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Abstract
The recently proposed ASPIC𝑅, standing for ASPIC+ revisited is an evolution of the prominent ASPIC+ formalism
for structured argumentation, which overcomes some limitations of ASPIC+ by resorting in particular to an
alternative notion of attack referring to sets of arguments. While this notion of attack is a key element for
achieving the technical advantages offered by ASPIC𝑅, it also gives rise to some peculiar situations, where some
attacks are, in a sense, polymorphic since there are multiple reasons by which a given set of arguments can
attack an argument. After pointing out that polymorphic attacks are also possible in ASPIC+, we provide some
examples of polymorphic attacks in ASPIC+ and ASPIC𝑅, discuss the underlying technical and conceptual issues
and provide a preliminary discussion about how to revise the formalisms in order to encompass alternative
options for their management.
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1. Introduction

ASPIC+ [1] is a prominent rule-based formalism for structured argumentation, featuring remarkable
expressiveness properties, like a generic contrariness relation, the ability to encompass the existence of
a preference relation between arguments, and the classification of attacks in three types (undercutting,
rebutting, and undermining) in turn distinguished (with the exception of undercutting) into preference-
dependent and preference-independent. In virtue of its expressiveness and generality, ASPIC+ is able to
encompass other structured argumentation formalisms (e.g. Assumption-Based Argumentation [2] or
logic-based argumentation [3]) as special cases and has been the subject of a large corpus of studies,
including the investigation of several variants (see, e.g., [4, 5, 6]).

In recent years, however, it has also been pointed out that ASPIC+ suffers from some specific technical
problems concerning, in particular, the behavior in the presence of multiple contradictories [7, 8] and
the occurrence of spurious preferences [9]. ASPIC+ revisited (ASPIC𝑅 for short), introduced in [8],
overcomes these limitations by resorting to alternative technical solutions which, while not affecting
(and indeed enhancing) the expressiveness of the formalism, involve a substantially different way of
identifying and representing the conflicts among arguments and then of constructing the argumentation
framework [10] which is the basis for the evaluation of their acceptability. In particular, ASPIC𝑅 resorts
to a notion of attack referring to sets of arguments. Leaving aside many technical aspects, to be recalled
later, the core idea is that a set of arguments 𝑆 attacks an argument 𝛼 when there is a reason to exclude
that all arguments in 𝑆 and the argument 𝛼 can be accepted at the same time.

While this idea is a key factor in enabling the advantageous technical properties of ASPIC𝑅, it also
makes some peculiar situations possible. In particular, there may be multiple reasons for the same set 𝑆
to attack an argument 𝛼, and each different reason corresponds to a different type of attack. In such a
case, we say that the attack from 𝑆 to 𝛼 is polymorphic, since it potentially can be ascribed to multiple
classes. We point out, however, that, though this has never been evidenced before in the literature,
polymorphic attacks may also occur in the context of ASPIC+.
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This peculiar feature has not been evidenced in previous works on ASPIC+ and ASPIC𝑅 and, while
not affecting, as we will discuss, the technical correctness of the formalisms, poses both technical
and conceptual questions and opens, in particular, the way to the study of alternative options in the
definition of attacks in ASPIC𝑅. The present work aims at providing the basis for this investigation
line by carrying out a first analysis of the phenomenon of polymorphic attacks and discussing their
conceptual and technical status in perspective. The paper is organised as follows. Section 2 recalls the
necessary background notions on argumentation frameworks and ASPIC+, while Section 3 reviews
ASPIC𝑅. Sections 4 and 5 discuss polymorphic attacks in ASPIC+ and ASPIC𝑅 respectively. Section 6
provides some perspectives on their treatment, and Section 7 concludes the paper.

2. Background: Dung’s argumentation frameworks and ASPIC+

We briefly review Dung’s theory of argumentation frameworks.

Definition 1. An argumentation framework (AF) is a pair ℱ = ⟨A,↠⟩, where A is a set of arguments
and↠⊆ (A×A) is a binary relation on A.

