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Abstract
This paper presents a comparative study of two evolutionary algorithms – Genetic Adaptive Optimization for
Dynamic Mapping (GAODM) and Differential Evolution (DE) – for adaptive route formation in dynamic wireless
networks. These algorithms are evaluated in simulation environments featuring node mobility and various types
of adversarial behavior, such as gray hole, black hole, flooding, and route hijacking attacks. Performance is
assessed using five metrics: Packet Delivery Ratio (PDR), Average Delay, Routing Overhead, Stability Score,
and Anomaly Avoidance Rate (AAR). Results indicate that while DE achieves faster convergence and lower
overhead in benign conditions, GAODM consistently outperforms DE in hostile scenarios due to its adaptive
crossover/mutation strategies and anomaly-aware fitness function. This makes GAODM a better candidate for
security-sensitive or mission-critical networks.
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1. Introduction

Modern computer networks are increasingly shifting toward dynamic topologies, where nodes may
frequently join, leave, or change their position within the network. This trend is especially prominent
in decentralized systems such as vehicular ad hoc networks (VANETs), drone-based communication
frameworks, emergency response systems, and industrial IoT networks. In such contexts, routing
protocols must be capable of adapting rapidly to topological changes while maintaining low latency,
efficient resource usage, and resilience against disruptions.

Traditional routing mechanisms, often designed for static or quasi-static environments, tend to
degrade under dynamic conditions. Moreover, networks operating in open or uncontrolled environments
are susceptible to traffic anomalies – including packet drops, unauthorized rerouting, and denial-of-
service behaviors – which can arise either due to malicious attacks or unintentional system failures.
These anomalies may compromise the reliability, availability, and security of critical communications.

In response to these challenges, evolutionary algorithms have gained attention as a viable class of
methods for adaptive route formation. Their ability to navigate complex, non-linear, and time-varying
search spaces makes them well-suited for multi-objective optimization tasks in network environments.
Two notable approaches within this class are the Genetic Adaptive Optimization for Dynamic Mapping
(GAODM) and the Differential Evolution (DE) algorithm.

GAODM incorporates biologically inspired mechanisms such as selection, crossover, and mutation,
along with adaptive features to adjust to topological shifts. DE, on the other hand, utilizes vector-
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based perturbation strategies and shows strong convergence in continuous spaces. Both methods
can be tailored not only for routing optimization, but also to support traffic anomaly detection and
intrusion-tolerant routing by embedding security-aware heuristics within the fitness evaluation process.

This paper presents a comparative study of GAODM and DE in the context of route optimization
for dynamic networks. We evaluate their performance in terms of route stability, convergence speed,
computational efficiency, and ability to handle abnormal traffic conditions. Furthermore, we explore
how evolutionary strategies can contribute to secure and intelligent routing in networks with frequent
structural changes.

2. Related work overview

The problem of adaptive routing in dynamic networks has been widely studied in the context of
mobile ad hoc networks (MANETs), wireless sensor networks (WSNs), and recently, in more complex
systems such as vehicular networks, drone swarms, and industrial cyber-physical systems. Conventional
protocols like AODV, DSR, and OLSR offer basic support for topology changes, but they often fail under
high mobility, node density, or adversarial conditions.

To address these limitations, researchers have investigated intelligent and metaheuristic-based routing
techniques, which include algorithms inspired by genetics, swarm behavior, and evolutionary dynamics.
Among these, Genetic Algorithms (GA) have been explored for route discovery and optimization due to
their ability to balance exploration and exploitation in large solution spaces. For instance, authors in
[1] proposed a GA-based routing scheme for MANETs that adapts to changing topologies by encoding
multiple path features into chromosomes. Similarly, Differential Evolution (DE) has been applied in [2]
for optimizing route selection based on link reliability and node energy consumption.

Other notable works have introduced hybrid models. In [3], a GA-PSO combined approach was
applied to enhance route stability and reduce control overhead. Meanwhile, Ant Colony Optimization
(ACO)-based methods [4] focused on probabilistic path building, though with limited success in highly
dynamic scenarios due to convergence delays.

