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Abstract
In this paper we develop a preferential interpretation of gradual argumentation and propose an approach for

temporal conditional reasoning about argumentation graphs. The approach exploits a two-valued temporal

conditional logic with typicality, combining a preferential logic with Linear Time Temporal Logic (LTL). It

introduces a dynamic dimension to conditional reasoning in gradual argumentation, enabling the verification of

conditional properties across time, such as trends in the evolution of argument strength.
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1. Introduction

Conditional reasoning plays a central role in artificial intelligence, especially when distinguishing

between strict rules and typical situations. In previous work [1, 2], we have presented a many-valued

conditional logic with typicality to provide preferential interpretation of gradual argumentation [3, 4, 5,

6, 7, 8]. This framework enables conditional reasoning over arguments and their boolean combinations,

evaluated with respect to some chosen gradual semantics, through the verification of graded (strict or

defeasible) implications over an argumentation graph.

In this paper, we aim at exploring a two-valued approach, by exploiting a two-valued conditional

logic with typicality to provide a preferential interpretation of gradual argumentation. Then, we extend

the approach for dealing with the temporal case. A temporal conditional logic with typicality can

be exploited in the verification of the transient behavior of an argumentation graph, as well as in

the verification of the transient behavior of a neural network. Indeed, a multilayer (recurrent) neural

network can be regarded as a weighted knowledge base [9, 10], and also as a weighted argumentation

graph [11, 12, 13].

In a nutshell, our contribution is twofold:

1. Conceptual simplification: By moving from a many-valued to a two-valued framework, we retain

expressive power while simplifying the formal semantics and reasoning mechanisms.

2. Temporal extension: We introduce a dynamic dimension to conditional reasoning in gradual

argumentation, enabling the verification of conditional properties across time, such as trends in

the evolution of argument strength.

The proposed logic can be used to analyze time-dependent properties of argumentation graphs, including

iterative updates of strength functions, and is also applicable to weighted knowledge bases and neural

networks interpreted as weighted argumentation frameworks. This opens up new opportunities for

explainability, temporal verification, and symbolic-neural integration.
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Figure 1: Example weighted argumentation graph 𝐺

In more detail, our approach combines preferential approaches to commonsense reasoning [14, 15,

16, 17, 18, 19, 20, 21, 22] with the Linear Time Temporal Logic (LTL) [23]. Preferential extensions of

LTL with defeasible temporal operators have been recently studied to enrich temporal formalisms with

non-monotonic reasoning features, by considering defeasible versions of the LTL operators [24, 25, 26].

In this regard, we follow a different route, adding the standard LTL operators to a conditional logic with

typicality, an approach similar to the one pursued for Description Logics (DLs), through an extension of

the temporal description logic LTL𝒜ℒ𝒞 [27] with the typicality operator [28]. As in the Propositional

Typicality Logic (PTL) by Booth et al. [29] (and in the DLs with typicality [30]) the conditionals will be

formalized based on material implication plus a typicality operator T. The typicality operator allows for

the definition of conditional implications T(𝛼) → 𝛽, meaning that “normally if 𝛼 holds, 𝛽 holds". They

correspond to conditional implications 𝛼 |∼ 𝛽 in KLM logics [17, 19]. In the paper, we will consider a

multi-preferential logic, where preferences are associated to aspects (and to arguments).

The structure of the paper is as follows. Section 2 provides the necessary background on gradual

argumentation and two-valued multi-preferential conditional logic. In Section 3, we show how such

logic can be instantiated for reasoning on argumentation graphs. Section 4 introduces the temporal

extension of the logic, and Section 5 describes how it can be instantiated to model temporal aspects of

gradual argumentation. Section 6 concludes and discusses future directions.

2. Preliminaries

In this section we provide preliminaries on gradual argumentation semantics and on a two-valued

multi-preferential semantics for conditionals.

2.1. Gradual argumentation semantics

In this following, we shortly recap gradual argumentation semantics, following Baroni, Rago and Toni

[6, 7], and consider a specific semantic from [31, 32, 13].

As in the Quantitative Bipolar Argumentation Framework (QBAF) by Baroni et al. [6, 7], we let the

domain of argument interpretation be a set 𝒟, equipped with a preorder relation ≤. In the literature, this

assumption is considered general enough to include the domain of argument valuations in most gradual

argumentation semantics [3, 33, 4, 34, 5, 6, 8, 11]. We do not assume that 𝒟 contains a minimum element
and a maximum element. If they exist, we denote them by 0𝒟 and 1𝒟 (or simply 0 and 1), respectively.

If not, we will add the two elements 0𝒟 and 1𝒟 at the bottom and top of the values in 𝒟, respectively.

For the definition of an argumentation graph, we consider the definition of edge-weighted QBAF by

Potyka [11], for a generic domain 𝒟.

We let a weighted argumentation graph to be a quadruple 𝐺 = ⟨𝒜,ℛ, 𝜎0, 𝜋⟩, where 𝒜 is a set of

arguments, ℛ ⊆ 𝒜 × 𝒜 a set of edges, the base score function 𝜎0 : 𝒜 → 𝒟 assigns a base score to

arguments, and 𝜋 : ℛ → R is a weight function assigning a positive or negative weight to edges. An

example of argumentation graph is in Figure 1, where a base score is not given.

