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Abstract
The work is devoted to the automatic restoration (inpainting) of hidden or damaged areas of images. To solve the
problem, a hybrid generative-adversarial neural network Lifelong VAEGAN with a buffer of previous samples
and a U-Net generator with skip connections and a self-attention mechanism is proposed. A review of modern
methods of image inpainting and lifelong learning is conducted, and for the first time a modular Lifelong
VAEGAN is proposed, which is capable of effectively restoring images thanks to a dual-encoder architecture and
a self-attention block.
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1. Introduction

Artificial intelligence has become indispensable in scientific and engineering disciplines by improving
the accuracy of UAV visual navigation and suppressing sensor noise [1, 2] ,by providing hybrid ensemble
neural network architectures for advanced analytics [3], and by forming systematic taxonomies of multi-
criteria optimization methods and neural network topologies that guide both fundamental research and
practical development [4, 5].

In particular, image inpainting has a wide range of applications. For example, in satellite images,
clouds often cover the surface of the image [6, 7]; there is also the problem of restoring old archival
photographs that have been damaged over time [8] and restoring masked human faces [9]. Previously,
it was necessary to retake pictures or redraw images manually, now all this can be automated thanks to
artificial intelligence.

All these tasks share a common underlying principle. Any image restoration task requires embedding
prior assumptions about the structure of the restored area. It is necessary to take into account the
structure, spectral, semantic properties, and global consistency with the context.

Previously, images were restored in two main ways: by diffusing pixels from the edges of the intact
area inward [10] and by copying similar fragments from entire areas [11, 12]. Such methods were
good at taking local textures into account, but ignored the overall semantics of the images, which
could lead to inconsistencies [13, 14]. Modern models have significantly improved the quality of
automatic reconstruction. While generative adversarial networks (GANs) produce realistic structures,
variational autoencoders (VAEs) provide stable learning and interpretable latent representations [15, 16].
Combining these approaches preserves good quality and semantic consistency of the reconstructed
regions [17, 18].
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2. Lifelong VAEGAN architecture and features

In the literature, most image restoration models are trained on only one set of images, without further
replenishment on others. With the popularization of artificial intelligence, it is very important that
the user can restore any images, so the ability to perform lifelong learning is necessary. However,
sequential training on new samples leads to catastrophic forgetting. When training on new data, the
network forgets knowledge from previous domains [19, 20, 21].

Lifelong VAEGAN (L-VAEGAN) is a generative model that combines VAE and GAN architectures
and provides the ability to train sequentially on multiple datasets [22]. L-VAEGAN, unlike previous
generative replay methods that did not have a separate autoencoder, is able to build a common latent
space for all domains.

The basic variables in the architecture of the L-VAEGAN model are:

• 𝑥 is an input image from a specific domain. In continual learning, there is a sequence of image
sets {𝑋1, 𝑋2, . . . , 𝑋𝑡}, each of which corresponds to a certain domain;

• 𝑧 is a continuous latent variable that encodes the style or content of the image;
• 𝑐 is a discrete latent variable that reflects the categorical content of the image. We do not use

it in our implementation, but in many datasets, for example with animals, it is necessary for
high-quality restoration;

• 𝑎 is a discrete domain variable (dataset). In lifelong learning, the encoder estimates which domain
𝑥 belongs to, and the generator reproduces the image, having received a certain 𝑎.

These variables build a probabilistic model of images from continuous factors such as style and object
variations and discrete factors such as class and domain.

The main components of Lifelong VAEGAN are an inference encoder [23], a generator, a discriminator,
and a generative replay mechanism. The inference encoder encodes the input image into a set of latent
variables. For each input image, a vector of means 𝜇𝜑(𝑥) and variances 𝜎2

𝜑(𝑥) is generated, which
define the distribution 𝑞𝜑(𝑧 | 𝑥). Next, a reparameterisation trick is used to select the value 𝑧 for the
generator. In general, the L-VAEGAN generator is a decoder that builds images from latent variables.
In the context of VAE, the generator reconstructs the original image from the code, in the context of
GAN, it generates images that are so realistic that the discriminator cannot distinguish them from
the real ones. However, in our implementation, the generator has an additional encoder that extracts
the usual spatial features. The discriminator receives real or generated images as input and learns to
distinguish them. It is a critic of the generator.Thus, the generator’s task is to produce an image that the
discriminator cannot distinguish from real ones, and the discriminator’s task is to distinguish between
real and generated images.

Another important mechanism of L-VAEGAN is generative replay. During replay, the generator
reproduces samples from previous domains, thus the model does not forget them (Figure 1).

However, in our implementation, generative replay was abandoned, and a buffer of previous samples
was used [24, 25].

