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Abstract
The rapid growth of Deep Neural Networks (DNNs) has brought substantial advances in artificial intelligence
across domains such as vision, language, and recommendation systems. However, this progress comes at a
steep energy cost, with model training and deployment contributing significantly to global computational
energy consumption. Understanding what drives this energy demand requires more than empirical correlation—
it demands causal explanations. In this work, we investigate the causal factors underlying energy use in
DNN training, using structure learning algorithms such as the PC algorithm to derive candidate causal graphs.
Recognising the limitations of such methods— particularly in terms of assumptions and finite data— we introduce
a novel approach to evaluate each inferred link through formal argumentation. We treat each proposed causal
relationship as a dialectical object, generating arguments and counterarguments that articulate its plausibility,
underlying mechanisms, and possible confounders. We operationalise this reasoning using large language
models in a zero-shot prompting setup, surfacing the evidential and conceptual assumptions behind each causal
claim. This hybrid approach, combining causal discovery with structured argumentative evaluation, promotes
interpretability and critical scrutiny in data-driven causal modelling. Preliminary results demonstrate its potential
for rendering causal claims more transparent and contestable.
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1. Introduction

Deep Neural Networks (DNNs) have become foundational to the current landscape of artificial intelli-
gence (AI), enabling advances in fields as diverse as computer vision [1], natural language processing [2],
personalised recommendation [3], and speech recognition [4]. These models are typically trained on
large datasets using high-performance GPU clusters, often within large-scale data centres. As a conse-
quence, the growth of deep learning research and applications has been accompanied by a substantial
increase in the energy required to train and operate these models [5].

Recent analyses show that this trend, dubbed the “Red AI” era [6, 7, 8], presents a mounting ecological
challenge. AI models are growing in size, complexity, and resource demand at an exponential rate.
Despite ongoing improvements in chip efficiency and data centre cooling, the energy consumption
and carbon emissions associated with training large models continue to double every 4–6 months. A
projection [9] suggests that computing could account for up to 20.9% of global electricity demand by
2030. This includes contributions from both training and inference workloads.

To better understand the drivers of such energy consumption, we need to move beyond simple
empirical correlations and ask causal questions: What parameters truly influence energy use during
model training? Does batch size cause higher energy demand, or is it a proxy for another latent factor?
Addressing such questions calls for causal discovery— the process of inferring causal relationships
from data. Algorithms such as the PC algorithm (Section 2) and its variants provide a data-driven
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means to construct causal graphs, identifying conditional independencies and orienting plausible causal
directions.

Yet, as with any form of inference, these algorithmic outputs raise as many questions as they answer.
Given the statistical limitations of finite data and the assumptions encoded in the discovery procedures,
the resulting causal links should not be accepted uncritically. Instead, each proposed causal relationship
demands a careful evaluation of its plausibility and justification— not only in light of data, but also in
terms of domain knowledge, mechanisms, and conceptual coherence.

This paper proposes that tools from formal argumentation theory [10, 11] can help operationalise
such evaluations (Section 3). In our setting, each candidate causal link is treated as an object of
dialectical discussion: we construct arguments in favour of the link (e.g., based on observed regularities,
known physical constraints, or plausible mechanisms) and contrast them with counterarguments (e.g.,
suggesting alternative explanations, questioning generalisability, or highlighting confounding factors).

We implement this deliberative process (Section 4) using large language models (LLMs) in a zero-
shot prompting setting [12]. For each candidate edge in a data-derived causal graph, the system
generates structured natural language arguments and counterarguments. Rather than discarding links
or altering the graph, we aim to surface the implicit reasoning behind each relation— bringing to light
the assumptions, analogies, evidence patterns, and objections that might otherwise remain hidden.

The contribution of this work is a method for making the structure and justification of causal claims
explicit, interpretable, and open to contestation. In doing so, we offer a hybrid approach to causal
inference that supplements algorithmic discovery with argumentative reasoning. We discuss our
preliminary results in Section 5 and address the limitations of the methodology in Section 6.

2. Causal Discovery

Causal discovery aims to infer causal relationships from data, typically under structural assumptions. A
foundational framework for causal reasoning is provided by Judea Pearl’s theory [13, 14, 15], formalised
using directed graphical models and structural equations.

2.1. Structural Causal Models

The formal model used in Pearl’s framework is typically referred to as a Structural Causal Model (SCM)
or a Directed Graphical Causal Model (DGCM). It combines a directed acyclic graph (DAG) with a joint
probability distribution that encodes assumptions about direct causal mechanisms and the independence
structure of the system.

