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Abstract

This research investigates techniques that can improve the performance of FaceNet, a highly sought-after deep
learning model that has seen widespread application in facial detection, verification, and clustering. In spite of
FaceNet’s powerful architecture and state-of-the-art performance on benchmarking datasets like Labeled Faces
in the Wild (LFW) and YouTube Faces, it has limitations, especially under conditions of low-resolution images,
occlusions, noise, and biases resulting from imbalanced training datasets. In an attempt to mitigate the observed
deficiencies, the research investigates optimization of the Triplet Loss function through the use of techniques
such as semi-hard negative mining, batch-all triplet loss, and cosine triplet loss. The research also examines the
use of state-of-the-art data augmentation techniques, such as Generative Adversarial Networks (GANSs), attention
mechanism, DenseNet incorporation, and noise reduction layer, in mitigating the sensitivity and enhancing model
accuracy. A new Hybrid Noise Reduction Layer (HNRL) that integrates spatial and frequency-domain filtering
techniques has been proposed and tested. Experimental results show considerable improvement in accuracy,
embedding quality, and computational speed across a range of datasets. The results offer important insights and
solutions to improve the discriminative power and robustness of FaceNet for consistent performance on different
face detection tasks.
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1. Introduction

Face recognition technology has witnessed rapid advancements driven largely by deep learning method-
ologies [1, 2, 3]. Among various deep learning models, FaceNet stands out for its significant contributions
in face detection, verification, and clustering [1, 3, 4]. Developed by Google Research, FaceNet trans-
forms facial images into compact embeddings within a Euclidean space, making it highly effective for
identity verification and face clustering applications. Despite achieving impressive performance on
standard benchmark datasets like Labeled Faces in the Wild (LFW) and YouTube Faces, FaceNet still
faces several operational challenges. These include sensitivity to image resolution, susceptibility to
occlusions and noise, as well as performance degradation due to biases in training datasets [1, 5, 6].
As a reaction to these constraints, recent studies have been on how to enhance FaceNet’s embedding
generation process by fine-tuning Triplet Loss function, which is at the core of discriminative embedding
space creation. Proposals like semi-hard negative mining, batch-all triplet loss, and cosine triplet loss
have become viable solutions. In addition, enhancing the robustness of FaceNet involves sophisticated
data augmentation strategies such as the use of Generative Adversarial Networks (GANs) and integration
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of sophisticated building blocks such as DenseNet, attention mechanisms, and noise reduction layers.
A novel Hybrid Noise Reduction Layer (HNRL) is also suggested and experimented on in this paper,
aimed at successfully mitigating the impact of noise on embedding quality.

The primary objective of this study is to comprehensively assess these enhancements through
empirical experiments, quantifying their impact on model accuracy, robustness, and computational
efficiency. The findings from this research aim to provide actionable insights into refining FaceNet,
contributing to the broader pursuit of reliable and robust facial recognition technologies suitable for
diverse real-world applications.

2. Related works

FaceNet, introduced by Schroff et al. (2015), has significantly advanced the field of face recognition
through the use of deep convolutional neural networks (CNNs) and a specialized Triplet Loss function
[1]. Early works such as DeepFace [2] and Deep Face Recognition [3] established foundational concepts
in embedding generation and verification. CosFace further refined embedding discrimination with
angular margin loss [4].

Subsequent research has explored various methodologies to further refine FaceNet’s embedding
generation. Hermans et al. (2017) proposed batch-all and batch-hard triplet loss strategies, improving
training efficiency and accuracy by maximizing triplet utilization within batches [5]. Additionally,
Parkhi et al. (2015) and Wang et al. (2018) emphasized incorporating softmax-based angular loss
functions to enhance embedding discrimination further. The adoption of advanced data augmentation
techniques has also become integral to face recognition research. Zhang et al. (2018) leveraged GAN-
based augmentation to diversify facial images, significantly enhancing model robustness. Moreover,
attention mechanisms, extensively studied by Vaswani et al. (2017), have been successfully integrated
into face recognition systems, improving their ability to focus on salient facial features and handle
occlusions effectively [7, 8, 9].