On the security side, several studies have explored routing strategies robust against malicious nodes
and traffic anomalies. Anomaly-aware routing protocols [5] attempt to detect and avoid compromised
paths using metrics such as abnormal delay patterns, packet drop ratios, and sudden topology shifts.
Evolutionary algorithms have also been adapted to incorporate security-aware objectives, enabling
them to penalize risky or anomalous routes within their fitness evaluation functions [6, 7, 8, 9].

Despite these efforts, a direct comparative analysis between GA-based and DE-based approaches in
the context of adaptive and intrusion-tolerant routing remains scarce. Most existing work either focuses
on routing performance alone or lacks integration with anomaly detection capabilities. Furthermore, a
few studies systematically evaluate how these algorithms perform under variable topologies and attack
scenarios using consistent metrics and simulation setups.

This research aims to fill that gap by providing a side-by-side evaluation of GAODM and DE in
dynamic network environments, while explicitly incorporating traffic anomaly conditions and routing
security considerations into the optimization framework.

3. Problem statement

Dynamic network environments, such as those found in mobile or mission-critical communication
systems, are characterized by continuous topological changes due to node mobility, varying signal
conditions, or the appearance and disappearance of links. In such scenarios, ensuring reliable and
secure route formation is a non-trivial challenge, especially when the network may also be subject to
traffic anomalies and malicious routing behavior.

The core problem addressed in this work is the optimal formation of communication routes in a
network with dynamic topology, where routes must satisfy multiple criteria simultaneously:



• Adaptability – the routing method should quickly react to topological changes such as node
movement or failure;

• Efficiency – selected routes should minimize communication cost, latency, and energy consump-
tion;

• Stability – paths should remain valid for sufficient time to reduce route discovery overhead;
• Security-awareness – routes should be resilient to traffic anomalies or intrusions, such as packet

dropping or rerouting by compromised nodes.

4. Evolutionary approaches to adaptive route formation

4.1. Genetic adaptive optimization for dynamic mapping

The Genetic Adaptive Optimization for Dynamic Mapping (GAODM) represents an advanced adaptation
of the classical genetic algorithm, purposefully designed to address the challenges posed by dynamic
and non-deterministic network environments. In this formulation, each individual in the population is
encoded as a linear sequence of intermediate nodes forming a potential communication path between a
designated source and destination. This representation ensures that each chromosome adheres to the
constraints of network connectivity and reflects the current topological state of the system.

The evaluation of candidate routes is performed through a composite fitness function, integrating
multiple criteria such as delay, cost, stability, and anomaly resistance. This approach allows the
evolutionary process not only to search for high-performing routes but also to avoid paths that exhibit
temporal instability or are likely to be compromised by adversarial activity. The evolutionary cycle of
GAODM is characterized by a selection process that promotes diversity while guiding the population
toward fitter regions of the solution space. A crossover mechanism, inspired by partially mapped
crossover, is employed to exchange segments between parent chromosomes in a topology-aware
manner, preserving route validity and preventing loops. Mutation is introduced through targeted node
substitutions, which locally modify candidate routes without disrupting overall feasibility.

What distinguishes GAODM is its ability to adapt internal parameters, such as mutation and crossover
probabilities, in response to observable changes in network conditions. For instance, increased mobility
or a sudden degradation in link quality may trigger more aggressive mutation to enhance exploration.
Additionally, the algorithm incorporates a lightweight anomaly-monitoring heuristic into its fitness
evaluation strategy. Nodes or links associated with irregular traffic patterns – such as elevated delay,
packet loss, or rerouting anomalies – are penalized, resulting in a natural bias toward more secure and
robust paths.

