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Abstract
The study of ways to build realistic models of digital landscapes with rational parameters of computational
complexity is a relevant area of research, the results of which can be implemented in the work of video game
developers, graphic software engineers, virtual space designers, etc. We have shown that using rational methods
for solving simplified forms of complex equations that describe some physics-based natural processes, we can
effectively generate landscapes with additional realism. An application has been developed that generates terrain
in a visual and intuitive way by integrating advanced mathematical models with computational methods to create
realistic and efficient landscape information models.
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1. Introduction

With rapidly expanding application scope and computational capacities of multimedia technologies and
three-dimensional graphics solutions in many life aspects, these become an integral basis for a vast set
of fields, such as immersive systems and augmented reality.

Hence, an exploration of various unique methods and techniques for digital landscape generation
stands relevant to the current state of the art.

The findings of this research can be applied in the projects of video game developers, graphic software
engineers, virtual space designers, and other related fields.

2. Main part

2.1. Basic procedural landscape generation and configuration

Traditionally, a common way to represent a terrain is heightmap. A heightmap is a two-dimensional
array where element indices denote the location of a point on a discrete grid, and element value stores
an elevation of the point above the surface and optionally other attributes, such as material type, and
other metadata [1].

The level of terrain detail is determined by the size of the heightmap. Higher resolution provides finer
details but requires more storage memory and potentially more computational power, which depends
on heightmap implementation details.
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Figure 1: Example of generated terrain:
A – visualization of the heightmap generated by combining Perlin noise (in various octaves) and the erosion
modeling algorithm.
B – interpretation of corresponding heightmap.

A typical routine for creating a heightmap matrix involves combining multiple noise functions with
varying frequencies and amplitudes to create realistic terrain, enhance the variety of relief forms, and
achieve a more organic appearance. This method is also used to generate other natural elements like
clouds and water surfaces. Different filtering techniques are applied, as described below.

• Anti-aliasing. This process reduces high-frequency noise, creating a smoother overall relief. This
is achieved by methods such as averaging the elevation values of neighboring points on the
heightmap. Convolution filters with specific kernels are applied, i.e. each height value is changed
to a weighted average of its surrounding values. One may control the strength of the smoothing
effect by setting the kernel size and weighting coefficients assigned to neighboring points.

• Erosion. By simulating the effects of wind and water flow, erosion algorithms carve out valleys
and sculpt ridges. This often involves using a few noise functions with different parameters
(Figure 1). Lower frequency noise functions help form wider erosion patterns. In contrast to
higher frequencies add details such as gullies and rills. Realistic erosion effects can be achieved
by strategically adjusting noise parameters and combining them with anti-aliasing filters.

• Fault lines. These algorithms create sudden changes in elevation by simulating the movements
of tectonic plates and forming features such as cliffs or canyons. One way to achieve this is by
introducing special noise functions or mathematical operations that manipulate the heightmap
along defined lines or regions. The size, direction, and depth of the fault lines can be changed.

The authors consider the best technique for creating realistic landscape forms is to imitate natural
processes by using mathematical and physical models as a basis for digital landscape generation
techniques while keeping the balance between computational and memory resources.

2.2. Landscape generation methods investigated

The increasing computational resources of modern computer systems have made it possible to use
immersive technologies in various fields, enabling users to immerse themselves in artificially created
interactive environments aimed at enhancing their experience.

In modern immersive systems, incorporating realism is sometimes crucial for some tasks, especially
in the VR industry, to convey the feel and beauty of natural formations and environments. Take, for
example, virtual touring in historical eras, experiencing the sensation of flying in a helicopter simulator



over breathtaking natural landmarks, or actively participating in geological exploration during a VR
journey to renowned canyons, underground caves, deep sinkholes, or the highest mountain ranges on
Earth.

Based on the understanding that the earth’s landforms have been formed over millennia as a result of
various natural phenomena, we decided to investigate how their various mathematical models affected
the realism of the created digital landscapes.

It is known that among the variety of phenomena inherent in the Earth’s nature, the tectonics of
lithospheric plates, which triggers the processes of spreading, subduction, or collision; sedimentation,
which results in the formation of various types of sludge or deposit; various erosion phenomena caused
by water, wind, ice, etc., as well as the creep of materials, which causes deformation of solids, have a
significant and relatively predictable impact on the surface relief.

