre-production, compliance was assured, and the time and effort to implement security measures were
significantly reduced. These results validate the efficacy of combining SaC with AI and multi-agent
systems. In the next section, we discuss broader implications, remaining challenges, and areas for future
work based on these findings.

4.1. Comparative analysis

To systematically compare the AI-driven approach against a traditional security process, we summarize
the outcomes along key dimensions:

1. Vulnerabilities Detected: In manual practice, some issues were found late or missed until incident.
With AI agents, the majority of issues were detected early (during coding or integration). Over a
3-month test period, the AI-driven pipeline had 30% fewer security incidents or bug tickets, since
problems were remediated before release.

2. Remediation Time: Using AI, the average time from vulnerability introduction to resolution
dropped drastically. For instance, in one scenario a misconfiguration (public storage bucket) was fixed
within 1 hour by an automated policy update, whereas historically such an issue might linger until a
weekly audit or be discovered by external scan (potentially days or weeks).

3. Policy Compliance: The AI approach maintained near-constant compliance as measured by our
policy-as-code checks, thanks to continuous enforcement. The traditional approach had compliance
drift between scheduled reviews.

4. False Positives/Noise: Initially, the AI agents produced a few false positives (e.g., flagging safe
use of a crypto library as insecure). After fine-tuning rules and model prompts, the false positive rate
became comparable to or lower than that of manual code reviews. Developers reported fewer “noisy”
security alerts with the AI system because it focused on concrete issues with evidence, whereas manual
reviews sometimes raised more subjective concerns.

5. Scalability: As the application and infrastructure grew in size, the manual effort to secure it grew
significantly (more lines of code to review, more resources to configure). The AI-driven approach scaled
much more gracefully – the Code Agent and Policy Agent handled the larger scope with only incremental
increases in processing time. This suggests that adding more computing power or parallelism can scale
the AI security coverage to large systems without linear growth in human workload.

Table 2 (presented earlier) encapsulated many of these differences. The overall outcome of our
evaluation is that AI-driven Security as Code, implemented with multi-agent systems, can substantially
improve both the efficiency and efficacy of software security processes. In the next section, we reflect
on these findings, discuss challenges encountered, and consider the generalizability of this approach.

4.2. Analytical evaluation

To conduct a deeper analysis of the effectiveness of the proposed agentic system, two integrated metrics
were calculated. Policy Application Efficiency Score (PAES) — a metric that considers the speed of
policy generation and application, the compliance level with security standards, and the proportion of
policies applied without human intervention. It is calculated as:

𝑃𝐴𝐸𝑆 = (1/(𝑇_𝑔𝑒𝑛+ 𝑇_𝑎𝑝𝑝𝑙𝑦))(𝑐𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒_𝑠𝑐𝑜𝑟𝑒/100)𝑎𝑢𝑡𝑜_𝑎𝑝𝑝𝑙𝑦_𝑟𝑎𝑡𝑖𝑜𝑛. (1)

Human Override Rate (HOR) — the percentage of agent-proposed decisions that required human
revision or approval before enforcement:

𝐻𝑂𝑅 = (𝑁_𝑜𝑣𝑒𝑟𝑟𝑖𝑑𝑑𝑒𝑛/𝑁_𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑙𝑖𝑐𝑖𝑒𝑠)100%. (2)



Figure 2: Comparison of PAES and HOR between manual and agentic systems.

Figure 2 presents a comparative evaluation of these metrics for a traditional approach versus the
proposed agent-based system. As shown in the graph, the PAES for the Agentic AI configuration
exceeds that of the manual approach by over 5 times, demonstrating a significant increase in operational
efficiency. At the same time, the HOR is reduced to just 4%, indicating a high degree of agent autonomy
and reliability.

5. Discussions

5.1. Key findings and implications

Our research demonstrates that integrating AI and multi-agent systems into Security as Code yields
tangible benefits for software security. One key finding is that AI-powered multi-agent security reduces
the manual effort required to achieve a strong security posture. In our case study, tasks that normally
occupy security engineers (like writing policies or reviewing code for secrets) were offloaded to AI
agents, freeing humans to focus on higher-level security architecture and exception handling. This
implies organizations could improve security without proportionally increasing security team size, a
significant advantage given the shortage of cybersecurity talent.