Definition 2.1 (Structural Causal Model). A Structural Causal Model (SCM) is a tuple ℳ =
⟨𝒢,𝒳 ,ℱ , 𝑃 (𝑈)⟩ where:

• 𝒢 = (𝑉,𝐸) is a directed acyclic graph (DAG), where each node 𝑋𝑖 ∈ 𝑉 represents a variable.

• 𝒳 is the set of possible values for the variables.

• ℱ = {𝑓𝑖 : Pa(𝑋𝑖) × 𝑈𝑖 → 𝑋𝑖} is a set of functions, one for each variable 𝑋𝑖, where Pa(𝑋𝑖)
denotes the set of parents of 𝑋𝑖 in 𝒢 and 𝑈𝑖 is an exogenous noise variable.

• 𝑃 (𝑈) =
∏︀

𝑖 𝑃 (𝑈𝑖) is a product distribution over the exogenous variables.

Each endogenous variable 𝑋𝑖 is determined by 𝑋𝑖 := 𝑓𝑖(Pa(𝑋𝑖), 𝑈𝑖).

Definition 2.2 (Intervention and do-calculus). Given a SCMℳ and a variable 𝑋𝑖 ∈ 𝑉 , the effect of an
intervention do(𝑋𝑖 = 𝑥) is a modified modelℳdo(𝑋𝑖=𝑥) where the structural function 𝑓𝑖 is replaced
by the constant function 𝑓𝑖 := 𝑥, and the distribution over other variables is adjusted accordingly.

Definition 2.3 (Causal Bayesian Network). A Causal Bayesian Network is a pair (𝒢, 𝑃 ) where:



• 𝒢 is a DAG.

• 𝑃 is a joint probability distribution over the variables such that the Markov condition holds: each
variable is independent of its non-descendants given its parents in the graph.

2.2. D-separation and Faithfulness

To read conditional independencies from a graph, we rely on the notion of d-separation.

Definition 2.4 (D-separation). Let 𝒢 be a DAG and let 𝑋 , 𝑌 , and 𝑍 be disjoint sets of nodes in 𝒢. A
path between a node in 𝑋 and a node in 𝑌 is said to be blocked by 𝑍 if any of the following holds:

• The path contains a non-collider node that is in 𝑍 . A node 𝑣 on a path is a non-collider if the path
traverses it via either 𝑢→ 𝑣 → 𝑤, 𝑢← 𝑣 ← 𝑤, or 𝑢← 𝑣 → 𝑤.

• The path contains a collider node 𝑣 (i.e., a node where the arrows on the path converge: 𝑢 →
𝑣 ← 𝑤), and neither 𝑣 nor any of its descendants are in 𝑍 .

We say that 𝑋 is d-separated from 𝑌 given 𝑍 if all paths between any node in 𝑋 and any node in 𝑌
are blocked by 𝑍 .

Definition 2.5 (Causal Markov Assumption). A distribution 𝑃 over a set of variables 𝑉 satisfies the
Causal Markov Assumption with respect to a DAG 𝒢 if every variable is conditionally independent of its
non-descendants given its parents.

Definition 2.6 (Causal Faithfulness Assumption). A distribution 𝑃 is faithful to a DAG 𝒢 if every
conditional independence relation that holds in 𝑃 is entailed by d-separation in 𝒢.

2.3. Constraint-Based Causal Discovery and the PC Algorithm

Under the Causal Markov and Faithfulness assumptions, we can discover aspects of the causal structure
by testing for conditional independencies in the observed data. One of the most widely used methods
in this class is the PC algorithm [16].

The PC algorithm is sound under the Causal Markov and Faithfulness assumptions, and pointwise
consistent under large sample limits and no latent confounding variables. It outputs a Completed Partially
Directed Acyclic Graph (CPDAG), which represents the Markov Equivalence Class (MEC) of all DAGs
consistent with the observed independencies.

Despite its widespread adoption in causal discovery research, the PC algorithm exhibits several
important limitations that must be acknowledged. First, it operates under the assumption that there are
no latent confounding variables or selection biases in the data. This means that the algorithm presumes
all relevant variables influencing the observed relationships have been measured and are included in
the analysis. In real-world applications, especially in domains like medicine, economics, or machine
learning system diagnostics, such assumptions are often violated. Hidden confounders may induce
spurious dependencies or mask true causal links, thereby compromising the validity of the inferred
causal structure.

Second, the PC algorithm relies critically on the correctness of statistical tests for conditional inde-
pendence. These tests serve as the foundation for removing edges and orienting v-structures during the
graph construction process. However, in finite samples, such tests are prone to both Type I and Type
II errors. A Type I error (false positive) occurs when the test incorrectly rejects the null hypothesis of
conditional independence when it is in fact true, while a Type II error (false negative) occurs when the
test fails to reject the null hypothesis despite the variables being dependent. These risks are exacerbated
when conditioning on large sets of variables, which increases variance, or when the dependencies are
weak or non-linear, making them harder to detect. As a consequence, the structure returned by the PC
algorithm may be unstable or incorrect if the statistical decisions deviate from the population-level
conditional independencies.