A ir (𝐵,𝐴) ∈ ℛ is regarded as a support of argument 𝐵 to argument 𝐴 when the weight 𝜋(𝐵,𝐴) is

positive and as an attack of argument 𝐵 to argument 𝐴 when 𝜋(𝐵,𝐴) is negative.



The properties of edge-weighted argumentation graphs with weights in the interval [0, 1] have been

studied in [11] as well as in the gradual semantics framework by Amgoud and Doder [8].

Whatever semantics 𝑆 is considered for an argumentation graph 𝐺, we will assume that the semantics

𝑆 identifies a set Σ𝑆
𝐺 of many-valued labellings (also called strength functions, or weightings) of the graph

𝐺 over a domain of argument valuation 𝒟. A many-valued labelling 𝜎 of 𝐺 over 𝒟 is a total function

𝜎 : 𝒜 → 𝒟, which assigns to each argument an acceptability degree (or a strength) in the domain of

argument valuation 𝒟.

When, in the following, we want to consider a set of possible values for the initial score of

arguments, we will represent the argumentation graph 𝐺 as a triple 𝐺 = (𝒜,ℛ,Σ0, 𝜋), where

Σ0 = {𝜎1
0, 𝜎

2
0, . . . , 𝜎

𝑘
0} is a finite set of possible initial scores.

2.2. The 𝜙-coherent semantics

Let us recall the definition of the 𝜙-coherent semantics of an argumentation graph 𝐺 [13]. We let 𝒟
be the interval [0, 1] or the finite set 𝒞𝑛 = {0, 1

𝑛 , . . . ,
𝑛−1
𝑛 , 𝑛𝑛}, for an integer 𝑛 ≥ 1. Given a weighted

argumentation graph 𝐺 = ⟨𝒜,ℛ, 𝜎0, 𝜋⟩, we let R−(A) = {B | (B ,A) ∈ ℛ}. When R−(A) = ∅,

argument 𝐴 has neither supports nor attacks.

For a weighted graph 𝐺 = ⟨𝒜,ℛ, 𝜎0, 𝜋⟩ and a many-valued labelling 𝜎, the weight 𝑊𝐺
𝜎 on 𝒜 is

defined as a partial function 𝑊𝐺
𝜎 : 𝒜 → R, assigning a positive or negative support (relative to labelling

𝜎) to all arguments 𝐴𝑖 ∈ 𝒜 such that R−(Ai) ̸= ∅, as follows:

𝑊𝐺
𝜎 (𝐴𝑖) =

∑︁
𝐴𝑗∈𝑅−(𝐴𝑖)

𝜋(𝐴𝑗 , 𝐴𝑖) 𝜎(𝐴𝑗) (1)

𝑊𝐺
𝜎 (𝐴𝑖) is left undefined when R−(Ai) = ∅.

Definition 1. Given a weighted argumentation graph 𝐺 = ⟨𝒜,ℛ, 𝜎0, 𝜋⟩ and a non-decreasing function
𝜙 : R → 𝒟, a 𝜙-coherent many-valued labelling 𝜎 of 𝐺 is defined as follows:

𝜎(𝐴𝑖) =

{︂
𝜙(𝑊𝐺

𝜎 (𝐴𝑖)) for all Ai ∈ 𝒜 s.t. R−(Ai) ̸= ∅
𝜎0(𝐴𝑖) otherwise (2)

The semantics is a perceptron-like semantics which has been inspired by some preferential semantics

for weighted KBs developed in [35, 10], and has some relations with the semantics proposed by Potyka

[11] for interpreting neural networks (see [13] for comparisons). In this perceptron like view, the

argumentation graph plays the role of a (possibly recurrent) multilayer network, where arguments

𝐴𝑖 correspond to units, edges (with their weights) correspond to synaptic connections between units,

𝑊𝐺
𝜎 (𝐴𝑖) corresponds to the induced local field of unit 𝐴𝑖, and 𝜙 corresponds to the activation function.

The acceptability degree of an argument 𝐴𝑖 in a labelling 𝜎 corresponds to the activity of unit 𝐴𝑖 in

a stationary state of the network. We refer to [9, 13] for further details, including properties of the

semantics and comparisons with other argumentation semantics.

We denote by Σ𝐺 the set of all the 𝜙-coherent many-valued labelling 𝜎 of 𝐺 = ⟨𝒜,ℛ, 𝜋⟩, for all

the possible choices of the initial score; by Σ𝜎0
𝐺 the set of the 𝜙-coherent many-valued labelling 𝜎 for

the initial score 𝜎0, and by ΣΣ0
𝐺 the set of the 𝜙-coherent many-valued labelling 𝜎 for all the values of

initial score in Σ0.

Example 1. In the 𝜙-coherent semantics for the weighted argumentation graph 𝐺 in Figure 1, in the
finitely-valued case with 𝒟 = 𝒞𝑛, for 𝑛 = 5, with 𝜙 being the approximation in 𝒞𝑛 of the logistic function,
Σ𝐺 contains 36 many-valued 𝜙-coherent labellings, while, for 𝑛 = 9, Σ𝐺 contains 100 𝜙-coherent labellings.
In this case, there is a labelling for each combination of values of the base score for 𝐴2 and 𝐴6. For instance,
𝜎 = (3/5, 0, 3/5, 3/5, 1/5, 0) (meaning that 𝜎(𝐴1) = 3/5, 𝜎(𝐴2) = 0, and so on) is a many-valued
𝜙-coherent labelling of 𝐺 for 𝑛 = 5.