When (𝛼, 𝛽) ∈↠ (also denoted as 𝛼 ↠ 𝛽) we say that 𝛼 attacks 𝛽. For a set 𝑋 ⊆ A and an
argument 𝛼 ∈ A we write 𝛼 ↠ 𝑋 if ∃𝛽 ∈ 𝑋 : 𝛼 ↠ 𝛽 and 𝑋 ↠ 𝛼 if ∃𝛽 ∈ 𝑋 : 𝛽 ↠ 𝛼, and we
denote the arguments attacking 𝑋 as 𝑋− ≜ {𝛼 ∈ A | 𝛼↠ 𝑋} and the arguments attacked by 𝑋 as
𝑋+ ≜ {𝛼 ∈ A | 𝑋 ↠ 𝛼}. An extension-based argumentation semantics 𝜎 specifies the criteria for
identifying, for a generic AF, a set of extensions, where each extension is a set of arguments considered
to be acceptable together. Given a generic argumentation semantics 𝜎, the set of extensions prescribed
by 𝜎 for a given AF ℱ is denoted as ℰ𝜎(ℱ). Several argumentation semantics are recalled in Definition
2, along with some basic underlying notions. For more details, the reader is referred to [11].

Definition 2. Let ℱ = ⟨A,↠⟩ be an AF,𝛼 ∈ A and𝑋 ⊆ A. 𝑋 is conflict-free, denoted as𝑋 ∈ ℰCF(ℱ),
iff 𝑋 ∩𝑋− = ∅. 𝛼 is acceptable with respect to 𝑋 (or 𝛼 is defended by 𝑋) iff {𝛼}− ⊆ 𝑋+. The function
𝐹ℱ : 2A → 2A which, given a set 𝑋 ⊆ A, returns the set of the acceptable arguments with respect to 𝑋 , is
called the characteristic function of ℱ . 𝑋 is admissible (denoted as 𝑋 ∈ ℰAD(ℱ)) iff 𝑋 ∈ ℰCF(ℱ) and
𝑋 ⊆ 𝐹ℱ (𝑋). 𝑋 is a complete extension (denoted as 𝑋 ∈ ℰCO(ℱ)) iff 𝑋 ∈ ℰCF(ℱ) and 𝑋 = 𝐹ℱ (𝑋).
𝑋 is the grounded extension (denoted as𝑋 = GR(ℱ) or𝑋 ∈ ℰGR(ℱ)) iff𝑋 is the least fixed point of 𝐹ℱ
(equivalently, the least complete extension). 𝑋 is a preferred extension (denoted as 𝑋 ∈ ℰPR(ℱ)) iff 𝑋 is
a maximal (with respect to set inclusion) admissible set. 𝑋 is a stable extension (denoted as 𝑋 ∈ ℰST(ℱ))
iff 𝑋+ = A ∖𝑋 . 𝑋 is a semi-stable extension (denoted as 𝑋 ∈ ℰSST(ℱ)) iff it is a complete extension
such that 𝑋 ∪𝑋+ is maximal (wrt ⊆) among all complete extensions.

Argument justification status is defined on the basis of extension membership.

Definition 3. Given a set 𝑆 a justification labeling of 𝑆 is a function 𝐽 : 𝑆 → Σ𝐽 , where Σ𝐽 =
{𝑆𝑘,𝐶𝑟,𝑁𝑜}. Given an AF ℱ = ⟨A,↠⟩ and a semantics 𝜎, the justification labeling of A according
to 𝜎 is defined as follows1: 𝐽(𝛼) = 𝑆𝑘 iff 𝛼 ∈

⋂︀
E∈ℰ𝜎(ℱ) E; 𝐽(𝛼) = 𝐶𝑟 iff 𝛼 ∈

⋃︀
E∈ℰ𝜎(ℱ) E and

𝛼 /∈
⋂︀

E∈ℰ𝜎(ℱ) E; 𝐽(𝛼) = 𝑁𝑜 iff 𝛼 /∈
⋃︀

E∈ℰ𝜎(ℱ) E.

In words, we will say respectively that 𝛼 is skeptically justified, credulously justified, and not justified.
We now recall the essential notions of the ASPIC+ formalism.

Definition 4. An argumentation system is a tuple 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛) where:

1. ℒ is a logical language

1We avoid reference to ℱ and 𝜎 in 𝐽 for ease of notation. Moreover, with respect to the traditional notion of justification we
keep skeptical and credulous justification disjoint for reasons which will be clear later.