4.2. Differential evolution

Differential Evolution (DE) is a well-established population-based metaheuristic optimization technique
that utilizes differential perturbation strategies to evolve candidate solutions. Although originally
intended for continuous optimization problems, DE has been effectively adapted in this study to operate
within the discrete domain of routing in dynamic networks. Each individual in the DE population
encodes a possible path through a vector of node identifiers, which is subsequently mapped to a
valid route via a dedicated feasibility repair mechanism. This mapping ensures that all individuals
represent syntactically and semantically valid routing paths within the constraints of the current
network topology.

The generation of new candidate solutions is accomplished by applying differential mutation, wherein
the vector difference between two randomly selected individuals is scaled and added to a third, producing
a mutant vector. This process promotes diversity and enables the algorithm to explore uncharted regions
of the solution space. Once the mutant vector is generated, it undergoes crossover with the target
vector to form a trial solution, which is then evaluated using the same multi-objective fitness function
described earlier. A greedy selection mechanism retains the better of the two solutions, ensuring that
the population gradually converges toward optimal configurations.



4.3. Fitness function with anomaly penalty

To make DE suitable for routing under uncertain and potentially hostile conditions, the original fitness
evaluation framework has been extended to include an anomaly-awareness component. Routes that
include nodes or links previously marked as suspicious – based on recent traffic behavior – receive
penalty adjustments, thereby reducing their likelihood of being selected in subsequent generations. This
enhancement allows DE not only to optimize classical network performance metrics, such as delay and
cost, but also to contribute to the overall robustness and security of the communication infrastructure.

To effectively guide the optimization process in both GAODM and DE frameworks, we define a
composite fitness function that captures the multidimensional nature of the routing problem in dynamic
and potentially hostile networks. The function evaluates each candidate route based on a weighted sum
of four key metrics: delay, cost, stability, and anomaly risk. This multi-objective formulation enables a
balanced trade-off between performance, robustness, and security.

Let 𝑃 be a candidate path from a source node 𝑠 to a destination node 𝑑. The fitness function 𝑓(𝑃 ) is
defined as:

𝑓(𝑃 ) = 𝛼 ·𝐷(𝑃 ) + 𝛽 · 𝐶(𝑃 ) + 𝛾 · (1− 𝑆(𝑃 )) + 𝛿 ·𝐴(𝑃 ),

where 𝐷(𝑃 ) is the normalized end-to-end delay of the path 𝑃 , 𝐶(𝑃 ) is the normalized communication
cost, 𝑆(𝑃 ) ∈ [0, 1] is the normalized stability score of the path, with higher values indicating more
stable routes, 𝐴(𝑃 ) is the normalized anomaly penalty score, 𝛼, 𝛽, 𝛾, 𝛿 ∈ R+ are weighting coefficients
such that 𝛼+ 𝛽 + 𝛾 + 𝛿 = 1.

The inclusion of (1 − 𝑆(𝑃 )) ensures that higher stability reduces the total fitness score, thereby
favoring more stable paths. All components are normalized to lie in the interval [0, 1] to ensure
consistent scaling and allow meaningful combination.

The delay metric 𝐷(𝑃 ) reflects the cumulative time for a packet to travel along path 𝑃 , aggregated
over all links as:

𝐶(𝑃 ) =
∑︁

𝑢,𝑣)∈𝑃

𝑑𝑢,𝑣,

where 𝑑𝑢,𝑣 denotes the estimated transmission and processing delay on link (𝑢, 𝑣). It is normalized
with respect to the maximum observed delay across all candidate paths.

The communication cost 𝐶(𝑃 ) accounts for resource usage, such as the number of hops, energy
expenditure, or estimated bandwidth consumption. In its simplest form, it can be approximated as:

𝐶(𝑃 ) =
∑︁

(𝑢,𝑣)∈𝑃

𝑐𝑢,𝑣,

where 𝑐𝑢,𝑣 ∈ [0, 1] denotes historical or predicted stability of link (𝑢, 𝑣).
The anomaly penalty 𝐴(𝑃 ) quantifies the security risk associated with the path. It incorporates the

anomaly scores derived from real-time monitoring of traffic behaviors such as excessive delay, packet
drop, or erratic transmission patterns:

𝐴(𝑃 ) =) =
1

|𝑃 |
∑︁

(𝑢,𝑣)∈𝑃

𝛼𝑢,𝑣,

where 𝑎𝑢,𝑣 ∈ [0, 1] is the anomaly score of link (𝑢, 𝑣), estimated using lightweight statistical or heuristic
models (e.g., EWMA or moving average of abnormal behavior indicators.)