Third, the algorithm cannot distinguish between different directed acyclic graphs (DAGs) that belong
to the same Markov Equivalence Class (MEC). By design, it returns a Completed Partially Directed
Acyclic Graph (CPDAG), which encodes a set of DAGs that share the same set of d-separation relations.
While this is theoretically sound, it limits the informativeness of the output: many edges may remain
undirected, and causal directionality is left ambiguous without additional assumptions or interventional
data.

Finally, and perhaps most crucially from the perspective of formal argumentation, the PC algorithm is
entirely syntactic in its use of statistical dependencies; it provides no account of the semantic content of
the edges in the resulting graph. Each link is treated purely as an artefact of probabilistic association (or
lack thereof) rather than as a meaningful causal hypothesis embedded in domain knowledge. This poses
a substantial challenge in applications where interpreting, justifying, or contesting individual links
is essential. Therefore, beyond purely algorithmic discovery, there is a pressing need for frameworks
that allow for the articulation and critical evaluation of causal claims— link by link— using structured
arguments, explanations, and counter-arguments. Such argumentative approaches can complement sta-
tistical discovery methods by making the assumptions, interpretations, and domain-specific implications
of each inferred causal relationship explicit and debatable.

3. A Structured Account of Arguments For and Against Causal Claims

Causal arguments are central in many domains, from scientific inquiry to policy and engineering, where
actors seek to justify why one event (the effect) follows from another (the cause). This section provides
a structured typology of argumentative forms both in support of and against causal claims, building on
top of [10, 11].

3.1. Arguments in Favour of Causal Claims

Arguments supporting causal links can be grouped by the type of justification they provide. We distin-
guish three principal classes: circumstantial evidence, contrastive evidence, and causal explanations.

3.1.1. Circumstantial Evidence

Circumstantial evidence relies on regularities or proximity relations between two events, without
offering a mechanistic explanation of counterfactual analysis. The reasoning typically takes the form:

“𝐴 caused 𝐵 because 𝐴 regularly precedes 𝐵, co-occurs with 𝐵, or resembles other known
causes of 𝐵.”

We distinguish several sub-types of circumstantial evidence:

Spatio-temporal contiguity: The cause and effect occur in close spatial or temporal proximity. This
supports the intuition that the proximity of events may suggest a causal link.

Repeated co-occurrence: The purported cause and effect consistently appear together across multiple
instances. This statistical regularity, though not sufficient for causation, can signal a potentially
robust association worth investigating.

Analogical similarity: The situation under analysis resembles other known causal scenarios. If 𝐴
and 𝐴′ share relevant features, and 𝐴′ is known to cause 𝐵, then by analogy, 𝐴 might be assumed
to cause 𝐵 as well.

These forms of evidence are inherently speculative and typically serve as initial heuristics to guide
hypothesis generation or further empirical testing.



3.1.2. Contrastive Evidence

Contrastive evidence draws on observed differences in outcomes across varying conditions. Such
arguments typically follow the structure:

“𝐴 caused 𝐵 because 𝐵 occurs under 𝐴 but not under ¬𝐴.”

We identify several sub-types of contrastive evidence:

Statistical covariation: A measurable difference in outcomes is observed between groups or condi-
tions, and this difference persists even after adjusting for potential confounding variables. The
contrast is interpreted as supporting a causal role for the varying factor.

Before-after comparison: An intervention or change is introduced, and a corresponding shift in
outcomes is observed. If other factors remain stable, the contrast in outcome is attributed to the
intervention.

Controlled experiment: All conditions are held constant except for the variable of interest. A
consistent difference in outcome across conditions is then attributed to the manipulated variable.

3.1.3. Causal Explanation

Causal explanations articulate a mechanism that connects the cause to the effect. These arguments are
typically stronger than purely correlational or contrastive forms due to their explanatory depth. They
are often structured as:

“𝐴 causes 𝐵 because 𝐴 initiates a sequence of intermediate steps leading to 𝐵.”

We distinguish several sub-types of causal explanation:

Mechanistic explanation: The argument identifies a specific sequence of processes or interactions
through which the cause produces the effect. This often involves reference to known physical,
computational, or biological mechanisms.

Elimination of alternatives: A causal claim is supported by ruling out other plausible explanations.
If the observed effect coincides only with changes in 𝐴, and other variables are held constant, 𝐴
is inferred to be the cause.