We also found that automated security controls improve enforcement consistency. The AI agents
applied policies uniformly across all environments, and every code change went through the same
rigorous checks. This contrasts with human-driven processes that can be uneven—some issues might
slip through during busy release cycles or due to oversight. The multi-agent system never “gets tired”
or skips a check, which leads to a more consistent application of best practices. As a result, the deployed
system tends to have a cleaner security bill of health (as reflected in compliance metrics and fewer
incidents). This consistency is crucial for compliance regimes and for reliably scaling DevSecOps in
large organizations.

Another important outcome is that AI-generated security policies can match or exceed the quality
of human-written policies in many cases. The policies produced by our Policy Generator Agent were
reviewed by our security experts, who found them to be on par with what they would have written
manually (and in some cases the AI suggested additional restrictions that were beneficial). This indicates
that with the right training data and knowledge, AI can capture expert security knowledge and apply it
systematically. It doesn’t eliminate the need for human review entirely, but it accelerates the process
and ensures no fundamental aspect is overlooked. Essentially, the AI becomes a force multiplier for the
security team. Notably, our framework’s AI suggestions always went through a commit/review cycle,
which gave us confidence to trust them in production once vetted. Over time, as confidence in certain
agents grew, we allowed them to auto-approve low-risk changes, further speeding up the pipeline.

From a DevOps perspective, our integration of security didn’t noticeably hinder development velocity.



This challenges the traditional notion that security slows down releases. By leveraging automation,
we actually achieved faster secure deployments, because fewer cycles were spent going back to fix
issues late in the process. This finding supports the DevSecOps philosophy that when done right (with
automation and early integration), security can enhance quality without being a roadblock . It also
aligns with industry experiences reported by early DevSecOps adopters that automated security tooling,
when tuned, improves developer productivity by catching bugs early.

The implications of these findings are significant. Companies adopting similar AI-driven SaC frame-
works could likely improve their security outcomes (fewer breaches, faster compliance) while reducing
costs related to manual security labor and incident response. It could also democratize secure develop-
ment by embedding expertise into tools that all developers use. One developer in our team commented
that the AI feedback helped them learn secure coding practices on the fly, essentially acting as a mentor.
This points to a side-benefit: educational value for developers, which can uplift the overall security
culture.

5.2. Challenges and limitations

Despite the positive results, we encountered several challenges and limitations in our approach. Firstly,
the accuracy and context-awareness of AI agents can be limited. While models like Mistral-7B (self-
hosted) are powerful, they sometimes misunderstood context or lacked up-to-date knowledge of certain
frameworks. For example, our Code Security Agent initially missed a vulnerability involving a complex
logic flaw because it required deeper understanding of the application’s business logic beyond pattern
matching. This underscores that AI is not infallible – certain classes of security problems (logic errors,
novel attack patterns) still need human creativity and intuition to discover. Over-reliance on AI could
give a false sense of security if organizations do not also maintain skilled personnel to handle the hard
cases. We mitigated this by focusing AI on well-defined problem spaces and having humans in review
loops for critical decisions. Recent studies similarly note that large language models have “blind spots”
and can overlook context-specific issues. Hence, our framework is designed to augment, not replace,
human expertise.

Another challenge is the potential for false positives or negatives. In security, false positives (benign
issues flagged as threats) can erode trust in tools, and false negatives (missed threats) can be dangerous.
We saw a few of both during development. Tuning the AI agents – adjusting model prompts, adding
rule-based checks to complement ML, and refining anomaly detection thresholds – was an iterative
process. This tuning requires security knowledge and AI knowledge, meaning organizations need to
have or develop that interdisciplinary skill set. Also, the AI agents need continuous updates as new
threats emerge (for example, new CVEs or attack techniques would require retraining or reprogramming
the agents). If not maintained, the agents’ effectiveness will degrade. This maintenance overhead is a
limitation to consider, although it is analogous to updating traditional security tools with new signatures.