2. ¯ is a contrariness function from ℒ to 2ℒ such that: (i) 𝜙 is a contrary of 𝜓 if 𝜙 ∈ 𝜓, 𝜓 /∈ 𝜙; (ii) 𝜙
is a contradictory of 𝜓 (denoted by 𝜙 = −𝜓) if 𝜙 ∈ 𝜓, 𝜓 ∈ 𝜙; (iii) each 𝜙 ∈ ℒ has at least one
contradictory

3. ℛ = (ℛ𝑆 ,ℛ𝐷) is a pair of sets of strict (ℛ𝑆) and defeasible (ℛ𝐷) inference rules of the form
𝜙1, . . . , 𝜙𝑛 → 𝜙 and 𝜙1, . . . , 𝜙𝑛 ⇒ 𝜙 respectively (where 𝜙𝑖, 𝜙 are meta-variables ranging over
wff in ℒ), and ℛ𝑆 ∩ℛ𝐷 = ∅

4. 𝑛 : ℛ𝐷 → ℒ is a naming convention for ℛ𝐷 .

In the following, given a set 𝑆 ⊆ ℒ with a little abuse of notation, we will denote the set of its
contraries and contradictories as 𝑆 =

⋃︀
𝜙∈𝑆{𝜓 | 𝜓 ∈ 𝜙}. Given a rule 𝑟 = 𝜙1, . . . , 𝜙𝑛 → (⇒)𝜙, we

will say that 𝜙 is the consequent of the rule, denoted as cons(𝑟) and that {𝜙1, . . . , 𝜙𝑛} is the set of the
antecedents of the rule denoted as ant(𝑟).

Closure under transposition of strict rules is a desirable property as it ensures (together with other
conditions) that an argumentation system satisfies some rationality postulates [12] (we do not recall all
the relevant details as not necessary for this paper, see Definition 12 of [1]).

Definition 5. Given 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛), the set of strict rules ℛ𝑆 is closed under transposition iff if
𝜙1, . . . , 𝜙𝑛 → 𝜓 ∈ ℛ𝑆 then, for 𝑖 = 1 . . . 𝑛, 𝜙1, . . . , 𝜙𝑖−1,−𝜓,𝜙𝑖+1, . . . , 𝜙𝑛 → −𝜙𝑖 ∈ ℛ𝑆 . Given a
set of strict rules ℛ𝑆 , its closure under transposition is defined as 𝐶𝑙𝑡𝑟(ℛ𝑆) ≜ ℛ𝑆 ∪

⋃︀
𝑟∈ℛ𝑆

𝑡𝑟(𝑟), where
for any 𝑟 = 𝜙1, . . . , 𝜙𝑛 → 𝜓, 𝑡𝑟(𝑟) =

⋃︀
𝑖=1...𝑛{𝜙1, . . . , 𝜙𝑖−1,−𝜓,𝜙𝑖+1, . . . , 𝜙𝑛 → −𝜙𝑖}.

A knowledge base is a subset of ℒ including certain (called axioms) and defeasible (called ordinary)
premises. It gives rise to the notion of argumentation theory. Arguments are built from a knowledge
base using rules.

Definition 6. A knowledge base in 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛) is a set 𝒦 ⊆ ℒ consisting of two disjoint subsets
𝒦𝑛 (the axioms) and 𝒦𝑝 (the ordinary premises). The tuple 𝐴𝑇 = (𝐴𝑆,𝒦) is called an argumentation
theory.

Definition 7. An argument 𝛼 on the basis of a knowledge base 𝒦 in 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛) is:

1. 𝜙 if 𝜙 ∈ 𝒦 with: Prem(𝛼) = {𝜙}; Conc(𝛼) = 𝜙; Sub(𝛼) = {𝜙}; Rules(𝛼) = ∅; Top(𝛼) =
undefined.