Typicality of effect: The observed outcome matches the expected pattern associated with similar
causes in comparable contexts. This reinforces the plausibility of the proposed mechanism.

3.2. Arguments Against Causal Claims

Arguments challenging causal claims fall into two categories: those questioning the plausibility of the
causal relation and those attacking the logical structure or sufficiency of the justification.

3.2.1. Plausibility Challenges

These arguments suggest that the proposed causal link is implausible in light of available evidence. We
distinguish several sub-types:

Wrong temporal order: The effect is observed before the supposed cause. Since causes must precede
their effects, this undermines the causal interpretation.

No connection: The proposed cause and effect belong to unrelated domains, or no plausible pathway
links them. Without a credible mechanism, the causal claim lacks support.



Free decision: The outcome results from an independent choice or intervention that is not causally
determined by the proposed factor. The cause is incidental rather than explanatory.

Insufficient cause: The proposed factor occurs without reliably producing the effect. This suggests
that it alone cannot account for the outcome and may require additional conditions.

Unnecessary cause: The effect can be fully explained by other causes. The proposed factor is therefore
not needed to account for the outcome, weakening its causal relevance.

3.2.2. Logical Objections

Logical objections target the inferential structure of a causal argument, highlighting weak reasoning or
offering superior alternatives. We distinguish several sub-types:

Alternative cause: The observed association between the proposed cause and effect can be better
explained by a third, unaccounted-for variable that influences both.

Post hoc fallacy: The argument infers causality merely from temporal succession—assuming that
because 𝐵 followed 𝐴, 𝐴 must have caused 𝐵—without further justification.

Low statistical support: The effect is observed inconsistently or weakly across instances. A low base
rate or limited correlation challenges the robustness of the causal claim.

Anecdotal evidence: The argument relies on a single or highly atypical case, which is insufficient for
generalisation and vulnerable to noise or confounding.

Unknown mechanism: No explanation is given for how the proposed cause leads to the effect.
Without a plausible mechanism, the claim remains speculative.

3.2.3. Qualifying Causal Claims

Some arguments do not reject the existence of a causal link but instead refine or constrain its interpre-
tation. These qualifications help clarify the nature, strength, or context of the causal relationship. We
distinguish several sub-types:

Partial cause: The proposed factor contributes to the outcome but is not the sole or primary cause.
Other influences play a more significant role.

Indirect cause: The effect arises through a chain of intermediate steps rather than a direct influence.
The causal link is mediated by other variables.

Common cause: Both the proposed cause and the observed effect result from a shared underlying
factor. The deeper cause lies elsewhere.

Interaction: The proposed factor produces the effect only in combination with other conditions. On
its own, it may have little or no causal impact.

Reversed causality: The direction of influence is the opposite of what is claimed. What is presented
as the cause is actually a response to the effect.

Accidental cause: The observed causal link is coincidental, resulting from an unrelated or unantici-
pated event that occurred simultaneously.



Listing 1 Prompt Template: Argue in Favour of a Causal Link

1 Given the causal claim: [INSERT CAUSAL CLAIM],
2 produce a structured argument *in support* of this claim. Choose only one among the

following argumentation strategies:
3

4 1. Circumstantial Evidence:
5 - Provide at least one argument using spatio-temporal contiguity, repeated co-

occurrence, or similarity to known causes.
6

7 2. Contrastive Evidence:
8 - Provide at least one argument based on statistical covariation, before-after

comparison, or a controlled experiment.
9

10 3. Causal Explanation:
11 - Provide at least one mechanistic explanation, argument from no alternative

explanation, or an argument based on typical effect.
12

13 Each argument must:
14 - Clearly state which macro-family and specific subtype it belongs to.
15 - Be logically self-contained and persuasive.
16 - Refer explicitly to the observed or hypothesised phenomena.
17 - Be concise.

Listing 2 Prompt Template: Argue Against a Causal Link

1 Given the causal claim: [INSERT CAUSAL CLAIM],
2 produce a structured argument *against* this claim. Choose only one among the

following argumentation strategies:
3

4 1. Plausibility Challenges:
5 - Include at least one argument based on wrong temporal order, no plausible

connection, free decision,
6 insufficient cause, or unnecessary cause.
7

8 2. Logical Objections:
9 - Include at least one argument from alternative cause, post hoc fallacy, low

statistical support,
10 anecdotal evidence, or unknown mechanism.
11

12 3. Qualifying Claims:
13 - Optionally include partial, indirect, common cause, interaction, reversed

causality, or accidental cause qualifications.
14

15 Each argument must:
16 - Identify the macro-family and the specific argumentation subtype.
17 - Be articulated as a counterpoint to a potential or actual supporting argument.
18 - Indicate whether the causal claim is to be rejected, weakened, or reformulated.
19 - Be concise.