Although the original Lifelong VAEGAN documentation stated the inefficiency of the buffer [22], in
the inpainting task it showed better results. Instead of restoring damaged generated images, a small
sample of real ones was used. When training on multiple datasets, no memory overrun problems were
observed, but the GPU overhead was lower. One of the reasons for abandoning generative replay is
its tendency to produce less diverse images due to the shift toward the new domain. With generative
replay, the more training epochs there are, the poorer the samples the model can reproduce, which
impairs the retention of prior knowledge. However, when training on a large number of different
domains, generative replay may have better results. Figure 2 shows the architecture of the Lifelong
VAEGAN model.



Figure 1: Images created during generative replay.

Figure 2: Architecture of Lifelong VAEGAN.

The left part (Figure 2a) shows the generator and discriminator, which are trained adversarially.
The right part (Figure 2b) shows the inference network [22]. The encoder estimates the distribution
𝑞𝜑(𝑧 | 𝑥) and the domain classifier 𝑞𝜑(𝑎 | 𝑧).

However, in our implementation, the domain variable is estimated directly from the input image
𝑞𝜑(𝑎 | 𝑥). The generator produces a restored image 𝑥′, which is then compared by the discriminator
with the original images.

The Lifelong VAEGAN model has two learning phases - Wake and Dreaming [26]. In the first, the
generator and discriminator are trained adversarially, in the second, the variational autoencoder part is
updated on real and generated data. In the Wake phase, the network is trained using the Wasserstein
GAN loss with gradient penalty (WGAN-GP). The loss function is shown in equation (1).

min
𝐺

max
𝐷

𝐿GAN(𝜃, 𝜔) = E𝑧∼𝑝(𝑧), 𝑐∼𝑝(𝑐), 𝑎∼𝑝(𝑎)

[︀
𝐷
(︀
𝐺(𝑐, 𝑧, 𝑎)

)︀]︀
− E𝑥∼𝑝(𝑥)

[︀
𝐷(𝑥)

]︀
+ 𝜆E𝑥̃∼𝑝(𝑥̃)(‖∇𝑥̃𝐷(𝑥̃)‖2 − 1)2 (1)

where:

• 𝐺(𝑐, 𝑧, 𝑎) is the generated image;



• 𝐷(·) is the discriminator output;
• 𝑝(𝑧) is the prior distribution of the latent vector 𝑧;
• 𝑝(𝑐), 𝑝(𝑎) are the prior distributions of the discrete variables 𝑐 and 𝑎;
• Gradient penalty limits the discriminator’s gradient and prevents mode collapse.

In the Dreaming phase, the model learns to maximize the log-likelihood of the training data by optimizing
the ELBO, which is calculated by the formula (2).

𝐿VAE(𝜃, 𝜑;𝑥) = E𝑞𝜑(𝑧,𝑐,𝑎|𝑥)
[︀
log 𝑝𝜃(𝑥 | 𝑧, 𝑐, 𝑎)

]︀
− 𝐷KL

[︀
𝑞𝜑(𝑧, 𝑐, 𝑎 | 𝑥) ‖ 𝑝(𝑧, 𝑐, 𝑎)

]︀
. (2)

where:

• E𝑞𝜑(𝑧,𝑐,𝑎|𝑥)[log 𝑝𝜃(𝑥 | 𝑧, 𝑐, 𝑎)] estimates the reconstruction accuracy;
• the second term (KL divergence) acts as a regularization, preventing overfitting and ensuring a

smooth latent space.

3. Proposed model architecture

The visual results show that the basic L-VAEGAN model can restore the damaged area. Figure 3 confirms
that the model correctly captures the domain and main facial features.

Figure 3: Restoration results using the baseline L-VAEGAN.

However, factors such as hair, skin, and eye color do not quite correspond to the original area. It can
be concluded that the basic model has limitations in capturing various small details. To eliminate the
shortcomings, the following modifications were implemented.

A U-Net generator was implemented, which forms a dual-encoder architecture. The model has both
a separate inference encoder and a generator with the U-Net architecture, which also has an encoder
that “extracts” spatial features. Figure 4 presents a general diagram of the updated architecture.

The model has two processing paths. The inference encoder compresses the image to the latent vector
z and determines the domain label a. The U-Net generator encoder compresses the image, extracting
multi-level features. At the bottleneck level, the concatenation of [𝑧, 𝑎] occurs, their transformation



through a fully connected layer into a tensor of the desired size and the addition of spatial features. Also
at the bottleneck level, a self-attention block is added. After that, the decoder performs upsampling to
the original size taking into account skip connections.

Figure 4: Model architecture with two encoders.