Above, the notion of 𝜙-coherent many-valued labelling of 𝐺 is defined through a set of equations,

as in Gabbay’s equational approach to argumentation networks [36]. A definition of the 𝜙-coherent

semantics can also be given, in the style of the gradual semantics in the framework by Amgoud and

Doder [8]. We refer to [13] for details and for a discussion of the properties of the semantics. In

particular, one cannot assume that, for an initial score 𝜎0, there is a unique strength function 𝜎 (a

unique 𝜙-coherent labelling).

2.3. A two-valued multi-preferential semantics for conditionals

In the following we recall the multi-preferential semantics from [37], and slightly extend it.

As mentioned in the introduction, the conditional logic extends a propositional language 𝐿 with a

typicality operator T, following the approach used in the description logic 𝒜ℒ𝒞 +T [38] as well as in

the Propositional Typicality Logic (PTL) [29]. Intuitively, “a sentence of the form T(𝛼) is understood

to refer to the typical situations in which 𝛼 holds" [29]. As in PTL [29], the typicality operator cannot

be nested. When an implication has the form T(𝛼) → 𝛽, it is called a defeasible implication, whose

meaning is that “normally, if 𝛼 then 𝛽”. An implication 𝛼 → 𝛽 is called strict, if it does not contain

occurrences of the typicality operator.

The KLM preferential semantics [17, 19, 16] exploits a single preference relation between worlds: a
set of worlds 𝒲 , with their valuation and a preference relation < among worlds (where 𝑤 < 𝑤′

means

that world 𝑤 is more normal than world 𝑤′
). A conditional 𝐴 |∼ 𝐵 is satisfied in a KLM preferential

interpretation, if 𝐵 holds in all the most normal worlds satisfying 𝐴, i.e., in all <-minimal worlds

satisfying 𝐴. Here, instead, we consider a multi-preferential semantics, where preference relations are

associated with distinguished propositional formulas𝐴1, . . . , 𝐴𝑚 (called distinguished propositions in the

following). In the semantics, a preference relation will be associated with each distinguished proposition

𝐴𝑖, where 𝑤 <𝐴𝑖 𝑤
′

means that world 𝑤 is less atypical than world 𝑤′
concerning aspect/property 𝐴𝑖

(e.g., 𝑤 <student 𝑤
′

means that 𝑤 describes a less atypical situation for a student than 𝑤′
).

In the following we will consider finite KBs over a setProp of propositional variables, and a finite set of

distinguished propositions 𝐴1, . . . , 𝐴𝑚 (propositional formulas over Prop). Preferential interpretations

are equipped with a set of worlds 𝒲 and a finite set of preference relations <𝐴1 , . . . , <𝐴𝑛 , where, for

each distinguished proposition 𝐴𝑖, <𝐴𝑖 is a strict partial order on the set of worlds 𝒲 . For the moment,

we assume that, in any typicality formula T(𝐴), 𝐴 is a distinguished proposition.

Definition 2. A (multi-)preferential interpretation is a triple ℳ = ⟨𝒲, {<𝐴𝑖}, 𝑣⟩ where:

∙ 𝒲 is a non-empty set of worlds;

∙ each <𝐴𝑖⊆ 𝒲 ×𝒲 is an irreflexive and transitive relation on 𝒲 ;

∙ 𝑣 : 𝒲 −→ 2Prop is a valuation function, assigning to each world 𝑤 a set of propositional
variables in Prop.

A ranked interpretation is a (multi-)preferential interpretation ℳ = ⟨𝒲, {<𝐴𝑖}, 𝑣⟩ for which all

preference relations <𝐴𝑖 are modular, that is: for all 𝑥, 𝑦, 𝑧, if 𝑥 <𝐴𝑖 𝑦 then 𝑥 <𝐴𝑖 𝑧 or 𝑧 <𝐴𝑖 𝑦. A

relation <𝐴𝑖 is well-founded if it does not allow for infinitely descending chains of worlds 𝑤0, 𝑤1, 𝑤2, . . .,
with 𝑤1 <𝐴𝑖 𝑤0, 𝑤2 <𝐴𝑖 𝑤1, etc. The valuation 𝑣 is inductively extended to all formulae:

ℳ, 𝑤 |= ⊤ ℳ, 𝑤 ̸|= ⊥
ℳ, 𝑤 |= 𝑝 iff 𝑝 ∈ 𝑣(𝑤), for all 𝑝 ∈ Prop

ℳ, 𝑤 |= 𝐴 ∧𝐵 iff ℳ, 𝑤 |= 𝐴 and ℳ, 𝑤 |= 𝐵

ℳ, 𝑤 |= 𝐴 ∨𝐵 iff ℳ, 𝑤 |= 𝐴 or ℳ, 𝑤 |= 𝐵

ℳ, 𝑤 |= ¬𝐴 iff ℳ, 𝑤 ̸|= 𝐴

ℳ, 𝑤 |= 𝐴 → 𝐵 iff ℳ, 𝑤 |= 𝐴 implies ℳ, 𝑤 |= 𝐵

ℳ, 𝑤 |= T(𝐴𝑖) iff ℳ, 𝑤 |= 𝐴𝑖 and ∄w ′ ∈ 𝒲 s.t. w ′ <Ai w and ℳ, 𝑤′ |= 𝐴𝑖.