4. Argumentative Evaluation of Tentative Causal Links via Language
Models

Once tentative causal relationships have been identified using structure learning algorithms such
as the PC algorithm (see Section 2), we proceed to critically evaluate these links using argumentative
reasoning. To this end, we leverage large language models (LLMs) to generate structured arguments



Listing 3 Prompt Template: Final Judgement on a Causal Link

1 You are given two arguments regarding the same causal claim.
2

3 Causal Claim:
4 [INSERT CAUSAL CLAIM]
5

6 Argument in Favour:
7 [INSERT PRO-CASUAL ARGUMENT HERE]
8

9 Argument Against:
10 [INSERT COUNTER-ARGUMENT HERE]
11

12 Task:
13 Evaluate the overall credibility of the causal claim based on the two arguments.

Your judgment must:
14

15 1. Reference the strength and relevance of the macro-family and subtype for each
argument.

16 2. Indicate whether the causal claim should be:
17 - Accepted as likely
18 - Tentatively accepted with caveats
19 - Undecided or requiring more evidence
20 - Rejected
21 3. Justify your decision with explicit reference to the comparative argumentative

strength (\eg directness, generalisability, mechanistic plausibility,
alternative explanations).

22 4. Avoid introducing new arguments - focus only on evaluating the two provided.
23

24 Output format:
25 - Summary judgment (one sentence)
26 - Justification (3-5 sentences)

in favour of or against each causal claim, based on the typology of causal argumentation patterns
introduced earlier (cf. Section 3 and [10, 11]).

The prompts we employ are explicitly designed to elicit responses that map onto macro-families
of causal argumentation — circumstantial evidence, contrastive evidence, and causal explanation for
supporting claims, and plausibility challenges, logical objections, and qualifications for opposing ones.
These prompt templates are provided in Listings 1 and 2.

For instance, suppose the PC algorithm outputs the link batch_size → power. We then instantiate
the favour prompt (see Listing 1) as:

“Given the causal claim: ’Large batch sizes cause increased GPU power consumption’, produce a
structured argument in support of this claim...”

This would result in the LLM producing arguments such as:

• Circumstantial evidence (repeated co-occurrence): “In over a dozen training configurations,
large batch sizes were consistently associated with high energy usage.”

• Contrastive evidence (controlled experiment): “When only the batch size was varied, all
other factors held constant, energy draw increased with larger batches.”

• Causal explanation (mechanistic): “Larger batch sizes lead to greater parallelisation, saturating
GPU resources and increasing power draw.”



This argumentative evaluation serves two purposes. First, it adds interpretability and justifiability to
data-driven causal claims. Second, it exposes weak or unsupported inferences by juxtaposing strong
and weak forms of justification within the same causal hypothesis.

To complement the generation of individual arguments for and against causal hypotheses, we
introduce a final reasoning stage where an LLM is prompted to adjudicate between competing views.
This dialectical evaluation phase simulates the structure of critical discussion in causal reasoning. Given
one argument supporting a causal link and one refuting it, the model is tasked with determining the
overall plausibility of the claim. The prompt is designed to ensure that the response explicitly references
both the argumentative structure and the relative strength of the opposing macro-families. The complete
template is shown in Listing 3.

This stage enforces a structured comparison. The LLM is instructed to identify the macro-family
and subtype of each input argument, evaluate their logical and evidential strength, and conclude with
one of four options: the causal claim is (i) accepted as likely, (ii) tentatively accepted with caveats, (iii)
undecided and requiring more evidence, or (iv) rejected. The rationale behind this design is to integrate
argumentative quality into the causal assessment pipeline, preventing premature commitment to claims
generated by data-driven discovery alone.

Consider again the hypothesis that “large batch sizes cause increased GPU power consumption”.
Suppose we input the following arguments:

• Argument in favour (Contrastive evidence - controlled experiment): “When all training
parameters were kept constant except for batch size, power draw increased with larger batches.”

• Argument against (Logical objection - alternative cause): “Both batch size and energy usage
correlate with model complexity, which is the more likely common cause.”

The LLM, following the prompt in Listing 3, may respond:

Summary judgment: Tentatively accepted with caveats.

Justification: The argument in favour is based on a controlled experiment, which provides
strong contrastive evidence and isolates batch size as a plausible causal factor. The counter-
argument rightly identifies a potential confound (model complexity), but does not negate the
observed contrastive pattern. While further control for model size is advisable, the causal link
is tentatively supported.