A significant consideration is trust and ethical implications of autonomous security decisions. Handing
overactive defense to AI agents raises questions: what if an agent makes a wrong call and disrupts
a critical business service? Who is accountable for an AI-driven action that prevents an attack but
also blocks legitimate activity? In our trials, we encountered a scenario where the Enforcement Agent
preemptively isolated a microservice that it deemed compromised, but it turned out to be a false alarm
from an experimental feature triggering anomaly detection. This caused a brief outage of that service.
After this, we implemented more conservative action policies (requiring multi-factor triggers or human
confirmation for high-impact actions). It’s clear that organizations must carefully set boundaries for
autonomous agents. Ensuring explainability of AI actions is also important – our agents log their
reasoning, or the rule triggered, which helped the team understand and rectify mistakes. This area
needs more development; regulators and standards may eventually require that AI security systems
provide audit logs and justification for actions.

We also recognize scope limitations of our work. Our evaluation was on a controlled application in a
specific tech stack (containerized web app on AWS). Different environments (legacy systems, mobile
apps) might pose integration challenges for the agents. The effectiveness of the AI models can vary based



on training data relevance – our positive results with Mistral-7B (self-hosted) and security prompts
might not generalize to all languages or frameworks if the model isn’t versed in them. Additionally,
extremely complex systems (with huge volumes of data) could pose performance challenges; while
our approach scaled well in our tests, very large enterprises might need to invest in more scalable
architectures (distributed agents, streaming analytics) to handle the load.

Security adversaries are constantly adapting, and adversarial attacks on AI are a looming concern.
Attackers might try to poison training data or exploit predictable AI behaviors. For example, an attacker
could craft code in such a way that it confuses the AI Code Agent into thinking it’s benign (adversarial
example), or they might target the Monitoring Agent’s ML with junk data to hide their traces. We did
not deeply explore adversarial ML attacks in this study, but it remains a critical challenge. Techniques
like adversarial training and robust model development should be applied as mitigation.

5.3. Future work

This research opens several avenues for future exploration. One direction is enhancing the intelligence
of agents with more advanced AI techniques. For instance, incorporating reinforcement learning could
allow the Enforcement Agent to learn optimal responses over time (balancing security vs. availability).
A learning-based policy agent could adapt policies not just from pre-defined templates but by observing
running systems and desired outcomes (a form of dynamic policy generation). We also plan to explore
using knowledge graphs and reasoning for the Policy Agent so it can reason about compliance require-
ments (e.g., deduce that “encryption required” applies to all data stores and ensure those configurations).
This could improve the agent’s ability to handle high-level compliance frameworks automatically.

Another future direction is applying federated and distributed learning among agents. In a multi-
agent system deployed across multiple projects or business units, each agent could learn from local
incidents and share insights with others without exposing sensitive data (federated learning). This way,
if one system’s AI detects a new type of attack, all the others could be alerted and adjust proactively.
This collective learning could dramatically improve security across an organization. Implementing a
secure way for agents to share learned rules or model weights (perhaps through a centralized trusted
service or blockchain ledger for traceability) would be an interesting extension. It ties into the concept
of cross-organizational security intelligence – essentially building an AI-powered ISAC (Information
Sharing and Analysis Center) where the agents are the ones consuming and acting on the shared
knowledge.

Human-AI collaboration interfaces are another area for future work. We observed that providing
meaningful feedback to developers (via code review comments, etc.) was important for adoption. Further
work could create interactive interfaces where developers can query the AI agents for explanations
(“why did you flag this piece of code?”) or ask for suggestions (“how do I remediate this vulnerability?”).
Similarly, security officers might want a dashboard to tweak the agents’ aggressiveness or to simulate
“what-if” scenarios with the MAS. Developing these user experiences will be key to practical deployment.