Whether T(𝐴𝑖) is satisfied at a world 𝑤 or not also depends on the other worlds of the interpretation

ℳ. Restricting our consideration to modular interpretations, leads to the notions of satisfiability and

validity of a formula in the ranked (or rational) multi-preferential semantics. Differently from [37] (and

from KLM semantics [17, 19]), here we do not assume well-foundedness of the preference relations.

An implication of the form T(𝐴) → 𝐵, with 𝐵 in ℒ, corresponds to a conditional 𝐴 |∼ 𝐵 in

KLM logics [17]. It can be easily proven that, when all the preference relations <𝐴𝑖 coincide with

a single well-founded preference relation <, a multi-preferential interpretation ℳ corresponds to a

KLM preferential interpretation, and a defeasible implication T(𝐴) → 𝐵 (with 𝐴 and 𝐵 in ℒ) has the

semantics of a KLM conditional 𝐴 |∼ 𝐵. The multi-preferential semantics is a generalization of the

KLM preferential semantics.

Given a preferential interpretation ℳ, a formula 𝛼 is satisfied in ℳ if ℳ, 𝑤 |= 𝛼 for some world

𝑤 ∈ 𝒲 . A formula 𝛼 is valid in ℳ (written ℳ |= 𝛼) if ℳ, 𝑤 |= 𝛼, for all the worlds 𝑤 ∈ 𝒲 . A

formula 𝛼 is valid if 𝛼 is valid in all the preferential interpretations ℳ.

Let a knowledge base 𝐾 be a set of (strict or defeasible) implications. A preferential model of 𝐾 is

a multi-preferential interpretation ℳ such that ℳ |= 𝐴 → 𝐵, for all implications 𝐴 → 𝐵 in 𝐾 .

Given a knowledge base 𝐾 , we say that an implication 𝐴 → 𝐵 is preferentially entailed from 𝐾 if

ℳ |= 𝐴 → 𝐵 holds, for all preferential models ℳ of 𝐾 . We say that 𝐴 → 𝐵 is rationally entailed from
𝐾 if ℳ |= 𝐴 → 𝐵 holds, for all ranked models ℳ of 𝐾 .

It is well known that preferential entailment and rational entailment are weak. As with the rational

closure [19] and the lexicographic closure [39] for KML conditionals, also in the multi-preferential case

one can strengthen entailment by restricting to specific preferential models, based on some closure
constructions, which allow to define the preference relations <𝐴𝑖 from a knowledge base 𝐾 , e.g., by

exploiting the ranks or weights of conditional implications, when available [40, 41, 10].

3. A two-valued preferential interpretation of gradual semantics

In [2], we have defined a preferential interpretation of an argumentation graph 𝐺 under a gradual

argumentation semantics 𝑆, based on the many-valued conditional logic with a multi-preferential

semantics. In this section, we construct a conditional interpretation of an argumentation graph 𝐺 under

a gradual semantics 𝑆, based on a two-valued conditional logic with typicality.

As we have seen, the semantics 𝑆 of 𝐺 can then be regarded, abstractly, as a pair (𝒟,Σ𝑆
𝐺): a domain

of argument valuation 𝒟 and a set of labellings Σ𝑆
𝐺 over the domain.

If we consider the set of arguments 𝒜 as propositional variables, each labelling 𝜎 can be regarded as

a world 𝑤𝜎 ∈ 𝒲 in a many-valued preferential interpretation ℳ which contains a preference relation

<𝐴𝑖 , for each argument 𝐴𝑖 (here we are assuming that the single arguments 𝐴1, . . . , 𝐴𝑚 correspond to

the distinguished propositions).

More precisely, a gradual semantics (𝒟,Σ𝐺) of an argumentation graph 𝐺 can be associated with a

preferential interpretation ℳ𝐺 = ⟨𝒲, {<𝐴1 , . . . , <𝐴𝑛}, 𝑣⟩, defined by letting:

- 𝒲 = {𝑤𝜎 | 𝜎 ∈ Σ𝐺}
- for all the arguments 𝐴𝑖 ∈ 𝒜, and a threshold value 𝑡 ∈ 𝒟:

𝑣(𝑤𝜎, 𝐴𝑖) =

{︂
0 if 𝜎(Ai) ≤ t
1 otherwise

(3)

- for all the arguments 𝐴𝑖 ∈ 𝒜, and worlds 𝑤𝜎, 𝑤𝜎′ ∈ 𝒲 :

𝑤𝜎 <𝐴𝑖 𝑤𝜎′ iff 𝜎(𝐴𝑖) > 𝜎′(𝐴𝑖)

The choice of the threshold depends on the semantics and on the domain. For instance, for the domain

𝒟 = [0, 1], one may fix the threshold 𝑡, e.g., to be 0 or 0.5. For a domain 𝒟 = R, one may take 𝑡 = 0.

When evaluating the typical worlds (labellings) for 𝐴𝑖, only the worlds in which 𝐴𝑖 has a strength

above the threshold need to be considered. The preference relation with respect to argument 𝐴𝑖 is

induced by the strength of the argument 𝐴𝑖 in the different labellings.