DenseNet architectures, introduced by Huang et al. (2017), have been explored to boost feature
extraction capabilities in face recognition models. Research by Gao et al. (2019) demonstrated substantial
improvements in embedding quality by integrating DenseNet’s dense connectivity into FaceNet, thus
addressing issues of gradient vanishing and enhancing computational efficiency [10]. Noise reduction
methodologies have also been pivotal in recent studies. Techniques combining spatial and frequency-
domain filtering, such as those introduced by Tian et al. (2020), have demonstrated effectiveness
in mitigating the detrimental impacts of low-resolution and noisy input data on face recognition
performance [11, 12, 13]. Security considerations have recently gained increased attention in face
recognition research. For instance, Yevseiev et al. [14] introduced a comprehensive security model for
socio-cyber-physical systems that supports resilient identity verification processes. Vasylyshyn et al.
[15] proposed a decoy-based system utilizing dynamic attributes to aid cybercrime investigation and
enhance the credibility of intrusion responses. Susukailo et al. [16] addressed modern cybersecurity
threats by developing a methodology for establishing ISMS-compliant architectures, highlighting
the critical role of secure data processing in face recognition applications. Moreover, secure AAA
service design [17] and conformity verification in cloud environments [18] further contribute to the
development of privacy-preserving, robust face recognition frameworks. This study builds upon these
previous advancements by evaluating comprehensive strategies that include optimized Triplet Loss
variants, advanced augmentation techniques, and innovative noise reduction methods. These combined
approaches aim to significantly enhance FaceNet’s robustness, generalizability, and overall accuracy
[19, 20, 21].

3. Aim of research

The primary aim of this research is to enhance the accuracy, robustness, and computational efficiency
of the FaceNet model for face detection and recognition tasks. This involves addressing specific



challenges, such as improving embedding discriminative power, reducing sensitivity to noisy and
low-resolution images, and mitigating dataset bias. By integrating optimized Triplet Loss functions,
advanced augmentation techniques, and innovative architectural components, the study seeks to
comprehensively evaluate their collective impact on FaceNet’s performance across various datasets and
practical applications.

4. FaceNet system for face detection

4.1. General information about FaceNet model

FaceNet, a state-of-the-art deep learning model developed by Google Research, has raised the bar in
facial recognition, verification, and clustering. The most significant innovation of this model is that it
can represent facial images as short embeddings in a Euclidean space. The Euclidean distance between
such embeddings is directly proportional to the similarity between faces and hence facilitates very
efficient operations like identity verification and face clustering. Through this capability, FaceNet
can cluster facial images of the same individual while maintaining sharp separation from others, an
important feature in advancing facial recognition technology.

The strength of FaceNet lies in its ability to leverage a powerful architectural design that fuses
state-of-the-art deep learning methodologies with a discriminative strategy in embedding generation.
Through mapping facial images onto a low-dimensional, information-dense vector space, FaceNet
overcomes challenging issues inherent in facial recognition, rendering it a highly versatile solution for
both academic study and real-world application.

The foundation of FaceNet relies on the Inception-ResNet model, which is a sophisticated combination
of two well-known deep learning models. The combined architecture takes advantage of the merits
provided by Inception modules that enable processing information at multiple scales, together with the
residual connections in ResNet that easily alleviate the vanishing gradient problem common in deep
neural networks. It is with the fusion of these characteristics that FaceNet strikes a balance between
computational efficiency and capacity for extracting both fine-grained and coarse facial information.
This fusion guarantees high accuracy as well as strong performance in unconstrained conditions.

One of FaceNet’s hallmark features is its ability to project facial images into a fixed-dimensional
embedding space, typically represented as vectors of size 128 or 512. These embeddings are not only
compact but also highly discriminative. For instance, embeddings corresponding to images of the
same individual cluster closely together, while those of different individuals are well-separated. Such
discriminative properties are essential for enabling efficient computation and storage, especially in
large-scale systems.

The example of Triplet Loss on two positive faces (Obama) and one negative face (Macron) is shown
in Figure 1.

One of the central pieces of the FaceNet architecture is its training paradigm, which is fundamentally
based on the Triplet Loss function. This particular loss function is instrumental in defining the embed-
ding space such that it follows the intended geometric properties. Specifically, the Triplet Loss trains
embeddings such that the distance between an anchor image and a positive image (same identity) is
shorter than the distance between the anchor image and a negative image (different identity), by some
margin.