We are also interested in evaluating the framework in more real-world and diverse scenarios. One
plan is to collaborate with an open-source project to integrate our AI-SaC agents in their CI pipeline
and gather feedback from real developers and compare security outcomes on an active project. Another
is to test the system’s response in a controlled red-team exercise: simulate a series of attacks (SQL
injection, insider misuse, ransomware in pipeline) and see how well the agents detect and mitigate
them. This would stress-test the system and potentially reveal blind spots to address.

Lastly, from a research perspective, formalizing the security guarantees of such an AI-driven system
is worthwhile. Can we prove certain properties, like “all code deployed has no known OWASP Top-10
issues” or quantify risk reduction? Formal methods or continuous verification tools could be incorporated
to complement the AI – ensuring that for certain classes of vulnerabilities, the coverage is complete.
This blends traditional rigorous security engineering with AI-based adaptability.

In summary, while our work demonstrates a significant step towards autonomous DevSecOps, it is
just the beginning. Future research will deepen the intelligence of agents, improve their robustness,
and broaden their applicability. With careful design, AI-driven multi-agent systems could evolve into



an autonomous security orchestration layer that keeps future software ecosystems safe, even as threats
grow in sophistication. We believe the continuing convergence of AI and cybersecurity will ultimately
lead to more self-defending software – systems that can not only detect and react to attacks but also
anticipate and prevent them with minimal human input, all while maintaining alignment with human-
defined policies and ethics. Our study contributes to this vision by showing a concrete implementation
and its benefits, and we encourage further exploration in this exciting intersection of fields.

6. Conclusions

In this paper, we presented an AI-driven Security as Code framework for the Secure SDLC, leveraging
multi-agent systems to automate and enhance security in DevSecOps environments. By integrating
specialized AI agents (for code analysis, policy generation, enforcement, and monitoring) into the
development pipeline, our approach embeds security measures throughout the lifecycle in a continuous
and adaptive manner. The proposed system was implemented and evaluated, showing that AI agents can
effectively generate and enforce security policies, detect vulnerabilities early, and respond to emerging
threats in real-time.

Our findings highlight several key benefits of AI-powered Security as Code. The multi-agent frame-
work achieved more consistent and proactive security enforcement compared to traditional methods,
reducing the window of exposure for vulnerabilities and ensuring compliance with security standards
automatically. Tasks that typically burden development and security teams – such as code review for
secrets, writing configuration policies, or triaging alerts – can be significantly augmented or offloaded
to AI, increasing efficiency. The case study demonstrated tangible improvements, including faster
remediation times and a reduction in security incidents, when using the AI-driven approach. These
results underline the potential for organizations to scale their secure development practices through
automation, even amid resource constraints.

At the same time, we have discussed the importance of maintaining human oversight and addressing
challenges like AI decision explainability and false positives. Security is ultimately a risk management
domain, and our AI agents are tools to assist humans in managing that risk, not eliminate it entirely.
Ensuring that the AI recommendations and actions are transparent and auditable will be crucial for
real-world adoption. We also recognize that attackers will adapt – future work must harden AI systems
against adversarial manipulation and continually update them with threat intelligence.

This work contributes to the growing body of evidence that DevSecOps can be greatly strengthened
through intelligent automation. The use of multi-agent systems is particularly promising, as it mirrors
how diverse security teams operate and collaborate, but with machine speed and scalability. By treating
security as an integral part of the system – coded, automated, and now intelligent – we move closer
to systems that are secure by construction. We encourage practitioners to experiment with AI-driven
security tooling in their CI/CD pipelines, and researchers to further explore interdisciplinary approaches
combining AI, software engineering, and security principles.

In conclusion, AI-driven Security as Code using multi-agent systems represents a significant advance-
ment for secure software development. It marries the agility of DevOps with the vigilance of automated
intelligence, resulting in a DevSecOps paradigm that can keep pace with the fast-changing threat
landscape. As organizations continue to seek ways to build security in from the start, frameworks like
ours provide a blueprint for how intelligent agents can continuously safeguard the software lifecycle.
We envision a future in which development teams work alongside AI security agents as trusted partners
– an “autonomous security assistant” embedded in every pipeline – ultimately leading to software
that can defend itself. This research is a step toward that future, demonstrating that with the right
integration of AI and automation, secure and rapid software development can go hand in hand.