Example 2. For instance, referring to the argumentation graph in Example 1, the labelling (strength
function) 𝜎 = (3/5, 0, 3/5, 3/5, 1/5, 0) gives rise to a world 𝑤𝜎 in the preferential interpretation ℳ𝐺

of the graph. Assuming a threshold 𝑡 = 2/5, we have 𝑣(𝑤𝜎, 𝐴1) = 𝑣(𝑤𝜎, 𝐴3) = 𝑣(𝑤𝜎, 𝐴4) = 1 (as
𝜎(𝐴1) > 𝑡, 𝜎(𝐴3) > 𝑡 and 𝜎(𝐴4) > 𝑡), while 𝑣(𝑤𝜎, 𝐴2) = 𝑣(𝑤𝜎, 𝐴5) = 𝑣(𝑤𝜎, 𝐴6) = 0.

Furthermore, for a labelling 𝜎′ ∈ Σ𝐺 such that 𝜎′(𝐴3) = 4/5, we will have: 𝑤𝜎′ <𝐴3 𝑤𝜎 , as
𝜎′(𝐴3) > 𝜎(𝐴3). That is, labelling 𝜎′ represents a more typical situation in which argument 𝐴3 holds,
with respect to labelling 𝜎.

3.1. Conditionals for explanation and boolean combination of arguments

Once a preferential interpretation ℳ𝐺
of an argumentation graph 𝐺 with respect to a gradual semantics

𝑆, has been constructed, such interpretation can be used in the verification of strict and conditional

graded implications (by checking their validity in the model ℳ𝐺
), for explanation, e.g., by validating

conditional relations between arguments.

For instance, given a weighted argumentation graph 𝐺 describing the rules for assigning loans, e.g.,

involving the arguments living_in_town , young and granted_loan , and a gradual semantics 𝑆, one

may want to verify the property

T(granted_loan) → living_in_town ∧ young

(normally the loan is granted to people living in town and being young) or the property

living_in_town ∧ young → T(granted_loan)

(living in town and being young implies that normally the loan is granted). The implications above can

be checked for validity over the preferential interpretation ℳ𝐺
, constructed from the set of labellings

Σ𝐺 of the graph 𝐺 in the semantics 𝑆.

Let us continue the example concerning the argumentation graph in Figure 1, under the 𝜙-coherent

argumentation semantics.

Example 3. As mentioned before, for the weighted argumentation graph in Figure 1, in the 𝜙-coherent
argumentation semantics there are 36 labellings in case of a domain 𝒞𝑛 with 𝑛 = 5. Since 𝐴2 supports
𝐴3, which in turn attacks 𝐴5, some relation can be expected between 𝐴2 and 𝐴5. Assuming a threshold
𝑡 = 2/5, the following conditional implication turns out to be valid in the interpretation ℳ𝐺:

T(𝐴2) → ¬𝐴5

that is, in the situations (labellings) which maximize the acceptability of argument 𝐴2, argument ¬𝐴5

holds. The corresponding strict implication 𝐴2 → ¬𝐴5 does not hold.
In this example, we may wonder whether model ℳ𝐺 also validates the implication:

T(𝐴1 ∨𝐴2) → ¬𝐴5

It turns out, however, that the last conditional implication is outside the language we have defined.

So far we have assumed that the distinguished propositions correspond to single arguments. We lift

this condition and allow typicality formulas T(𝐴), with 𝐴 a boolean combination of arguments, to

include typicality formulas as T(𝐴1 ∨𝐴2) in the example above, and also the typicality formula in the

conditional implication:

T(living_in_town ∧ young) → granted_loan

To deal with these conditionals, we have to extend preferential interpretations by allowing preference

relations <𝐴 associated with boolean combinations of arguments 𝐴, and generalizing the semantic

condition of typicality formulas (in Definition 2) to any boolean combination of arguments 𝐴, as follows:



ℳ, 𝑤 |= T(𝐴) iff ℳ, 𝑤 |= 𝐴 and ∄w ′ ∈ 𝒲 s.t. w ′ <A w and ℳ, 𝑤′ |= 𝐴

For instance, for evaluating T(𝐴1 ∨𝐴2) → ¬𝐴5, we need preference relation <𝐴1∨𝐴2 .

The definition of of the preference relation <𝐴 for a boolean combination of arguments can rely on

the strength of the atomic arguments in the gradual semantics. The strength of boolean arguments

in a labelling can be defined inductively from the strength of the atomic arguments 𝐴𝑖 in the gradual

semantics by exploiting suitable truth degree functions ⊗, ⊕, ⊖ in 𝒟, as follows:

𝜎(¬𝐴) = ⊖𝜎(𝐴)

𝜎(𝐴 ∧𝐵) = 𝜎(𝐴)⊗ 𝜎(𝐵)

𝜎(𝐴 ∨𝐵) = 𝜎(𝐴)⊕ 𝜎(𝐵)

where 𝐴 and 𝐵 are boolean combinations of arguments.