This approach guarantees that embeddings maintain compactness and discriminative capability,
reducing class variability and increasing between-class separability. The Triplet Loss function’s perfor-
mance is very much dependent on the selection of informative triplets during training. The convergence
can be slow and the performance suboptimal if the triplets are not selected well.

To overcome this issue, strategies such as Hard Negative Mining, in which hardest negative samples
are prioritized, are employed to augment the training regimen and aid model performance. In spite
of its impressive functionality, FaceNet also has some drawbacks. One serious drawback is its sensi-
tivity to input data quality. Though the model is found to perform optimally under ideal conditions,
its performance could be reduced when confronted with low-quality images, occlusions, or noisy
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Figure 1: Triplet Loss on two positive faces (Obama) and one negative face (Macron) [22].

inputs. Furthermore, the computational expense of training FaceNet on large-scale datasets can become
prohibitive, especially in scenarios where resources are constrained.

A second essential concern is the possibility of biasing the model performance that usually arises due
to variations in the training data. Such biases can end up causing disparate performance on varying
demographic groups, invoking ethical implications that must be taken into consideration for broader
applications.

4.2. Current performance of FaceNet in face detection

The performance of FaceNet in face detection tasks has been extensively evaluated across various
datasets and application scenarios. Central to its performance is the model’s ability to produce compact
embeddings that maintain high discrimination power even under challenging conditions such as
occlusions, variations in lighting, and diverse facial orientations.

FaceNet achieves state-of-the-art performance on popular benchmark datasets, including LFW
(Labeled Faces in the Wild) and YouTube Faces. On the LFW dataset, for instance, FaceNet achieves
an impressive accuracy of 98.1 %, demonstrating its robustness in unconstrained environments. This
performance is achieved through the model’s capacity to handle vast variations in facial appearances
and conditions, a critical requirement for real-world face detection tasks.

In face clustering tasks, FaceNet’s embeddings have shown remarkable compactness, enabling the
grouping of facial images with high precision. The Euclidean distance metric used for comparison
between embeddings ensures that intra-class distances remain minimal, while inter-class distances
are maximized. This characteristic enhances the reliability of FaceNet in applications such as photo
organization and identity verification.

However, the model’s performance is not uniform across all scenarios. In low-resolution images or
settings with significant noise, the quality of embeddings can degrade, leading to reduced accuracy.
Similarly, the presence of biases in training datasets can affect the model’s generalizability across
different demographic groups. These challenges highlight the importance of careful dataset curation
and preprocessing to ensure optimal performance.



Despite these limitations, FaceNet continues to set the standard for face detection performance. Its
ability to generate compact and discriminative embeddings has solidified its position as a leading model
in the field. Further advancements in its architecture and training methodology hold the potential to
address existing challenges, paving the way for even more robust and reliable performance in face
detection tasks.

5. Enhancing FaceNet’s performance in face detection

Enhancing FaceNet’s performance in face detection is a multi-faceted task that needs to be addressed
through its architectural, training, and data-related issues. The following improvements are aimed
at optimizing the model’s discriminative capability, robustness, and generalization ability without
compromising its computational efficiency. This section discusses major strategies and how they can
affect FaceNet’s performance.

The primary challenge in enhancing FaceNet lies in refining its embedding generation process
to ensure tighter intra-class clustering and greater inter-class separation. This can be achieved by
optimizing the Triplet Loss function - a cornerstone of FaceNet’s methodology. Additionally, leveraging
advanced data augmentation techniques and integrating auxiliary components can significantly bolster
the model’s resilience to variations in facial data. Transfer learning, when combined with pretraining on
diverse datasets, offers another promising avenue to accelerate convergence and improve generalization
[1, 4, 5, 23].

5.1. Triple Loss

The Triplet Loss function is central to FaceNet’s ability to generate discriminative embeddings, but its
current implementation is not without challenges [1, 5]. One major issue is the selection of effective
triplets during training. Hard-negative mining, which focuses on the most challenging negative samples,
often results in slow convergence and training instability [5, 24]. To address this, semi-hard negative
mining has emerged as a more balanced approach. It selects negative samples that are harder than the
anchor-positive pair but not as extreme as hard negatives, ensuring faster and more stable convergence
during training [4].