2. 𝛼1, . . . , 𝛼𝑛 → (⇒) 𝜓 if 𝛼1, . . . , 𝛼𝑛 are arguments such that there exists a strict (defeasible) rule
Conc(𝛼1), . . . ,Conc(𝛼𝑛) → (⇒) 𝜓 in ℛ𝑆 (ℛ𝐷) with: Prem(𝛼) = Prem(𝛼1)∪ . . .∪Prem(𝛼𝑛);
Conc(𝛼) = 𝜓; Sub(𝛼) = Sub(𝛼1) ∪ . . . ∪ Sub(𝛼𝑛) ∪ {𝛼}; Rules(𝛼) = Rules(𝛼1) ∪ . . . ∪
Rules(𝛼𝑛) ∪ {Conc(𝛼1), . . . ,Conc(𝛼𝑛) → (⇒) 𝜓}; Top(𝛼) = Conc(𝛼1), . . . ,Conc(𝛼𝑛) →
(⇒) 𝜓; DefRules(𝛼) = {𝑟 | 𝑟 ∈ Rules(𝛼) ∩ℛ𝐷}; StRules(𝛼) = {𝑟 | 𝑟 ∈ Rules(𝛼) ∩ℛ𝑆}.

For any argument 𝛼, Prem𝑛(𝛼) = Prem(𝛼) ∩ 𝒦𝑛; Prem𝑝(𝛼) = Prem(𝛼) ∩ 𝒦𝑝. 𝛼 is: strict if
DefRules(𝛼) = ∅, defeasible if DefRules(𝛼) ̸= ∅; firm if Prem(𝛼) ⊆ 𝒦𝑛; plausible if Prem(𝛼) ⊈ 𝒦𝑛;
finite if Rules(𝛼) is finite.

Notation 1. Some further notations are useful. Given 𝑆 ⊆ ℒ, 𝑆 ⊢ 𝜙 denotes that there exists a strict
argument 𝛼 such that Conc(𝛼) = 𝜙, with Prem(𝛼) ⊆ 𝑆. 𝑆 ⊢𝑚𝑖𝑛 𝜙 denotes that 𝑆 ⊢ 𝜙 and ∄𝑇 ⊊ 𝑆 :
𝑇 ⊢ 𝜙. Given a set of arguments 𝑋 , Prem(𝑋) ≜

⋃︀
𝛼∈𝑋 Prem(𝛼), and similarly for Conc(𝑋), Sub(𝑋),

Rules(𝑋), Top(𝑋), DefRules(𝑋), StRules(𝑋).

Three kinds of attack between arguments are considered.

Definition 8. An argument 𝛼 attacks an argument 𝛽 iff 𝛼 undercuts, rebuts, or undermines 𝛽 where:
𝛼 undercuts 𝛽 (on 𝛽′) iff Conc(𝛼) ∈ 𝑛(𝑟) for some 𝛽′ ∈ Sub(𝛽) such that 𝑟 = Top(𝛽′) is defeasible.
𝛼 rebuts 𝛽 (on 𝛽′) iff Conc(𝛼) ∈ 𝜙 for some 𝛽′ ∈ Sub(𝛽) of the form 𝛽′′1 , . . . , 𝛽

′′
𝑛 ⇒ 𝜙. In such a case

𝛼 contrary-rebuts 𝛽 iff Conc(𝛼) is a contrary of 𝜙. 𝛼 undermines 𝛽 (on 𝛽′) iff Conc(𝛼) ∈ 𝜙 for some
𝛽′ = 𝜙, 𝜙 ∈ Prem𝑝(𝛽). In such a case 𝛼 contrary-undermines 𝛽 iff Conc(𝛼) is a contrary of 𝜙.



In some cases, attack effectiveness depends on a preference ordering ⪯ over arguments (assumed to
be a preorder as in [13]). As usual 𝛼 ≺ 𝛽 iff 𝛼 ⪯ 𝛽 and 𝛽 ⪯̸ 𝛼; 𝛼 ≃ 𝛽 iff 𝛼 ⪯ 𝛽 and 𝛽 ⪯ 𝛼. Effective
attacks give rise to defeat.

Definition 9. Let 𝛼 attack 𝛽 on 𝛽′. If 𝛼 undercuts, contrary-rebuts, or contrary-undermines 𝛽 on 𝛽′, then
𝛼 preference-independent attacks 𝛽 on 𝛽′, otherwise 𝛼 preference-dependent attacks 𝛽 on 𝛽′. Then, 𝛼
defeats 𝛽 iff for some 𝛽′ either 𝛼 preference-independent attacks 𝛽 on 𝛽′ or 𝛼 preference-dependent
attacks 𝛽 on 𝛽′ and 𝛼 ⊀ 𝛽′.