Curiously enough, hydrodynamic models are appropriate for landscape generation, notably in
producing unique hill and ridge patterns. One such model is the Navier–Stokes equations, which
describe the motion of a fluid. Their solutions are applicable in intermediate phases of heightmap
generation with naturalistic forms [3]. However, solving these equations leads to excessive use of
computational resources.

This problem can be partially mitigated by applying certain simplifications [4], in particular, by
reducing the Navier–Stokes equations to the Euler equations (1):

𝜌

(︂
𝜕v

𝜕𝑡
+ (v · ∇)v

)︂
= −∇𝑝+ f , (1)

where:

• 𝜌 is the fluid density, representing the mass per unit volume [kg/m3]
• v is the velocity vector field, indicating the fluid’s speed and direction at each point [m/s]

• 𝜕v

𝜕𝑡
is the local (or temporal) acceleration, representing the rate of change of velocity at a fixed

spatial point [m/s2]
• (v · ∇)v is the convective (or advective) acceleration, accounting for changes in velocity due to

fluid motion through space [m/s2]
• −∇𝑝 is the pressure gradient force, where 𝑝 is the scalar pressure field [Pa]
• f is the external body force per unit volume (e.g., gravitational force 𝜌g) [N/m3]

Based on the modeling of incompressible inviscid fluid and using Euler’s equations to create an
information model, large structures of realistic terrain can be synthesized.

To illustrate this, we used the well-known Marker and Cell (MAC) method, developed in the early
1960s at Los Alamos Laboratory and later improved in 2007 (Figure 2a). Enhancements include automatic
time-stepping, the use of the conjugate gradient method to solve the Poisson equation for velocity
correction, improved efficiency by removing virtual particles (markers) not near the free surface, more
accurate boundary condition approximations at the free surface, and the addition of bounded high-
accuracy upwinding for convective terms—allowing for the simulation of higher Reynolds number
flows [5].

Smaller geomorphic and erosional landforms can be generated using simplified Navier–Stokes
equations adapted to specific conditions, such as river or canal hydraulics, where the flow width greatly
exceeds its depth. These flows are described by the shallow water equations [3], or, more precisely, by
generalized forms of the Saint-Venant equations (2).

𝜕U

𝜕𝑡
+

𝜕F(U)

𝜕𝑥
+

𝜕G(U)

𝜕𝑦
= S(U), (2)

where:

• U = (ℎ, ℎ𝑢, ℎ𝑣)𝑇 is the state vector, with:



Figure 2: An interpretation of ideal fluid motion equation solution.
A – a density of highlighted fluid particles that move along the velocity field.
B – velocity field in RGB color domain.

– ℎ — water depth [m],
– ℎ𝑢 — momentum in the 𝑥-direction [m2/s],
– ℎ𝑣 — momentum in the 𝑦-direction [m2/s].

• F(U) and G(U) are the flux vectors in the 𝑥 and 𝑦 directions, respectively.
• S(U) is the source term vector accounting for external forces such as gravity and bottom friction.

The flux vector F(U) in the 𝑥-direction (3) is given by:

F(U) =
(︀
ℎ𝑢 ℎ𝑢2 + 1

2𝑔ℎ
2 ℎ𝑢𝑣

)︀
, (3)

where:

• ℎ𝑢 is the mass flux in the 𝑥-direction,
• ℎ𝑢2 is the advective flux of 𝑥-momentum,
• 1

2𝑔ℎ
2 is the hydrostatic pressure contribution,

• ℎ𝑢𝑣 is the flux of 𝑦-momentum in the 𝑥-direction due to velocity coupling.

Similarly, the flux vector G(U) in the 𝑦-direction (4) is:

G(U) =

⎛⎝ ℎ𝑣
ℎ𝑢𝑣

ℎ𝑣2 + 1
2𝑔ℎ

2

⎞⎠ , (4)

with similar interpretations:

• ℎ𝑣 is the mass flux in the 𝑦-direction,
• ℎ𝑣2 is the advective momentum flux in the 𝑦-direction,
• 1

2𝑔ℎ
2 again denotes the hydrostatic pressure,

• ℎ𝑢𝑣 is the cross-component momentum flux.

The source term vector S(U) (5) is given by:

S(U) =

⎛⎝ 0
𝑔ℎ(𝑆0 − 𝑆𝑥

𝑓 )

𝑔ℎ(𝑆0 − 𝑆𝑦
𝑓 )

⎞⎠ , (5)



where 𝑆0 is the bed slope, and 𝑆𝑥
𝑓 , 𝑆𝑦

𝑓 are the friction slopes in the 𝑥- and 𝑦-directions, respectively.
By modeling simple wave processes, for example, with the quasi-linear hyperbolic Hopf equation (6),

it is well-known [4]:
𝑢𝑡 + 𝑢𝑢𝑥 = 0, (6)

where 𝑢(𝑥, 𝑡) is the unknown function that depends on the spatial variable x and time t, 𝑢𝑡 is the partial
derivative of u with respect to time t, and 𝑢𝑥 is the partial derivative of u with respect to the spatial
variable x.