Batch-all Triplet Loss is another promising variant that evaluates all possible triplets within a batch
during training. Unlike traditional methods that select a subset of triplets, this approach increases the
training efficiency by maximizing the utilization of each batch. It not only improves convergence but
also helps the model learn a more comprehensive representation of the data.

Cosine Triplet Loss further advances the embedding process by replacing the Euclidean distance with
cosine similarity as the metric for evaluating distances between embeddings. This shift enhances the
model’s ability to maintain scale invariance and normalize embeddings, leading to improved robustness
in face detection tasks. By aligning embeddings based on their angular relationships, Cosine Triplet
Loss improves the clustering of intra-class samples and the separability of inter-class samples, making
it particularly effective in challenging scenarios such as low-resolution images or datasets with high
variability.

Together, these refinements to the Triplet Loss function significantly enhance the quality of the
embedding space, enabling FaceNet to perform with higher accuracy and reliability across diverse face
detection tasks.

Another challenge arises from the fixed margin parameter in the loss function, which may not be
optimal across all training scenarios. Introducing adaptive margins or employing loss functions like
angular loss or margin-based softmax loss can address this limitation. These alternative loss functions
impose stricter geometric constraints on the embedding space, resulting in improved separation between
classes and tighter clustering within classes.

Furthermore, traditional Triplet Loss training often requires extensive manual effort to curate a
high-quality dataset with balanced classes. To alleviate this, leveraging semi-supervised learning
methods can help generate pseudo-labels for unlabeled data, increasing the diversity of training samples



Table 1
Triple Loss Comparison.

Triplet Loss Accuracy (LFW)  Accuracy (YouTube Faces) Average time (hours)
98.1% 93.4% 12
Hard Negative Mining 98.9% 94.8% 10
Semi-Hard Mining 99.2% 95.3% 1
Batch All Triplet Loss 99.0% 94.9% 10.5
Cosine Triplet Loss 99.4% 95.7% 10.5

and improving the model’s robustness. Together, these refinements directly enhance the quality and
discriminative power of FaceNet’s embedding space.

The impact of refinements to the Triplet Loss function was evaluated using the MS-Celeb-1M and
YouTube Faces datasets, representing static image recognition and video-based scenarios, respectively.
The study assessed accuracy, convergence trends, and computational efficiency to determine the
effectiveness of the proposed strategies in enhancing FaceNet’s performance.

The baseline FaceNet model performed robustly, achieving 98.1% accuracy on the LFW dataset for
static image recognition. However, hard-negative mining, while capable of identifying challenging
samples, often led to slower convergence due to noisy gradients. Semi-hard negative mining addressed
this by striking a balance between difficulty and stability, leading to smoother training and improved
embedding quality. Batch-all Triplet Loss further advanced training efficiency by leveraging all possible
triplets within a batch, optimizing the learning process and reducing the final loss values.

Cosine Triplet Loss introduced angular similarity as a metric, replacing Euclidean distance. This
approach significantly improved embedding separability, particularly in dynamic settings like video-
based recognition, as evidenced by the 93.4% accuracy achieved on the YouTube Faces dataset. By
emphasizing angular relationships, this method demonstrated superior generalization, making it well-
suited for applications involving temporal variability, such as video surveillance.

The benefits of these strategies were further quantified through convergence analysis and compu-
tational efficiency. Semi-hard mining and batch-all approaches not only improved learning stability
but also reduced the number of epochs needed for convergence. Table 1 summarizes the comparative
performance of these strategies, showing notable improvements in accuracy and average training times.

The analysis of optimized Triplet Loss strategies highlights their significant contribution to improving
FaceNet’s performance, particularly in challenging datasets. Semi-Hard Mining strikes a balance between
accuracy and computational cost, achieving a 1.1% increase in accuracy over standard approaches,
making it suitable for diverse tasks. Cosine Triplet Loss demonstrates the highest accuracy among all
strategies due to its effective feature normalization, excelling in scenarios with heterogeneous data.
Batch-All Triplet Loss ensures robust performance on large datasets by maintaining high accuracy
while optimizing training time. These strategies collectively enhance FaceNet’s efficiency and precision,
as evidenced by their superior results on MS-Celeb-1M and YouTube Faces datasets.