Then a structured argumentation framework (𝑆𝐴𝐹 ) can be defined from an argumentation theory,2
using the attack relation. Using the defeat relation, an AF is then derived from a 𝑆𝐴𝐹 .

Definition 10. Let𝐴𝑇 = (𝐴𝑆,𝒦) be an argumentation theory. A structured argumentation framework
(𝑆𝐴𝐹 ), defined by 𝐴𝑇 is a triple (S,C,⪯) where S is the set of all finite arguments constructed from 𝒦 in
𝐴𝑆 (called the set of arguments on the basis of 𝐴𝑇 ), C ⊆ S× S is such that (𝛼, 𝛽) ∈ C iff 𝛼 attacks 𝛽,
and ⪯ is an ordering on S.

Definition 11. Let Δ = (S,C,⪯) be a 𝑆𝐴𝐹 , and D ⊆ S × S be the defeat relation according to
Definition 9. The 𝐴𝐹 corresponding to Δ is defined as ℱΔ = (S,D).

Given an argumentation semantics 𝜎, the justification status of arguments in S according to 𝜎 is
determined by the set of extensions ℰ𝜎(ℱΔ) according to Definition 3.

3. ASPIC+ revisited

In this section, we present ASPIC+ revisited (in the following ASPIC𝑅), introduced in [8].
The main differences of ASPIC𝑅 with respect to ASPIC+ can be summarized in two points:

• an original form of closure, not involving any structural constraint on the set of rules, but rather
resorting to a sort of extension of the contrariness function based on the strict rules;

• an alternative notion of attack referring to sets of arguments, which leads to the construction of
a substantially different argumentation framework.

In addition, ASPIC𝑅 relaxes some requirements and adjusts some hypotheses, as illustrated step by
step in the following.

As to Definition 4, ASPIC𝑅 adopts the same basic elements of ASPIC+ but does not require that every
element of the language has a contradictory, while adding the constraint that the name of a rule cannot
be the contrary of anything, i.e. for every rule 𝑟 ∄𝜙 ∈ ℒ such that 𝑛(𝑟) ∈ 𝜙. Similarly, the names of
the rules cannot be included in the antecedent of a rule or in the knowledge base3.

Thus, in Definition 4 items 1 and 4 are unmodified, while item 2 is reduced to: ¯ is a function from
ℒ to 2ℒ∖ℛ𝒩 where ℛ𝒩 = {𝑛(𝑟) | 𝑟 ∈ ℛ𝐷}, and in item 3 𝜙𝑖 are meta-variables ranging over wff in
ℒ ∖ ℛ𝒩 while 𝜙 is a meta-variable ranging over wff in ℒ.

In Definition 6 it is prescribed 𝒦 ⊆ ℒ ∖ ℛ𝒩 while Definition 7 and Notation 1 are left unmodified.
Among the properties considered in Definition 12 of [1], ASPIC𝑅 keeps only the property that axioms

are consistent with respect to strict rules and a relaxed notion of well-formedness, which involves
axioms and their strict consequences rather than all the consequents of strict rules. More precisely, the
property of weak well-formedness is defined as follows.

Definition 12. Let 𝐴𝑇 = (𝐴𝑆,𝒦) be an argumentation theory, where 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛). 𝐴𝑇 is weakly
well-formed if whenever 𝜙 ∈ 𝜓 and 𝜓 ∈ 𝒦𝑛 or 𝜓 can be obtained from 𝒦𝑛 by applying strict rules, it also
holds that 𝜓 ∈ 𝜙.
2We do not consider here the alternative notion of c-structured argumentation framework in [1].
3The constraints on the rule names prevent that some peculiar formal situations, void of practical meaning, may occur, as
evidenced in [8]. Similar requirements, though in a slightly different form, have been adopted in [14].



One of the main standpoints of ASPIC𝑅 is avoiding the requirement that strict rules are closed under
transposition. Rather, the satisfaction of the rationality postulates is ensured (as shown in [8]) by
exploiting an extended contrariness relation at the level of sets of language elements whose definition is
based on a general notion of strict derivability from language elements, independently of the presence
of these elements in the knowledge base.