By appropriately tuning the coefficients 𝛼, 𝛽, 𝛾, 𝛿 the function can be adapted to prioritize latency
(e.g., in time-sensitive applications), energy efficiency (e.g., in WSNs), or security (e.g., in tactical or
mission-critical environments).

This fitness formulation enables the evolutionary algorithms to perform guided search in a highly
constrained and dynamic solution space, promoting the discovery of routes that are efficient, robust,
and resilient to adversarial interference.



5. Simulation scenarios and input data

To evaluate the performance, adaptability, and resilience of the proposed evolutionary routing al-
gorithms, we constructed a series of simulation scenarios using a custom-developed Python-based
simulation framework. This environment provides full control over all relevant aspects of the experi-
ment – including network topology, node mobility, traffic generation, anomaly injection, and routing
behavior – enabling a reproducible and extensible platform for rigorous testing.

The decision to use a self-built simulator, rather than existing tools such as NS-3 or OMNeT++, was
driven by the need for high configurability, direct integration of GAODM and DE algorithms, and the
ability to inject specific anomaly models into the simulation process. The simulator implements a
discrete-event architecture, where time progresses in fixed increments, and node positions, links, traffic
states, and evolutionary algorithm iterations are updated at each step.

All input data for the simulations are synthetically generated within the system, ensuring consistency
across scenarios and allowing deterministic replication under controlled parameters. The initialization
phase of each simulation includes the following components:

• Network topology is established by randomly placing N=50 mobile nodes within a 1000×1000
meter area. Nodes follow the Random Waypoint Mobility Model, which reflects non-deterministic
real-world movement patterns. Connectivity is determined in real time using Euclidean distance
calculations with a fixed transmission range of 250 meters, dynamically updating the adjacency
matrix of the network.

• Traffic generation is based on stochastic modeling. Source-destination pairs are selected uniformly
at random, and packets are generated according to a Poisson process with an average rate of 5
packets per second. This approach simulates realistic and burst-tolerant network loads.

• Anomaly behavior is injected based on predefined configuration files. Each scenario includes a
fixed percentage of anomalous nodes (e.g., 10–20%), selected at random at simulation start. These
nodes exhibit malicious behaviors such as black hole attacks (total packet dropping), gray hole
attacks (intermittent dropping), flooding (mass transmission of irrelevant packets), and route
hijacking (false metric advertisement). The simulation records and timestamps all packet events
for subsequent analysis.

• Algorithm parameters, such as population size, number of generations, crossover and mutation
probabilities (GAODM), and differential scaling factors (DE), are specified in a JSON-based
configuration file. This file also contains flags for activating or deactivating anomaly penalties
and adjusting the weights used in the fitness function.

To rigorously evaluate the proposed routing strategies under varying network conditions, we define
five distinct simulation scenarios. These scenarios are constructed to systematically vary two primary
factors: node mobility intensity and the type and prevalence of traffic anomalies.

The first scenario (S1) serves as a control case. It represents a low-mobility environment where nodes
move slowly (1 to 3 meters per second) and no anomalous behavior is present. This baseline allows for
measuring the optimal performance of the algorithms in ideal, stable conditions without adversarial
interference.

In scenario S2, mobility remains low (1-3 m/s), but the network includes gray hole nodes, which
selectively drop packets. These nodes behave normally most of the time but occasionally discard transit
data. This scenario reflects subtle, hard-to-detect adversarial activity in otherwise benign environments.
Approximately 10% of nodes exhibit this behavior.

Scenario S3 increases node mobility to a moderate level (4-7 m/s) and introduces black hole attacks,
in which compromised nodes consistently drop all received packets. This more aggressive form of
disruption affects 15% of the nodes and simulates a moderately mobile yet hostile network.