This equation describes the dynamics of wave propagation possible to give natural outlines to rivers
or mountain ranges in a medium without dissipation. One of its key characteristics is that solutions to
this equation can develop discontinuities (known as shock waves) even if the initial condition 𝑢(𝑥, 0)
is smooth. This phenomenon occurs because, in a quasilinear system, the wave speed depends on
the function u. As a result, different parts of the wave can travel at different speeds, leading to the
steepening of wavefronts and eventually causing them to break, forming a discontinuity.

Shock waves are waves that suddenly increase their amplitude and propagate rapidly, creating steep
fronts that move rapidly through the environment. This happens as a result of a sudden increase in the
wave gradient (e.g., due to a sharp change in velocity or pressure).

Shock waves are also described by the hyperbolic Korteweg-de Vries equation (7):

𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 6𝑢𝑢𝑥 = 0, (7)

where 𝑢 = 𝑢(𝑥, 𝑡) is a function of space and time, and subscripts denote partial derivatives.
The rational use of shock waves or other dynamic changes in terrain modeling occurs after identifying

the most rational points on the heightmap (e.g., local maxima or minima). We identify them using
the Sobel filter, which is very effective at detecting edges in height data, and this allows us to identify
important geomorphological features. Also, the Sobel filter is quite simple to implement and requires
few computational resources, which makes it very advantageous for procedural generation.

The Korteweg-de Vries equation, as well as other similar equations that have soliton solutions, can
also be useful for creating realistic landforms. Solitons have an unexpected characteristic: they are
stable, meaning that they retain their shape over time and distance, instead of dispersing or dissipating.

Dispersive solitons (traveling wave solitons) are stable localized wave packets that arise due to the
balance between nonlinearity and dispersion in the medium. Nonlinearity implies that the waves
change amplitude and shape. Dispersion, in turn, is a phenomenon in which different wave frequencies
propagate at different speeds.

In two-dimensional space, solitons can be described by solutions of the Kadomtsev-Petviashvili
equation (8)—a generalization of the Korteweg–de Vries equation that accounts for wave interactions
in two-dimensional space [6]:

𝜕

𝜕𝑥

(︂
𝜕𝑢

𝜕𝑡
+ 6𝑢

𝜕𝑢

𝜕𝑥
+

𝜕3𝑢

𝜕𝑥3

)︂
+ 3𝜎

𝜕2𝑢

𝜕𝑦2
= 0, (8)

where 𝑢 represents the wave profile, and 𝑥 and 𝑦 are spatial dimensions. The inclusion of the second
derivative with respect to 𝑦 allows for modeling wave propagation in two dimensions.

Solitons in two-dimensional shallow water are a specific type of 2D solitons, often referred to as
"spider waves" because of their characteristic shape and dynamics, which resemble a stretching or
oscillating spider web.

Among the variety of other soliton solutions, X-type and Y-type solitons can be useful for generating
realistic landscapes. They are resonant because they result from the resonant interaction of two or more
wave structures. X-type solitons can be created when two or more solitons intersect at acute angles to
form an “X” pattern. For the landscape, these structures can be used to simulate the intersection or
junction of different topographic structures, such as gorges or ridge confluences. The Y-type soliton got
its name because of its characteristic shape, which looks like the letter “Y” – two waves converge and
resonate into one structure, then diverge again. The “Y” shape can help, for example, in modeling the



branches of river systems or other dynamic patterns. If necessary, multisolitons can be obtained by
superposition of several single solitons with different parameters (amplitudes, phases, or velocities).

Other noteworthy waves are kink waves, which are characterized by a variable shape, often with
soft transitions between different amplitudes, and breath waves, which are characterized by their
amplitude changing in time, usually with periodic pulsations. These types of waves can be described by
certain modified Korteweg-de Vries equations and the Benjamin-Ono equation, which describes one-
dimensional internal waves in deep water. The use of mathematical structures with kink wave solutions
in landscape generation enables the creation of terrain resembling natural wave-like formations, such
as dunes or sea swells over large areas. Terrain generated using the Benjamin–Ono equation may also
resemble long sand ridges or erosion valleys, but with more asymmetric and irregular shapes — better
reflecting natural landforming processes driven by water or wind.