3.1. U-Net generator with two inputs

The generator based on the U-Net architecture has a symmetric encoder-decoder path with skip
connections [27]. The encoder part of the generator consists of a cascade of Conv→Norm→ReLU
layers, which reduce the image dimension to 4× 4× 512. In our implementation, the generator has
five encoder and decoder blocks. Since the input images had a size of 128× 128, at the fifth level the
feature size becomes 4× 4, further reducing it is inefficient, since such actions can lead to the loss of
information about the spatial location of objects. If, on the contrary, the network depth is made smaller,
the model generates more generalized and inconsistent objects.

The inference encoder specifies the vector 𝑧 and 𝑎. Both encoders converge at the bottleneck level.
The following approach was used to combine information: a continuous vector 𝑧 is concatenated with
a vector of the domain variable 𝑎 (one-hot representation of the domain [28]. Then the resulting vector
passes through a fully connected layer, which expands it into a 4× 4× 512 tensor with subsequent
ReLU activation. The resulting tensor is treated as additional noise, then it is passed element by element
to the output bottleneck representation of the U-Net encoder. Such actions are a form of information
fusion, where the latent vector brings semantic features, and spatial features provide local context. As a
result, the enriched tensor is fed to the decoding part of the generator.

3.2. Decoder and skip connections

The decoder performs sequential upsampling. Transposed convolutions (ConvTranspose2d) restore the
spatial size of the layer first to 8× 8, then to 16× 16 and so on up to the original size of 128× 128.
At each level, the decoder receives a skip connection from the corresponding encoder layer of the
generator. Skip connections are very important for the image reconstruction task. Without their use,
the generator would reconstruct the image based only on the low-dimensional representation in the
bottleneck, which would lead to the loss of many structures and blurring of the result. Thanks to skip
connections, the decoder directly receives high-resolution features from the encoder that would be lost
during downsampling. In our implementation, skip connections are performed as a concatenation of



Figure 5: Images generated during replay with a buffer of previous samples.

tensors. The output activations of the encoder blocks are combined by channels with the corresponding
decoder tensor after upsampling to the appropriate size.

As a result, even considering that the latent vector 𝑧 carries only the global information of the image,
local details are restored thanks to skip connections, which makes the reconstruction more consistent.

At the output of the decoder, a filled image 𝑥′ is obtained, which realistically fills the masked areas.
As a result, thanks to the variational encoder, the images have high semantic consistency, and thanks to
U-Net+GAN they are reproduced with high reliability.

3.3. Self-attention module

To improve the restoration of damaged areas, the self-attention mechanism was added to the generator
in the bottleneck zone. At this stage, the spatial size is very small, but the channel depth is high, so each
of the feature map elements contains information about a large area of the original sample. This makes
it possible to take into account long-range relationships between different parts of the image and to
coordinate them with each other. This is quite important for the continuation of the background and
symmetry of different parts of the objects. After adding self-attention, brightness mismatches across a
face were greatly reduced.

3.4. Wake and dreaming phases

During the Wake phase, the model receives real data from the current domain. The inference encoder cal-
culates 𝑧 and 𝑎, while the generator restores damaged areas, acquiring new knowledge. The parameters
of the inference encoder and generator are updated based on the gradients from the reconstruction and
adversarial losses (the discriminator is also updated). During each iteration, examples of old domains
from the image buffer are mixed in [29], so we can say that the model "dreams" of past experiences
within the main learning phase. In our implementation, both encoders and the generator are involved
in the Wake phase, but are trained on a combination of new and buffer data, performing the role of
consolidation (dreaming) [30]. This approach is similar to the idea of off-line sleep in neural networks,
where during learning the model switches between repeating external cues and replaying internal
memories. Our result demonstrates that even with the buffering approach the model prevents the
forgetting of old skills. Figure 5 illustrates this.



3.5. Adding perceptual loss

During training, an additional perceptual loss was used, which is calculated not at the pixel level, but at
the level of features extracted by the VGG16 model pre-trained on ImageNet. Minimizing only MSE
tends to blur fine textures by averaging them. For human perception, images can be similar if they
have the same structure, even if they are different pixel by pixel. Perceptual loss compares the outputs
of certain internal layers, and not pixel values. Layers were selected that cover both low-level and
high-level features. The original and generated images are passed through VGG16 and for each layer,
the feature tensors 𝜑𝑙(𝐼orig) and 𝜑𝑙(𝐼gen) are calculated. Perceptual loss is calculated as the average
𝐿1-norm of the difference of these features, summed over all selected layers, formula (3):

𝐿perc(𝐼orig, 𝐼gen) =
∑︁
𝑙∈ℒ

𝜆𝑙

⃦⃦
𝜑𝑙(𝐼gen) − 𝜑𝑙(𝐼orig)

⃦⃦
1
, (3)

where:
• ℒ is the set of indices of the selected layers;
• 𝜆𝑙 are the weighting factors for each layer.

As a result, thanks to the perceptual loss, results were obtained that are of higher quality for human
perception, without artifacts and with correct textures.