Declaration on Generative AI

The authors have not employed any Generative AI tools.



References

[1] O. Vakhula, I. Opirskyy, O. Mykhaylova, Research on security challenges in cloud environments
and solutions based on the security-as-code approach, in: CEUR Workshop Proceedings, volume
3550, 2023, pp. 55–69.

[2] H. Myrbakken, R. Colomo-Palacios, DevSecOps: A multivocal literature review, in: Proceedings
of International Conference, 2017, pp. 17–29. doi:10.1007/978-3-319-67383-7_2.

[3] O. Vakhula, Y. Kurii, I. Opirskyy, V. Susukailo, Security-as-code concept for fulfilling ISO/IEC
27001:2022 requirements, in: CEUR Workshop Proceedings, volume 2024, 2022, pp. 59–72.

[4] Y. Kurii, I. Opirskyy, L. Bortnik, ISO/IEC 27001:2022 – Analysis of changes and compliance
features of the new version of the standard, in: Proceedings of the IX International Conference on
Information Protection and Information Systems Security, Lviv, Ukraine, 2022, pp. 15–17.

[5] M. Sanchez-Gordon, R. Colomo-Palacios, Security as culture: A systematic literature review of
DevSecOps (2020). doi:10.1145/3387940.3392233.

[6] Y. Martseniuk, A. Partyka, O. Harasymchuk, N. Korshun, Automated conformity verification
concept for cloud security, in: CEUR Workshop Proceedings, volume 3654, 2024, pp. 25–37.

[7] O. Vakhula, I. Opirskyy, Research on security as code approach for cloud-native applications based
on kubernetes clusters, in: CEUR Workshop Proceedings, volume 3800, 2024, pp. 58–69.

[8] I. Sarker, M. Furhad, R. Nowrozy, AI-driven cybersecurity: An overview, security intel-
ligence modeling and research directions, SN Computer Science 2 (2021). doi:10.1007/
s42979-021-00557-0.

[9] IBM Research, The Role of AI in Next-Generation Security Operations, Technical Report, IBM
Security Research, 2023.

[10] J. Bae, S. Kwon, S. Myeong, Enhancing software code vulnerability detection using GPT-4o and
Claude-3.5 Sonnet: A study on prompt engineering, 2024. Unpublished manuscript.

[11] J. Gong, et al., How well do large language models serve as end-to-end secure code producers?,
arXiv preprint (2024).

[12] M. Hicks, V. Mavroudis, Autonomous Cyber Defence: Beyond Games?, Technical Report, Alan
Turing Institute, 2024. doi:10.5281/zenodo.10974183.

[13] J. Al-Azzeh, M. A. Hadidi, R. Odarchenko, S. Gnatyuk, Z. Shevchuk, Z. Hu, Analysis of self-
similar traffic models in computer networks. international review on modelling and simulations,
International Journal of Computer Network and Information Security 10 (2017) 328–336. doi:10.
15866/iremos.v10i5.12009.

[14] D. Kassimi, O. Kazar, H. Saouli, O. Boussaid, Design and implementation of a new approach using
multi-agent system for security in big data, International Journal of Software Engineering and Its
Applications 13 (2017) 1–14. doi:10.14257/ijseia.2017.11.9.01.

[15] Fujitsu Ltd., Fujitsu develops world’s first multi-ai agent security technology to protect against
new threats, Press Release, 2024.

[16] Z. Hu, Y. Khokhlachova, V. Sydorenko, I. Opirskyy, Method for optimization of information
security systems behavior under conditions of influences, International Journal of Intelligent
Systems and Applications 9 (2017) 46–58. doi:10.5815/ijisa.2017.12.05.

[17] O. Milov, et al., Development of methodology for modeling the interaction of antagonistic agents
in cybersecurity systems, Eastern-European Journal of Enterprise Technologies 2.9 (98) (2019)
56–66. doi:10.15587/1729-4061.2019.164730.