Definition 13. Given an argumentation system 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛) the strict knowledge base 𝒦*
𝐴𝑆 for

𝐴𝑆 is given by 𝒦𝑛 = ℒ, 𝒦𝑝 = ∅ and the corresponding argumentation theory is defined as 𝐴𝑇 *
𝐴𝑆 =

(𝐴𝑆,𝒦*
𝐴𝑆). 𝑆 ⊢* 𝜙 and 𝑆 ⊢*

𝑚𝑖𝑛 𝜙 denote respectively that 𝑆 ⊢ 𝜙 and 𝑆 ⊢𝑚𝑖𝑛 𝜙 in 𝐴𝑇 *
𝐴𝑆 .

The extended contrariness relation EC(𝐴𝑆) refers to sets of language elements and is obtained by
applying a sort of closure with respect to strict derivability, together with a requirement of minimality.

Definition 14. Given an argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦) with 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛), let EC*(𝐴𝑆) ⊆
2ℒ×2ℒ be defined as EC*(𝐴𝑆) = {(𝑆, 𝑇 ) | 𝑆 ⊢* 𝜙, 𝑇 ⊢* 𝜓 and 𝜙 ∈ 𝜓}. Letting for 𝑆 ⊆ ℒ, ̂︀𝑆 = 𝑆∖𝒦𝑛,
the extended contrariness relation is defined as EC(𝐴𝑆) = {(̂︀𝑆, ̂︀𝑇 ) | (𝑆, 𝑇 ) ∈ EC*(𝐴𝑆) and ∀(𝑆′, 𝑇 ′) ∈
EC*(𝐴𝑆) s.t. ̂︀𝑆′ ⊆ ̂︀𝑆 and ̂︀𝑇 ′ ⊆ ̂︀𝑇 , ̂︀𝑆′ = ̂︀𝑆 and ̂︀𝑇 ′ = ̂︀𝑇} ⊆ 2ℒ × 2ℒ. 𝑈 is a contrary of 𝑉 if (𝑈, 𝑉 ) ∈
EC(𝐴𝑆) and (𝑉,𝑈) /∈ EC(𝐴𝑆); 𝑈 is a contradictory of 𝑉 if (𝑈, 𝑉 ) ∈ EC(𝐴𝑆) and (𝑉,𝑈) ∈ EC(𝐴𝑆).

In words, EC*(𝐴𝑆) corresponds to the completion of the contrariness relation¯on the basis of the
set of strict rules, i.e. a set 𝑆 is regarded as ‘being against’ a set 𝑇 if a strict consequence of 𝑆 ‘is against’
a strict consequence of 𝑇 . Then for each pair (𝑆, 𝑇 ) ∈ EC*(𝐴𝑆) the corresponding pair (̂︀𝑆, ̂︀𝑇 ) where
axioms are excluded is considered. Among these pairs, only those which respect a minimality condition,
and hence are not redundant, belong to EC(𝐴𝑆).

Definition 14 can be equivalently expressed in the form encompassed by the following more con-
structive definition.

Definition 15. Given an argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦) with 𝐴𝑆 = (ℒ, ,̄ℛ, 𝑛), let EC1(𝐴𝑆),
EC2(𝐴𝑆), EC3(𝐴𝑆) be the following subsets of 2ℒ × 2ℒ

• EC1(𝐴𝑆) = {({𝜙}, {𝜓}) | 𝜙 ∈ 𝜓};
• EC2(𝐴𝑆) = {(𝑆, {𝜓}) | 𝑆 ⊢*

𝑚𝑖𝑛 𝜙 and 𝜙 ∈ 𝜓};
• EC3(𝐴𝑆) = {(𝑆, 𝑇 ) | 𝑇 ⊢*

𝑚𝑖𝑛 𝜓 and (𝑆, {𝜓}) ∈ EC1(𝐴𝑆) ∪ EC2(𝐴𝑆)}.