4. Image-quality assessment metrics

The quality of the restored images was described through the following indicators: MSE, PSNR, SSIM
and FID. None of the metrics covers all aspects of perception. Therefore, for better objectivity, one
metric is not enough.

The mean square error (MSE) is defined as the arithmetic mean of the squares of the difference
between the pixels of the original and reconstructed image, formula (4).

MSE(𝑥, 𝑥̂) =
1

𝑁

𝑁∑︁
𝑖=1

(︀
𝑥𝑖 − 𝑥̂𝑖

)︀2
, (4)

where:
• 𝑥𝑖 is the value of the 𝑖-th pixel of the original image;
• 𝑥̂𝑖 is the value of the corresponding i-th pixel of the reconstructed image;
• 𝑁 is the total number of pixels in the image.

However, MSE does not take into account the peculiarities of human perception. For this problem,
the peak signal-to-noise ratio (PSNR) was used. This metric shows how much the maximum signal
exceeds the existing error level, formula (5).

PSNR(𝑥, 𝑥̂) = 10 log10

(︂
MAXI

2

MSE(𝑥, 𝑥̂)

)︂
dB, (5)

where:
• MAX𝐼 is the maximum possible signal value;
• log10 is a decimal logarithm that converts the linear scale to a scale close to human perception.

However, MSE and PSNR only take into account pixel differences. To assess structural similarity, the
SSIM metric was used. This metric effectively takes into account changes that humans see (contrast,
texture). It is based on comparing the means, variances and covariances of local blocks of the original
(x) and reconstructed (y) images, formula (6)

SSIM(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1) (2𝜎𝑥𝑦 + 𝐶2)

(𝜇2
𝑥 + 𝜇2

𝑦 + 𝐶1) (𝜎2
𝑥 + 𝜎2

𝑦 + 𝐶2)
, (6)

where:



• 𝜇𝑥, 𝜇𝑦 are the mean values of pixels in the local window for images 𝑥 and 𝑦;
• 𝜎2

𝑥, 𝜎2
𝑦 are the variances of pixel values in the window for 𝑥 and 𝑦;

• 𝜎𝑥𝑦 is the covariance between corresponding pixels of the two images;
• 𝐶1, 𝐶2 are small positive constants that avoid division by 0.

Frechet Inception Distance (FID) was also used, which compares statistical properties. Inception v3
neural network was used, which receives feature vectors that are compared as two Gaussian distributions,
formula (7)

FID = ‖𝜇𝑟 − 𝜇𝑔‖22 + Tr
(︁
Σ𝑟 +Σ𝑔 − 2 (Σ𝑟 Σ𝑔)

1/2
)︁
, (7)

where:

• 𝜇𝑟 , 𝜇𝑔 - average values of feature vectors for real and generated images;
• Σ𝑟 , Σ𝑔 - covariance matrices of these images;
• ‖ · ‖2 - Euclidean norm;
• Tr - trace of the matrix (sum of elements on the main diagonal).

5. Results and discussion

The model was trained on two datasets: first on CelebA, then on Facade.
The following results were obtained on CelebA: MSE = 0.205, PSNR = 25.65, SSIM = 0.9139, FID = 6.81.

According to the SSIM indicator, it is clear that the model perfectly preserves the key structural features
of the faces. FID indicates good generation quality: the generated images almost do not differ from the
real ones in terms of their features. The visual results of CelebA restoration are shown in Figure 6.

Figure 6: Visual restoration results on the CelebA dataset.

On the Facade dataset, which contains a relatively small number of images, the results obtained are:
MSE = 0.303, PSNR = 23.94 dB, SSIM = 0.8643, FID = 44.24.

Given the small amount of training data, these results are quite high.
The visual results of Facade restoration are shown in Figure 7.



Figure 7: Visual restoration results on the Facade dataset.

6. Conclusions

An intelligent system for restoring damaged parts of images based on the Lifelong VAEGAN model has
been developed. The basic architecture has been extended to a dual-encoder architecture. A separate
inference encoder forms the latent vector, and a generator encoder with a U-Net structure preserves
spatial features. Then both encoders are combined into a bottleneck with a self-attention mechanism.
Thanks to skip connections, high-resolution details are transmitted to the decoder, while self-attention
better matches distant image areas. For lifelong training, a real-sample buffer was used, which mixes
data from previous domains into the current ones. Due to this, catastrophic forgetting was avoided.
Perceptual loss on VGG16 features was also added, which eliminates blurring and improves textural
plausibility. Results on the CelebA and Facade sets confirmed the effectiveness of the model. he results
(MSE = 0.205, PSNR = 25.65, SSIM = 0.9139, FID = 6.81) after training on the new domain are quite
convincing and show that catastrophic forgetting was avoided.

Declaration on Generative AI

The authors have not employed any Generative AI tools.
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