In scenario S4, the network continues to operate under moderate mobility (4-7 m/s), but combines
two types of adversarial behavior: gray hole attacks and flooding. The latter involves malicious nodes
generating excessive amounts of bogus traffic, degrading performance by overwhelming the routing



infrastructure. In total, 20% of the nodes in this scenario exhibit some form of malicious activity, making
this one of the most complex and challenging setups.

The fifth scenario (S5) explores the behavior of the algorithms under high-mobility conditions (8-10
m/s). It features route hijacking, where malicious nodes inject false routing metrics to attract traffic and
misdirect it. Although only 10% of the nodes are malicious, the high speed and deceptive nature of this
attack make it particularly difficult to counteract.

Together, these scenarios offer a comprehensive testbed for assessing the robustness, adaptability,
and security sensitivity of the GAODM and DE algorithms. Each configuration targets a specific aspect
of real-world network dynamics – from benign but mobile topologies to environments where multiple,
simultaneous threats challenge route stability and integrity.

6. Results and discussion

This section presents and analyzes the performance of the proposed routing approaches – GAODM and
Differential Evolution – across five distinct simulation scenarios. Each scenario represents a different
combination of mobility level and adversarial conditions. The results are evaluated using five key
metrics: Packet Delivery Ratio (PDR), Average End-to-End Delay, Routing Overhead, Stability Score,
and Anomaly Avoidance Rate (AAR). A summary of the detailed results is provided in Table 1.

Table 1
Simulation Results for GAODM and DE under Various Scenarios

Scenario Algorithm PDR (%) Avg Delay (ms) Routing Overhead Stability AAR (%)

S1 GAODM 97.7 114.3 8.6 0.92 100.0
S1 DE 96.8 97.3 6.12 0.89 100.0
S2 GAODM 93.4 134.2 9.03 0.89 96.5
S2 DE 89.1 118.6 7.46 0.80 90.1
S3 GAODM 88.7 137.3 11.22 0.80 91.2
S3 DE 84.2 141.0 10.86 0.75 85.1
S4 GAODM 87.0 141.4 12.72 0.75 87.3
S4 DE 84.6 173.6 12.43 0.71 78.7
S5 GAODM 90.7 133.8 10.24 0.83 91.1
S5 DE 88.5 127.8 10.16 0.77 87.6

6.1. Scenario S1 (baseline, no anomalies)

Under ideal network conditions without any adversarial nodes, both algorithms achieved high perfor-
mance. GAODM reached a PDR of 97.7% with a stability score of 0.92, while DE slightly underperformed
with a PDR of 96.8% and stability score of 0.89. Notably, DE achieved a lower average delay (97.3 ms vs.
114.3 ms), reflecting its faster convergence and more direct route selection. However, GAODM exhibited
higher route stability and moderate overhead, making it preferable for long-term operational efficiency.

6.2. Scenario S2 (gray hole attacks, low mobility)

In the presence of 10% selectively malicious nodes, GAODM continued to demonstrate higher resilience
with a PDR of 93.4% and AAR of 96.5%. DE, in contrast, suffered a noticeable drop in PDR (89.1%) and
anomaly avoidance rate (90.1%), suggesting that its population dynamics were more susceptible to path
contamination. The difference in stability (0.89 vs. 0.80) again highlighted GAODM’s ability to avoid
unstable or suspicious paths through adaptive genetic operations.



6.3. Scenario S3 (black hole attacks, moderate mobility)

This scenario introduced aggressive adversarial behavior under increasing network mobility. GAODM
maintained reasonable delivery success (88.7%) and a high anomaly avoidance rate (91.2%), while DE
dropped to a PDR below 86% in several runs. Average delay increased across both methods, but the gap
in routing overhead widened, with GAODM incurring higher computational and communication costs
due to more frequent re-evaluations of route viability.