5. Preliminary Results

5.1. Dataset: The BUTTER-E Benchmark

To support the empirical evaluation of causal discovery methods in energy-sensitive machine learn-
ing pipelines, we employ the BUTTER-E dataset [17, 18], a large-scale benchmark of real-world
energy consumption measurements associated with Deep Neural Network (DNN) training. Specifically,
BUTTER-E extends the primary sweep of the original BUTTER dataset by adding detailed energy
usage data collected on both CPU and GPU hardware. The resulting dataset comprises over 41,000
distinct training runs of fully connected multi-layer perceptrons (MLPs), each corresponding to a unique
configuration of hyperparameters.

The training runs in BUTTER-E span a diverse space of model sizes, shapes, and depths. The number
of trainable parameters ranges from 25 to 225, distributed across 2 to 20 hidden layers. Eight architectural
shapes were explored, including:

• rectangle and rectangle_residual (uniform width, with or without residual connections),

• trapezoid (width decreases linearly with depth),

• exponential (exponential decay in width),



• and wide_first_𝑛x configurations with 𝑛 ∈ {2, 4, 8, 16}, where the first hidden layer is 𝑛
times wider than the subsequent layers.

The training datasets were selected from the Penn Machine Learning Benchmark (PMLB) repos-
itory [19, 20], and include: 201_pol, 294_satellite_image, 529_pollen, 537_houses, adult,
banana, connect_4, MNIST, nursery, sleep, splice, and wine_quality_white.

The energy measurements were obtained by re-executing the primary sweep of BUTTER on the Eagle
high-performance computing (HPC) cluster at NREL. Each run was assigned to a dedicated CPU or dual-
GPU compute node. CPU training was executed using Intel’s OneDNN-accelerated TensorFlow, while
GPU training used cuDNN and TensorFlow with NVIDIA-recommended settings. Instantaneous power
consumption was recorded at one-minute intervals using the Hewlett-Packard Enterprise Integrated
Lights-Out (iLO) monitoring system embedded in each node.

Rather than treating all available features indiscriminately, we adopted a selective filtering process
based on substantive criteria. Features were retained if they were a) plausibly causal in their relationship
to energy usage (e.g., depth, width, optimizer), b) empirically meaningful across the run population
(e.g., dataset, GPU usage), and c) measurable prior to training (ensuring suitability for forward causal
inference). This led to the retention of the following fields: size_x, depth_x, shape_x, dataset_x,
learning_rate_x, batch_size_x, optimizer_x, is_gpu_x, and the target variable power.

Crucially, this design preserves the interpretability and modularity of the resulting dataset. The
extracted subset corresponds to a well-defined scientific object: a tabular representation of experimental
factors and outcomes, abstracted away from runtime-specific details or monitoring artefacts. Each row is
interpretable as a complete experimental unit, amenable to statistical modelling, formal argumentation,
or simulation-based what-if analysis. By retaining only the subset of features that are non-redundant
and structurally important, we minimise the risk of collider bias and improve the tractability of causal
graph learning procedures.

5.2. Causal Graph Inferred via the PC Algorithm

To investigate potential causal dependencies between architectural, training, and execution-related
variables, we employed the PC algorithm (Section 2). The method was applied to the harmonised
subset of the BUTTER-E dataset containing architectural parameters (e.g., depth, size, shape), training
configurations (e.g., batch size, learning rate, optimizer), execution hardware (e.g., GPU usage), and
outcome measures (e.g., power consumption). The PC algorithm was configured with a significance
threshold 𝛼 = 0.001, a maximum conditioning set size of 𝑐 = 2, and Fisher’s Z-test for conditional
independence. Column names were sanitised by removing suffixes such as _x for clarity.

The PC algorithm operates in two main phases: the skeleton identification phase and the edge
orientation phase. In the first phase, a fully connected undirected graph is pruned by iteratively testing
for conditional independence between pairs of variables, conditioning on subsets of increasing size. In
the second phase, the remaining edges are oriented using the rules of causal sufficiency, v-structure
identification, and the application of Meek’s rules [21]. The significance level 𝛼 = 0.001 defines the
tolerance for Type I error in independence tests, enforcing a conservative edge removal strategy.

The independence test used in our pipeline is Fisher’s Z-test, which evaluates whether two variables
𝑋 and 𝑌 are conditionally independent given a set 𝑍 by testing whether their partial correlation 𝜌𝑋𝑌 |𝑍
is significantly different from zero.

The inferred graph structure, shown in Figure 1, displays several dense regions of influence, notably
around the optimizer, depth, and batch_size nodes. The optimizer node emerges as a global
influencer, with causal edges toward almost all other configuration variables, including size, depth,
shape, learning_rate, and even hardware utilisation (is_gpu). This pattern may reflect the fact
that optimizers are typically selected early in the training pipeline, and that this choice often constrains
or influences subsequent design decisions.