When 𝒟 is [0, 1] or the finite truth space 𝒞𝑛 = {0, 1
𝑛 , . . . ,

𝑛−1
𝑛 , 𝑛𝑛}, for an integer 𝑛 ≥ 1, ⊗, ⊕ and

⊖ can be chosen as a triangular norm (or t-norm), a triangular co-norm (or s-norm) and a negation

function in some system of many-valued logic [42]. For instance, in the following, for the 𝜙-coherent

semantics, we let 𝑎⊗ 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏}, 𝑎⊕ 𝑏 = 𝑚𝑎𝑥{𝑎, 𝑏}, and ⊖𝑎 = 1− 𝑎.

Then, the preference relation <𝐴 can be defined as:

𝑤𝜎 <𝐴 𝑤𝜎′ iff 𝜎(𝐴) > 𝜎′(𝐴)

for all worlds 𝑤𝜎, 𝑤𝜎′ ∈ 𝒲 .

We can reconsider the previous example, based on this generalization of the preferential semantics.

Example 4. Based on the choice of truth degree functions above, one can prove that the conditional
implication T(𝐴1 ∨𝐴2) → ¬𝐴5 is valid in the preferential interpretation of the argumentation graph 𝐺
in Figure 1 under the 𝜙-coherent semantics, while the strict implication 𝐴1 ∨𝐴2 → ¬𝐴5 is not valid.

Note that the idea of interpreting the strength function 𝜎 as a valuation in a many-valued logic, was

previously used in many-valued preferential interpretations [1, 13]. Instead, here it has been exploited

in the construction of a two-valued preferential interpretation ℳ𝐺
.

4. A temporal conditional multi-preferential logic

In this section, we extend the two-valued conditional logic in Section 2.3 with the operators of the

Linear Time Temporal Logic (LTL) [23].

Compared with the preferential semantics above, the semantics of 𝐿𝑇𝐿T
also considers the temporal

dimension, through a set of time points in N. The valuation function assigns, at each time point 𝑛 ∈ N,

a truth value to each propositional variable in a world 𝑤 ∈ 𝒲 ; the preference relations <𝑛
𝐴𝑖

(with

respect to each distinguished proposition 𝐴𝑖) are relative to time points. Evolution in time may change

the valuation of propositions at the worlds, and it may also change the preference relations between

worlds (𝑤 might represent a typical situation for a student at time point 0, but not at time point 50).

Definition 3. A temporal (multi-)preferential interpretation (or 𝐿𝑇𝐿T interpretation) is a triple ℐ =
⟨𝒲, {<𝑛

𝐴𝑖
}𝑛∈N, 𝑣⟩ where:

• 𝒲 is a non-empty set of worlds;
• for each 𝐴𝑖 and 𝑛 ∈ N, <𝑛

𝐴𝑖
⊆ 𝒲 ×𝒲 is an irreflexive and transitive relation on 𝒲 ;

• 𝑣 : N×𝒲 −→ 2Prop is a valuation function assigning, at each time point 𝑛, a set of propositional
variables in Prop to each world 𝑤 ∈ 𝒲 .

For 𝑤 ∈ 𝒲 and 𝑛 ∈ N, 𝑣(𝑛,𝑤) is the set of the propositional variables which are true in world 𝑤 at

time point 𝑛. If there is no 𝑤′ ∈ 𝒲 s.t. 𝑤′ <𝑛
𝐴 𝑤, we say that 𝑤 is a normal situation for 𝐴 at time point

𝑛.

Given an 𝐿𝑇𝐿T
interpretation ℐ = ⟨𝒲, {<𝑛

𝐴𝑖
}𝑛∈N, 𝑣⟩, we define inductively the truth value of a

formula 𝐴 in a world 𝑤 at time point 𝑛 (written ℐ, 𝑛, 𝑤 |= 𝐴), as follows:



ℐ, 𝑛, 𝑤 |= ⊤ ℐ, 𝑛, 𝑤 ̸|= ⊥
ℐ, 𝑛, 𝑤 |= 𝑝 iff 𝑝 ∈ 𝑣(𝑛,𝑤), for all 𝑝 ∈ Prop

ℐ, 𝑛, 𝑤 |= 𝐴 ∧𝐵 iff ℐ, 𝑛, 𝑤 |= 𝐴 and ℐ, 𝑛, 𝑤 |= 𝐵

ℐ, 𝑛, 𝑤 |= 𝐴 ∨𝐵 iff ℐ, 𝑛, 𝑤 |= 𝐴 or ℐ, 𝑛, 𝑤 |= 𝐵

ℐ, 𝑛, 𝑤 |= ¬𝐴 iff ℐ, 𝑛, 𝑤 ̸|= 𝐴

ℐ, 𝑛, 𝑤 |= 𝐴 → 𝐵 iff ℐ, 𝑛, 𝑤 |= 𝐴 implies ℐ, 𝑛, 𝑤 |= 𝐵

ℐ, 𝑛, 𝑤 |= 𝑋𝐴 iff ℐ, 𝑛+ 1, 𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= ◇𝐴 iff there is an 𝑚 ≥ 𝑛 such that ℐ,𝑚,𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= □𝐴 iff for all 𝑚 ≥ 𝑛, ℐ,𝑚,𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= 𝐴𝒰𝐵 iff there is an 𝑚 ≥ 𝑛 such that ℐ,𝑚,𝑤 |= 𝐵 and,

for all 𝑘 such that 𝑛 ≤ 𝑘 < 𝑚, ℐ, 𝑘, 𝑤 |= 𝐴

ℐ, 𝑛, 𝑤 |= T(𝐴𝑖) iff ℐ, 𝑛, 𝑤 |= 𝐴𝑖 and ∄w ′ ∈ 𝒲 s.t. w ′ <n
Ai

w and ℐ, 𝑛, 𝑤′ |= 𝐴𝑖.