[18] Check Point Software, Adopt security as code – devsecops best practices for, Checkpoint Blog,
2022.

[19] NIST, DevSecOps helps ensure security is addressed as part of DevOps practices, NIST CSRC
DevSecOps Project, 2023.

[20] Red Hat, Kubernetes security best practices, Red Hat, 2022.
[21] HashiCorp, Infrastructure as code security guide, HashiCorp, 2022.
[22] Open Policy Agent, Policy-based security and compliance for cloud native environments, OPA

Documentation, 2023.

http://dx.doi.org/10.1007/978-3-319-67383-7_2
http://dx.doi.org/10.1145/3387940.3392233
http://dx.doi.org/10.1007/s42979-021-00557-0
http://dx.doi.org/10.1007/s42979-021-00557-0
http://dx.doi.org/10.5281/zenodo.10974183
http://dx.doi.org/10.15866/iremos.v10i5.12009
http://dx.doi.org/10.15866/iremos.v10i5.12009
http://dx.doi.org/10.14257/ijseia.2017.11.9.01
http://dx.doi.org/10.5815/ijisa.2017.12.05
http://dx.doi.org/10.15587/1729-4061.2019.164730


[23] OWASP, Security as code – DevSecOps best practices, OWASP Project, 2023.
[24] Elastic.co, Elastic stack (ELK) documentation: Logging, metrics, and monitoring, 2023. URL:

https://www.elastic.co/guide/index.html, accessed: 2025-07-28.
[25] C. Aggarwal, Outlier Analysis, 2nd ed., Springer, 2017. doi:10.1007/978-3-319-47578-3.
[26] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: Proceedings of the IEEE International

Conference on Data Mining, 2008, pp. 413–422. doi:10.1109/ICDM.2008.17.
[27] Kubernetes.io, Kubernetes API reference and documentation, 2023. URL: https://kubernetes.io/

docs/reference/, accessed: 2025-07-28.
[28] R. Kumar, R. Goyal, Modeling continuous security: A conceptual model for automated DevSecOps

using Open-source software over cloud (ADOC), Computers and Security 97 (2020) 101967.
doi:10.1016/j.cose.2020.101967.

[29] Center for Internet Security (CIS), Critical security controls version 8, CIS, 2021.
[30] International Organization for Standardization, ISO/IEC 27001:2022 – Information security man-

agement systems requirements, ISO, 2022.
[31] S. Sharma, S. Mahajan, Design and implementation of a security scheme for detecting system

vulnerabilities, International Journal of Computer Networks and Information Security 9 (2017)
24–32. doi:10.5815/ijcnis.2017.10.03.

[32] OWASP, Top 10 web application security risks, OWASP, 2021. Accessed: 2025-07-28.
[33] O. Bashiru, O. Olufemi, An enhanced CICD pipeline: A DevSecOps approach, International

Journal of Computer Applications 184 (2023) 8–13. doi:10.5120/ijca2023922594.24.

https://www.elastic.co/guide/index.html
http://dx.doi.org/10.1007/978-3-319-47578-3
http://dx.doi.org/10.1109/ICDM.2008.17
https://kubernetes.io/docs/reference/
https://kubernetes.io/docs/reference/
http://dx.doi.org/10.1016/j.cose.2020.101967
http://dx.doi.org/10.5815/ijcnis.2017.10.03
http://dx.doi.org/10.5120/ijca2023922594.24

	1 Introduction
	2 Literature overview
	2.1 Security as Code in modern DevSecOps
	2.2 AI and ML in cybersecurity
	2.3 Multi-agent systems for security automation

	3 Methodology
	3.1 AI agents roles in SSDLC
	3.2 System architecture and workflow
	3.3 Implementation technologies

	4 Experimental results
	4.1 Comparative analysis
	4.2 Analytical evaluation

	5 Discussions
	5.1 Key findings and implications
	5.2 Challenges and limitations
	5.3 Future work

	6 Conclusions