The node depth is positioned as an intermediate confounder, affecting both size and batch_size.
This is consistent with the fact that deeper networks tend to require larger parameter counts and more
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Figure 1: CPDAG resulting from the PC algorithm.

aggressive batching strategies for convergence. Similarly, shape is shown to influence not just network
size and depth but also the dataset, suggesting that architectural templates are adapted to the complexity
or dimensionality of the task.

The inferred structure reveals not only direct influence pathways but also points of intervention.
For instance, altering the optimizer may simultaneously shift multiple architectural choices and
downstream power consumption. Similarly, batch_size appears as a critical mediator of both model
complexity and energy cost.

Interestingly, power is not only a sink (with arrows from optimizer and batch_size) but also
acts as a source node for size and shape. While this may initially appear paradoxical, since energy
consumption is usually treated as an outcome, it may reflect feedback loops during neural architecture
search or early stopping criteria that prune high-power configurations, thereby shaping subsequent
architecture choices. Alternatively, this pattern could signal violations of faithfulness or the presence of
latent confounders such as runtime hardware throttling or dynamic learning rate adjustment. We will
focus on this link further in Section 5.3

5.3. Critical Evaluation of LLM Output on Causal Claim

To demonstrate the methodology and the type of results that can be obtained through argumentative
evaluation of causal links, we focus in this paper on a single, non-obvious causal claim: “Power
consumption during training of the weights of a neural network causes the engineering choice of the
size of the neural network.” This example was selected intentionally for its subtle and context-dependent
nature, making it a suitable candidate to test the depth and coherence of reasoning produced by a large
language model. The evaluation was conducted using GPT-4o (gpt-4o, release date May 13, 2024),
which was prompted to generate three outputs: an argument in favour of the causal link (Listing 4), an
argument against it (Listing 5), and a final judgment synthesising both perspectives (Listing 6).

The pro-causal argument in Listing 4 aligns with the Causal Explanation macro-family, and more
specifically with the Mechanistic Explanation subtype. It presents a coherent engineering feedback loop
in which anticipated or previously observed energy demands during training act as constraints that
shape the design of future architectures. This reflects practices common in real-world machine learning
development— particularly under conditions of limited compute or sustainability requirements. The
argument implicitly assumes that such considerations are consistently integrated into design workflows,
which may not universally hold across experimental or academic settings.

The counterargument in Listing 5 adopts a Plausibility Challenge stance, relying on the Wrong



Listing 4 LLM-generated argument in favour of the causal claim: power consumption during training
causes engineering decisions on network size.

1 Macro-family: Causal Explanation
2 Subtype: Mechanistic Explanation
3

4 Structured Argument in Support:
5

6 The claim that power consumption during training of the weight of a neural network
causes the engineering choice of the size of the neural network can be
supported by a mechanistic explanation grounded in how neural network
development proceeds in practice.

7

8 During training, a neural network’s energy consumption increases with both the
number of parameters and the computational workload (\eg forward and backward
passes, gradient updates). Larger models demand more GPU/TPU resources, leading
to longer training times and higher energy costs. This power consumption is

directly measurable and often becomes a bottleneck when scaling models,
especially in settings with fixed energy budgets, sustainability targets, or
hardware limitations.

9

10 Engineers, aware of these resource constraints, often incorporate them into the
design phase as constraints on model architecture. For example, training a 10-
billion parameter model on a modest compute cluster may be prohibitively
expensive in terms of power. Therefore, engineers reduce the model size
preemptively to meet acceptable power consumption levels during training.

11

12 This mechanism, where observable power demands during training feed back into
design constraints, explains how power consumption causally determines the
engineering decision of network size. The process aligns with standard
engineering feedback loops where operational resource costs shape future design
choices.

Listing 5 LLM-generated counterargument: the causal claim fails due to incorrect temporal ordering.

1 Macro-family: Plausibility Challenges
2 Subtype: Wrong Temporal Order
3

4 Counterpoint:
5 A supporting argument might suggest that higher power consumption during training

compels engineers to reduce network size. However, in practice, the size of the
neural network is determined during the model design phase, which precedes any
training or associated power consumption. Therefore, the temporal order does

not support causality.
6

7 Effect on Causal Claim: Rejected

Temporal Order subtype. It highlights that model size decisions necessarily precede training, and
therefore post-training power consumption cannot causally influence architectural choices. While
formally valid, this argument overlooks the iterative nature of engineering processes, where anticipated
power usage— based on prior experience or simulations— can influence decisions made before training
actually begins. As such, it provides a useful but incomplete critique.