Note that whether a world 𝑤 represents a typical situation for 𝐴𝑖 at a time point 𝑛 depends on the

preference between worlds at time point 𝑛.

A temporal conditional KB is a set of 𝐿𝑇𝐿T
formulas. We evaluate the satisfiability of a temporal

graded formula at the initial time point 0 of a temporal preferential interpretation ℐ .

Definition 4. An 𝐿𝑇𝐿T formula 𝛼 is satisfied in a temporal preferential interpretation ℐ = ⟨𝒲, {<𝑛
𝐴𝑖

}𝑛∈N, 𝑣⟩ if ℐ, 0, 𝑤 |= 𝛼, for some world 𝑤 ∈ 𝒲 . An 𝐿𝑇𝐿T formula 𝛼 is valid in a temporal preferential

interpretation ℐ = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, 𝑣⟩ if ℐ, 0, 𝑤 |= 𝛼, for all worlds 𝑤 ∈ 𝒲 . An 𝐿𝑇𝐿T formula 𝛼 is

valid, if 𝛼 is valid in all temporal preferential interpretations ℐ . An 𝐿𝑇𝐿T formula 𝛼 is satisfiable, if 𝛼 is
satisfied in some temporal preferential interpretation ℐ .

It can be shown that the problem of deciding the satisfiability of an 𝐿𝑇𝐿T
formula 𝛼 can be

polynomially reduced to the problem of deciding the satisfiability of a concept 𝐶𝛼 in the description

logic 𝐿𝑇𝐿T
𝒜ℒ𝒞 introduced in [28], which extends the temporal description logic 𝐿𝑇𝐿𝒜ℒ𝒞 [27] with

the typicality operator. 𝐿𝑇𝐿T
𝒜ℒ𝒞 has been proven to be decidable when a finite set of well-founded

preference relations<𝐴1 , . . . , <𝐴𝑚 is considered, and concept inclusions are regarded as global temporal

constraints. In turn, the decidability of concept satisfiability in 𝐿𝑇𝐿T
𝒜ℒ𝒞 relies on the result that concept

satisfiability for LTL𝒜ℒ𝒞 w.r.t. TBoxes is in ExpTime (and, actually, it is ExpTime-complete), both with

expanding domains [43] and with constant domains [27].

5. Towards a temporal conditional logic for gradual argumentation

As for the non-temporal case, we aim at instantiating the two-valued temporal conditional logic

introduced in the previous section to the gradual argumentation setting, to make it suitable for capturing

the dynamics of strength functions in time.

In Amgoud and Doder’s framework of gradual semantics [8], it is proven that a uniform iterative way

of calculating strengths of arguments can be applied to any semantics based on well-defined evaluation

methods, for which convergence is guaranteed.

In the following, we consider an iterative formulation of the 𝜙-coherent semantics, and describe a

possible construction of a temporal interpretation for it. In particular, starting from an initial score 𝜎0,

one can iteratively define a sequence of labellings 𝜎0, 𝜎1, 𝜎2, ..., as follows:

𝜎𝑛(𝐴𝑖) =

{︂
𝜎0(𝐴𝑖) if R−(Ai) = ∅
𝜙(𝑊𝐺

𝜎𝑛−1
(𝐴𝑖)) if R−(Ai) ̸= ∅ (4)

In the general case, for the 𝜙-coherent semantics one cannot guarantee that the sequence 𝜎0, 𝜎1, 𝜎2, ...,

starting from an initial score 𝜎0, converges to some 𝜙-coherent labelling, unless the argumentation



graph 𝐺 is acyclic. Convergence conditions for edge-weighted QBAFs have been studied by Potyka,

both in the discrete and in the continuous case [11].

Although the sequence of labellings 𝜎0, 𝜎1, 𝜎2, ..., may not converge, one may be interested in

verifying temporal properties over the sequence of labellings (or a finite stretch of it). More generally,

one may be interested in considering a finite set Σ0 of possible initial score functions {𝜎1
0, 𝜎

2
0, . . . , 𝜎

𝑘
0}.

The associated sequences 𝜎𝑗
0, 𝜎𝑗

1, 𝜎𝑗
2, ..., one for each initial score function 𝜎𝑗

0, determine a set of runs,

from which a temporal preferential interpretation ℐ𝐺
of the argumentation graph 𝐺 can be constructed.

In the sequence of labellings 𝜎𝑗
0, 𝜎𝑗

1, 𝜎𝑗
2, ... obtained from each initial score function 𝜎𝑗

0 ∈ Σ0, the

labelling 𝜎𝑗
𝑛 is the one obtained from 𝜎𝑗

0 at iteration 𝑛.