5.2. Advanced data augmentation techniques

Data augmentation is an essential strategy for enhancing the robustness and generalization capabilities
of FaceNet [11, 12, 13, 25]. Traditional methods, such as random cropping, rotation, and color jittering,
introduce controlled variations in the training dataset, helping the model adapt to changes in facial
orientation, lighting, and expression. Additionally, synthetic occlusion techniques, such as adding masks
or obstructions to facial images, simulate real-world scenarios where parts of the face may be hidden,
further bolstering the model’s resilience. The integration of advanced architectural components such as
attention layers, DenseNet, and noise reduction layers has demonstrated significant potential in further
enhancing FaceNet’s performance. These components address specific challenges in feature extraction,
robustness, and noise management, resulting in improved accuracy and generalization across various
datasets.



Attention layers focus on emphasizing the most salient facial features while suppressing irrelevant
background information. By dynamically allocating weights to critical regions, these layers enhance the
discriminative power of embeddings. For instance, the inclusion of multi-head self-attention modules
allows the model to prioritize key facial landmarks, improving intra-class compactness and inter-class
separability. Experimental results reveal a 1.5% improvement in accuracy on the LFW dataset when
attention mechanisms are integrated into the embedding pipeline. Furthermore, attention-enhanced
models exhibit better resilience in scenarios with partial occlusions or complex backgrounds. For
example, when an object is on a background with a lot of details, textures, or other objects, making it
difficult to highlight.

DenseNet introduces densely connected layers that ensure efficient information flow throughout
the network. Each layer in DenseNet receives inputs from all preceding layers, promoting feature
reuse and mitigating the vanishing gradient problem. This architecture allows FaceNet to extract both
fine-grained details and broader contextual information, leading to more robust embeddings.

Noise reduction layers play a critical role in addressing the challenges posed by noisy or low-resolution
input data. By filtering out irrelevant variations and preserving essential facial features, these layers
enhance the quality of embeddings. Techniques such as adaptive noise filtering and frequency-based
noise reduction have shown remarkable effectiveness in reducing artifacts and maintaining discrimi-
native power. For example, when noise reduction layers were applied to the YouTube Faces dataset,
video-based accuracy increased by 1.7%, highlighting their importance in dynamic and uncontrolled
environments.

Generative Adversarial Networks (GANs) take data augmentation to the next level by producing high-
quality, realistic variations of facial images. GAN-based augmentation can create diverse representations
of the same individual by altering attributes like hairstyle, lighting conditions, age, or even facial
expressions. For instance, a GAN can generate images with different background clutter or simulate
variations in weather effects, such as shadows or rain, ensuring that the training dataset is enriched with
scenarios that closely mimic real-world conditions. These synthetic samples not only increase dataset
diversity but also help the model become less reliant on specific attributes or conditions [11, 12, 13].

The impact of such variations on model robustness is significant. By training with a diverse and aug-
mented dataset, FaceNet can better handle out-of-distribution samples, reducing the risk of performance
degradation in unseen environments. Moreover, GANs allow augmentation to be class-preserving,
ensuring that the identity information remains intact even with significant alterations, which is crucial
for maintaining the discriminative quality of embeddings.

Incorporating advanced augmentation techniques ensures that FaceNet can perform consistently
across a wide range of scenarios, making it suitable for applications requiring high reliability in
unpredictable environments.

Introducing auxiliary networks, such as attention mechanisms and feature aggregation methods,
can significantly enhance FaceNet’s performance by addressing its limitations in feature selection and
representation. For instance, attention mechanisms allow the model to focus on the most salient facial
features while minimizing the influence of irrelevant background noise. This capability is particularly
beneficial in challenging conditions such as cluttered environments or partially occluded faces.

A concrete example of the impact of auxiliary networks can be seen in the implementation of a
self-attention mechanism integrated into FaceNet’s embedding generation pipeline. In one case study,
researchers applied a multi-head self-attention module, enabling the model to dynamically weigh the
importance of different facial regions during training. This resulted in a significant improvement in
both intra-class compactness and inter-class separability, as demonstrated on benchmark datasets like
LFW (Labeled Faces in the Wild), where accuracy improved by 1.9% compared to the baseline FaceNet
model as shown in Table 2.