Finally, the judgment in Listing 6 characterises the causal claim as “tentatively accepted with caveats,”
offering a balanced assessment. It recognises the explanatory strength and practical relevance of
the mechanistic argument, while acknowledging the validity of the temporal critique. The model



Listing 6 LLM-generated final judgment on the causal claim, balancing both sides.

1 Summary judgment:
2 Tentatively accepted with caveats.
3

4 Justification:
5 The supporting argument employs a Causal Explanation within the Mechanistic

Explanation subtype, which is well-suited for establishing a plausible internal
process linking observed power consumption during training to design decisions.
It offers a concrete mechanism by which engineers anticipate resource

constraints based on historical or expected consumption profiles, thereby
integrating them into the model design process. While the counterargument
identifies a Plausibility Challenge based on Wrong Temporal Order, it treats "
training power consumption" as a post hoc observation rather than an
anticipated constraint, which may not fully reflect iterative engineering
workflows where anticipated training costs inform design. The mechanistic
account carries more explanatory weight due to its grounding in practical
engineering constraints and feedback mechanisms, although it does not fully
address whether the causal link is universally applicable. Therefore, the claim
is tentatively accepted, pending further clarification of how often and

explicitly such power considerations directly determine network size.

appropriately frames the causality as context-dependent and suggests that further empirical investigation
would be necessary to determine how routinely power constraints explicitly guide network sizing
decisions.

6. Limitations

While the results presented in this paper provide promising evidence for the feasibility of using large
language models (LLMs) to generate and evaluate causal arguments, several limitations remain that
point to directions for future research.

First, the methodology relies on a single prompt format for each task — namely, for generating
arguments in favour of and against a causal claim, and for producing a final judgment. Although these
prompts were carefully crafted to align with established principles from argumentation theory, this
design choice inevitably constrains the expressive richness and adaptability of the generated reasoning. A
more comprehensive study of prompt design is needed. This should include the exploration of alternative
phrasings and structured prompting schemes that instantiate different argumentation strategies, such as
Walton’s argumentation schemes [22], abductive reasoning patterns, or counterfactual-based templates.
These variations would allow the system to capture a broader typology of causal reasoning styles.

In addition, adopting few-shot learning strategies using curated examples of high-quality causal
arguments could enhance both the consistency and epistemic soundness of the generated content.
Beyond this, one may envision prompts that produce structured outputs in agentic form— where each
argument is tagged with a scheme type, source of support, and confidence level— such that they can be
automatically passed to formal solvers grounded in computational argumentation theory. These could
include Dung-style abstract argumentation frameworks [23], structured argumentation formalisms
like ABA [24] or ASPIC+ [25], or probabilistic extensions that accommodate uncertainty in weights
or justifiability [26]. In such settings, the LLM’s role would be to simulate a deliberative agent [27]
capable of producing argumentative material in a machine-readable form, supporting downstream
computational evaluation leveraging existing argumentation solvers [28].

Second, the current pipeline assumes that all necessary domain knowledge is already embedded
within the language model. In our case, GPT-4o was used without access to any external knowledge
retrieval mechanism. While this model has demonstrated strong capabilities in handling technical
content, including machine learning literature— see, e.g., [29] for general capabilities and [30] for LLMs’



performance on domain-specific tasks— the absence of a domain-aware knowledge management system
limits robustness and interpretability. In practice, real-world causal evaluation may benefit from the
integration of Retrieval-Augmented Generation (RAG) pipelines [31, 32, 12] that allow the LLM to
reference verified domain knowledge, documentation, or empirical findings. This would also enable
traceable citation practices and mitigate hallucinations.

Third, the same language model was used for both the generation of arguments and their evaluation.
While this simplifies the experimental setup, it raises concerns about internal consistency biases and
limited critical distance. A more robust approach may involve using distinct models for generation
and judgment— potentially including domain-specific models for technical content generation and
models fine-tuned specifically for argumentative coherence, logical soundness, or critical reasoning.
Such model pluralism would allow for cross-verification and better reflect a multi-agent argumentative
process.

7. Conclusion and Future Work

This study proposed an initial framework for enhancing data-driven causal discovery through ar-
gumentative evaluation, leveraging large language models (LLMs) to generate and assess natural
language justifications for inferred causal links. By framing each link as open to dialectical scrutiny,
the approach aims to make causal inference more transparent and interpretable. While the results
are promising, several limitations highlight avenues for future work. These include exploring diverse
prompt designs— such as few-shot prompting with exemplary arguments— to improve output quality;
integrating Retrieval-Augmented Generation (RAG) to supplement model knowledge with curated
external sources; and adopting a modular architecture that separates generation and evaluation roles
across specialised models to mitigate coherence bias. These directions support the development of a
hybrid causal inference pipeline that is both statistically rigorous and discursively robust.
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