6.4. Scenario S4 (mixed attacks, moderate mobility)

Scenario S4, combining gray hole and flooding behaviors, placed significant strain on both routing
methods. GAODM continued to outperform DE in anomaly mitigation (AAR 89%) and maintained
better route stability, albeit at the cost of higher overhead. DE, while exhibiting faster execution cycles,
suffered from lower PDR ( 80–83%) and occasional route oscillations, indicating convergence toward
suboptimal or deceptive paths in the presence of conflicting routing information.

6.5. Scenario S5 (route hijacking, high mobility)

In this highly dynamic and deceptive environment, GAODM once again proved more robust, sustaining
PDR levels above 90% and AAR near 93%. DE struggled with route misdirection and instability, resulting
in lower anomaly avoidance and slightly increased delay variance. Despite its comparative efficiency in
simpler topologies, DE’s lack of built-in path validation mechanisms made it vulnerable to adversarial
influence under route hijacking conditions.

6.6. General observations

Across all scenarios, GAODM demonstrated stronger adaptability and anomaly resistance due to its use
of dynamic crossover and mutation operators, as well as its fitness function’s explicit penalization of
anomalous paths. While DE consistently achieved faster convergence and lower overhead in benign
settings, it was more prone to degradation under adversarial conditions. These findings suggest that
GAODM may be better suited for mission-critical or security-sensitive applications, whereas DE could
be leveraged in scenarios where efficiency and simplicity are prioritized over robustness.

Comparative analysis validates the effectiveness of embedding anomaly-awareness and adaptive
evolutionary dynamics into routing algorithms for dynamic networks. Future improvements could
explore hybrid schemes that combine the convergence speed of DE with the adaptability of GAODM, or
integrate learning-based anomaly detection modules to further enhance routing decisions in uncertain
environments.

7. Conclusions

This paper presented a comparative study of two evolutionary algorithms –GAODM and DE – applied
to the task of adaptive route formation in dynamic wireless networks. The simulation environment
was designed to reflect realistic conditions, including variable node mobility and a spectrum of traffic
anomalies such as black hole, gray hole, flooding, and route hijacking attacks. The proposed evaluation
framework incorporated five performance metrics: packet delivery ratio, average end-to-end delay,
routing overhead, route stability, and anomaly avoidance rate.

The results of our simulations clearly indicate that GAODM consistently outperforms DE under
adversarial conditions. Its integration of adaptive genetic operators and an anomaly-aware fitness
function allows it to maintain high delivery success and routing stability even in the presence of
deceptive or malicious nodes. In contrast, DE demonstrates superior convergence speed and lower
routing overhead in benign environments but exhibits reduced robustness when the network is exposed
to attack vectors that exploit the absence of security-aware mechanisms. The effectiveness of GAODM
is particularly evident in scenarios involving route hijacking and combined attack strategies, where it



achieved higher AAR and significantly reduced packet loss compared to DE. Overall, this study validates
the utility of multi-objective evolutionary optimization in the design of routing protocols for mobile
and dynamic network environments. The trade-off between computational efficiency and adaptive
resilience underscores the importance of selecting routing strategies based on the specific operational
context. For mission-critical or security-sensitive deployments, algorithms like GAODM that integrate
anomaly mitigation directly into the route discovery process offer a compelling advantage.

Future research will build upon these findings in several directions. First, hybridization strategies
that combine the fast convergence of DE with the adaptive security mechanisms of GAODM could
lead to more balanced and efficient routing solutions. Second, integrating machine learning-based
anomaly detection techniques – such as lightweight neural networks or decision-tree ensembles –
could enhance real-time responsiveness to novel or evolving attack types. Third, the scalability of the
proposed approaches will be evaluated in larger networks with hundreds of nodes to examine their
computational and routing performance at scale. Additionally, cross-layer optimization techniques may
be explored to align routing decisions with MAC-layer contention and transport-layer reliability.

These ongoing developments aim to advance the design of intelligent, secure, and adaptive routing
frameworks capable of supporting the complex and dynamic requirements of next-generation wireless
communication systems.
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