Additionally, feature aggregation networks can further boost performance by combining multi-scale
information, allowing the model to capture both fine-grained details and broader contextual features.
For example, a hierarchical feature aggregation network can process local features such as the shape
of the eyes while simultaneously integrating global features such as facial symmetry. This multi-
scale approach improves the robustness of embeddings, particularly in cases with variations in facial



Table 2
Triple Loss Comparison in Additional Components.

Additional component  Accuracy change  Accuracy change  Average time

(LFW) (CASIA WebFace) change (ms)
DenseNet +1.6% +1.8% +20
Attention Layers +1.9% +2.6% +25
Noise Reduction Layers +1.3% +1.4% +10
GANs +2.3% +3.0% +50

expressions or lighting.

The incorporation of advanced components such as DenseNet, Attention Layers, Noise Reduction
Layers, and GANs has been shown to significantly enhance the performance of face recognition models
like FaceNet. These components address critical challenges in feature extraction, robustness, and noise
reduction, improving model efficiency under a variety of conditions. The effectiveness of these strategies
is supported by scientific studies, which demonstrate consistent improvements across diverse datasets
and application scenarios.

The integration of DenseNet promotes efficient feature reuse and gradient stability, leading to
improved performance on large-scale datasets. Attention Layers amplify the model’s focus on relevant
facial features, enhancing robustness to occlusions and background noise. Noise Reduction Layers
mitigate the effects of low-resolution and noisy data, while GAN-based augmentations diversify training
datasets, boosting generalization capabilities. Together, these enhancements enable FaceNet to achieve
higher accuracy, better convergence, and improved resilience under real-world conditions.

5.3. Hybrid Noise Reduction Layer

The Hybrid Noise Reduction Layer (HNRL) is an advanced architectural enhancement designed to
improve the robustness of face recognition models like FaceNet by mitigating the impact of noise in
input data. Noise, such as occlusions, low resolution, or environmental distortions, often degrades
the quality of embeddings and reduces model performance. HNRL effectively addresses these issues
by combining spatial and frequency-domain noise reduction techniques within a unified, learnable
framework [14, 15, 16].

HNRL operates by simultaneously suppressing noise in both spatial and frequency domains while
preserving critical facial features essential for accurate recognition. Spatial filtering reduces pixel-level
artifacts, such as blur or occlusions, by dynamically adjusting to the intensity of noise in the input.
Frequency-based techniques, like low-pass filtering, focus on removing high-frequency components,
such as compression artifacts, while retaining essential structural details.

A unique feature of HNRL is its learnable noise suppression mechanism. This sub-network estimates
noise characteristics in real time and applies targeted filtering, adapting to diverse input conditions.
Additionally, a multi-scale approach ensures that noise patterns are addressed across varying resolutions,
combining fine-grained and global information for comprehensive noise reduction.

The inclusion of HNRL has demonstrated significant performance improvements in face recognition
tasks, particularly on datasets with noisy or low-quality inputs. For example, on the YouTube Faces
dataset, which involves dynamic video sequences, the integration of HNRL led to a 2.1% improvement
in accuracy, reaching 94.25%. Similarly, on MS-Celeb-1M, a large-scale dataset with varying conditions,
accuracy increased by 1.9%. These results highlight HNRL’s capacity to enhance embedding quality
and improve resilience to noise.

HNRL also reduces training loss across epochs, accelerating convergence and leading to more stable
training outcomes. Experiments show up to a 1% reduction in final loss values, demonstrating the
effectiveness of the layer in generating clean and robust embeddings. Moreover, its adaptability to
various noise types ensures consistent performance across diverse scenarios, including occluded, low-
resolution, and compressed inputs.



6. Conclusions

This research has presented several efficient methods to significantly enhance FaceNet’s performance.
By optimizing the Triplet Loss function with semi-hard negative mining, batch-all triplet loss, and cosine
triplet loss, the embedding generation process has become more discriminative and robust. Further, by
integrating state-of-the-art data augmentation methods, including GANs and attention mechanisms,
with DenseNet architectures and special noise reduction layers, the robustness and accuracy of the
model have been considerably improved. The new Hybrid Noise Reduction Layer (HNRL) has also been
shown to be highly effective at dealing with noisy inputs. Together, these advances provide strong
techniques for extending FaceNet to enable stable and effective face detection operation across a broad
variety of difficult real-world environments.
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