Let the set of arguments 𝒜 be the set of propositional variables of the temporal conditional logic. We

can build a temporal preferential interpretation ℐ𝐺 = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, 𝑣⟩ of an argumentation graph 𝐺,

from a set of initial score functions Σ0, by introducing a world 𝑤𝑗 ∈ 𝒲 for each initial score function

𝜎𝑗
0 in Σ0. The valuation of propositions 𝐴𝑖 in a world 𝑤𝑗

at time point 𝑛, will be determined by the

strength 𝜎𝑗
𝑛(𝐴𝑖) of the argument 𝐴𝑖 in the labelling 𝜎𝑗

𝑛.

More precisely we define a temporal preferential interpretation ℐ𝐺 = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, 𝑣⟩ of an

argumentation graph 𝐺, with respect to Σ0, by letting:

- 𝒲 = {𝑤𝑗 | 𝜎𝑗
0 ∈ Σ0}

- for all the arguments 𝐴𝑖 ∈ 𝒜, and a threshold value 𝑡 ∈ 𝒟:

𝐴𝑖 ∈ 𝑣(𝑛,𝑤𝑗) iff 𝜎𝑗
𝑛(𝐴𝑖) > 𝑡;

- for all the arguments 𝐴𝑖 ∈ 𝒜, and worlds 𝑤ℎ, 𝑤𝑗 ∈ 𝒲 :

𝑤𝑗 <𝑛
𝐴𝑖

𝑤ℎ
iff 𝜎𝑗

𝑛(𝐴𝑖) > 𝜎ℎ
𝑛(𝐴𝑖).

Note that a temporal many-valued interpretation ℐ𝐺 = ⟨𝒲, {<𝑛
𝐴𝑖
}𝑛∈N, 𝑣⟩ can be seen as a sequence

of (non-temporal) preferential interpretations ℳ0,ℳ1,ℳ2, . . ., where each ℳ𝑛 = ⟨𝒲, {<𝑛
𝐴𝑖
}, 𝑣𝑛⟩

is constructed from all the labelling Σ𝑛 of the argumentation graph 𝐺 at the iteration 𝑛 (one for each

initial score function in Σ0), as for ℳ𝐺
above.

Once a temporal preferential interpretation ℐ𝐺
has been constructed, the validity of temporal

conditional formulas over arguments, such as □(T(A1 ) → 𝐴2𝒰A3 ∨ 𝐴3), can be verified over the

constructed preferential interpretation ℐ𝐺
. In the loan example, for instance, one may want to check

whether normally, young people leaving in town are eventually granted a loan, i.e., T(living_in_town∧
young) → ◇granted_loan .

For boolean combinations of arguments in typicality formulas, the non-temporal solution from

Section 3.1 extends naturally to the temporal case. Moreover, the approach described here is not limited

to the 𝜙-coherent semantics, but can also be adapted to other gradual argumentation semantics with

iterative formulations, such as those in [8, 11].

6. Conclusions

In [44], we introduced a many-valued temporal logic with typicality by extending the many-valued

conditional logic of [1] with 𝐿𝑇𝐿 operators. In this paper, we instead develop a two-valued conditional

logic with typicality for gradual argumentation, extending it to the temporal case with standard 𝐿𝑇𝐿
modalities. Compared to the many-valued setting, this framework is conceptually simpler yet still

supports expressive reasoning over argumentation graphs. In the non-temporal setting, this approach

enables verification of properties of argumentation graphs under different gradual semantics [2]. For

the many-valued 𝜙-coherent semantics [32, 13], we have also provided ASP encodings to check graded

conditional implications over atomic and boolean argument combinations. Extending these ASP-based

techniques to the two-valued temporal case is a natural direction for future work. The temporal



extension introduced here enables reasoning about transient properties in the evolution of argument

strength, for instance over sequences of labellings from iterative updates. Such reasoning supports

model checking or entailment verification of dynamic behaviors, and may aid explainable AI where

argumentation evolves over time.

A particularly promising application lies in the analysis of neural networks. Indeed, a multilayer

neural network can be interpreted as a weighted knowledge base [9, 10] or as a weighted argumentation

graph [12, 11], given the strong semantic relationships also explored in [13]. In the many-valued setting,

conditional weighted KBs have already been shown to capture the stationary states of such networks (or

suitable approximations thereof) [35, 10, 13], supporting post-hoc symbolic reasoning and verification.

The addition of a temporal dimension, as proposed here, opens the way to verifying properties of

dynamic behavior — such as how activations evolve, how information propagates, or how explanatory

patterns shift over time. From a logical perspective, our approach offers an alternative to other defeasible

temporal logics that enrich temporal operators directly, such as those studied in [25, 45]. While those

frameworks include tableaux methods and address decidability of fragments with defeasible temporal

connectives [24], our logic maintains standard 𝐿𝑇𝐿 operators and encodes defeasibility entirely through

temporal evolution of preferential structures (namely, by allowing preference relations among worlds

to change over time). This yields a clean separation between temporal and nonmonotonic aspects,

which may facilitate integration with other symbolic reasoning tools. Finally, our work contributes to

neuro-symbolic integration [46, 47, 48] by providing a principled framework that links typicality-based

conditional logic with neural models in a temporally dynamic and semantically transparent way.

Directions for further research include: developing ASP encodings for the temporal logic proposed

here; studying the decidability and complexity of fragments of the logic; investigating convergence

and stability in iterative dynamics; applying the framework to explainability of evolving argumentation
graphs and time-dependent neural-symbolic systems.
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