In case of generating landscapes that imitate large plains or undulating hills with gradual changes
in elevation, characteristic of natural processes associated with water erosion or sedimentation, the
Benjamin-Bona-Mahony equation (or regularized long-wave equation) may be of interest, which is
characterized by the fact that it models long surface gravity waves of low amplitude.

In our work, we have also paid special attention to peakon solitons (peakons). They have steep
edges with sharp peaks. This allows us to add distinct, sharp relief structures to the landscape, such
as craggy cliffs, steeps or mountain peaks. At the same time, the use of peakons provided us with
smooth transitions between landscape elements, helping to ensure smooth transitions between different
elevation levels.

By using the Camassa–Holm equation (9), which describes the dynamics of shallow water waves
and has peakon solutions, it was possible to model waves with sharp peaks that maintain their shape
during propagation and interaction with other peakons [7]:

𝑢𝑡 + 2k𝑢𝑥 − 𝑢𝑥𝑥𝑡 + 3𝑢𝑢𝑥 = 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥, (9)

where 𝑢 = 𝑢(𝑥, 𝑡) is the function describing the wave profile depending on the spatial coordinate
𝑥 and time 𝑡; the time derivative 𝑢𝑡 describes the change of the wave over time; the inertia term
𝑢𝑥𝑥𝑡 accounts for inertial effects and higher-order dispersion; the nonlinear term 3𝑢𝑢𝑥 represents
the system’s nonlinearity, where the wave speed depends on its amplitude; the additional nonlinear-
dispersive terms 2𝑢𝑥𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥𝑥 describe the interaction between nonlinearity and dispersion; and k
is the spatial frequency of a wave, measured in cycles per unit distance (wavenumber).

In general, the use of peakons adds considerable dynamism to landscapes with contrasts between
sharp peaks and deep hollows. The terrain may include mountainous regions with steep slopes or
canyons, where abrupt changes in height are clearly visible. But by controlling the parameters of the
peakons (amplitude, wavelength, and speed), it becomes possible to change the appearance of the
generated shapes to match the desired level of landscape detail (Figure 3).

In order to solve the Camassa–Holm equation efficiently, we employed discontinuous Galerkin meth-
ods, which combine features of classical Galerkin techniques and finite difference schemes [3]. These
methods divide the computational domain into elements, within which the solution is approximated
by local polynomials. A special numerical flux calculated on the boundaries of the elements was used
to ensure the connection between the elements. This allowed us to accurately track the behavior of
discontinuous or nonlinear solutions. However, in order to reduce computational costs, we had to build
optimized algorithms that implemented compromise solutions based on adaptive mesh refinement
techniques, where the mesh resolution adapts dynamically to the solution’s local complexity.

Currently, we are conducting research on the rationality of using macroscopic-level models of
geomorphological processes in landscape generation tasks, as well as studying the peculiarities of using
models for multiple soliton solutions.



Figure 3: Example of terrain rendered by a complex model with an emphasis on distinct mountain peaks in the
central area

Figure 4: Developed software application.

3. Conclusions

The developed application (Figure 4) marks a significant advancement in the field of digital landscape
generation by integrating advanced mathematical models with computational techniques to produce
realistic and efficient informational models of terrain. By leveraging simplified forms of complex
equations, such as the Navier-Stokes, shallow water, and Korteweg-de Vries equations, the system
effectively simulates natural processes like tectonic activity, erosion, and water flow, while maintaining
computational efficiency. The use of solitons, peakons, and shock wave models adds further realism to
the generated landscapes, replicating dynamic features such as sharp mountain peaks, canyons, and
fluid landforms.

In terms of its practical application, this system offers a highly efficient tool for creating detailed digital
landscapes in immersive environments such as virtual reality systems, video games, and geospatial
simulations. Its ability to generate naturalistic and scalable terrains makes it indispensable for developers
who need to construct large, interactive environments while conserving computational resources. The
use of optimized numerical methods, including adaptive mesh refinement and discontinuous Galerkin
techniques, allows for a reduction in computational costs without sacrificing detail or accuracy, which
is especially critical in resource-limited scenarios. Additionally, the generated informational models are
highly customizable, offering users the flexibility to adjust the complexity and resolution of landscapes
based on their specific project needs, making the application valuable for both entertainment and
professional simulation industries.
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