Letting EC*𝑚(𝐴𝑆) = EC1(𝐴𝑆) ∪ EC2(𝐴𝑆) ∪ EC3(𝐴𝑆), and, for 𝑆 ⊆ ℒ, ̂︀𝑆 = 𝑆 ∖ 𝒦𝑛, the ex-
tended contrariness relation is defined as EC𝑚(𝐴𝑆) = {(̂︀𝑆, ̂︀𝑇 ) | (𝑆, 𝑇 ) ∈ EC*𝑚(𝐴𝑆) and ∀(𝑆′, 𝑇 ′) ∈
EC*𝑚(𝐴𝑆) s.t. ̂︀𝑆′ ⊆ ̂︀𝑆 and ̂︀𝑇 ′ ⊆ ̂︀𝑇 , ̂︀𝑆′ = ̂︀𝑆 and ̂︀𝑇 ′ = ̂︀𝑇} ⊆ 2ℒ × 2ℒ. 𝑈 is a contrary of 𝑉 if
(𝑈, 𝑉 ) ∈ EC𝑚(𝐴𝑆) and (𝑉,𝑈) /∈ EC𝑚(𝐴𝑆); 𝑈 is a contradictory of 𝑉 if (𝑈, 𝑉 ) ∈ EC𝑚(𝐴𝑆) and
(𝑉,𝑈) ∈ EC𝑚(𝐴𝑆).

Let us comment on the above definition. First, EC*𝑚(𝐴𝑆) is defined in a constructive incremental
way starting from EC1(𝐴𝑆) which mirrors, at level of singletons, the contrariness relation .̄ Then
EC2(𝐴𝑆) is defined taking into account EC1(𝐴𝑆), i.e. the contrariness relation ,̄ and the strict rules:
basically a set 𝑆 is put in relation to {𝜓}, i.e. is regarded as being against {𝜓}, if it is possible to
strictly derive a contradiction to 𝜓 from 𝑆. Finally EC3(𝐴𝑆) is defined taking into account EC1(𝐴𝑆)
and EC2(𝐴𝑆): a set 𝑆 is put in relation to 𝑇 , i.e. is regarded as being against 𝑇 , if 𝑆 is against some
{𝜓} according to EC1(𝐴𝑆) or EC2(𝐴𝑆) and 𝜓 strictly follows from 𝑇 . Then, as in Definition 14, for
each pair (𝑆, 𝑇 ) ∈ EC*𝑚(𝐴𝑆) the corresponding pair (̂︀𝑆, ̂︀𝑇 ) where axioms are excluded is considered.
Among these pairs, only those that are not redundant belong to EC𝑚(𝐴𝑆).

The equivalence between the two definitions is proved in [8].

Proposition 1 (Prop. 24 of [8]). Definitions 14 and 15 are equivalent, i.e. (𝑆, 𝑇 ) ∈ EC(𝐴𝑆) iff (𝑆, 𝑇 ) ∈
EC𝑚(𝐴𝑆).



The various forms of attack are then revised, replacing Definition 8 with the following definition
concerning attacks at the level of sets of arguments.

Definition 16. Given an argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦), a set of arguments 𝑋 attacks an argu-
ment 𝛽 iff 𝑋 undercuts, rebuts, or undermines 𝛽 where:

• 𝑋 undercuts 𝛽 (on 𝛽′) iff for some 𝛽′ ∈ Sub(𝛽) such that 𝑟 = Top(𝛽′) ∈ ℛ𝐷 , the following
condition holds: ∃𝑇,𝑈 such that 𝑇 ∪ 𝑈 = Conc(𝑋) ∪ {𝑛(𝑟)}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝑛(𝑟) ∈ 𝑈 .

• 𝑋 rebuts 𝛽 (on 𝛽′) iff for some 𝛽′ ∈ Sub(𝛽) of the form 𝛽′′1 , . . . , 𝛽
′′
𝑛 ⇒ 𝜙 the following condition

holds: ∃𝑇,𝑈 such that 𝑇 ∪ 𝑈 = Conc(𝑋) ∪ {𝜙}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝜙 ∈ 𝑈 . In this case 𝑋
contrary-rebuts 𝛽 if (𝑈, 𝑇 ) /∈ EC(𝐴𝑆).

• 𝑋 undermines 𝛽 (on 𝛽′) iff for some 𝛽′ = 𝜙, 𝜙 ∈ Prem𝑝(𝛽) the following condition holds: ∃𝑇,𝑈
such that 𝑇 ∪ 𝑈 = Conc(𝑋) ∪ {𝜙}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝜙 ∈ 𝑈 . In this case 𝑋 contrary-
undermines 𝛽 if (𝑈, 𝑇 ) /∈ EC(𝐴𝑆).

As the effectiveness of some attacks depends on the preference relation, the notion of preference
ordering needs to be generalized to sets of arguments. Note, however, that in ASPIC𝑅 there are no
requirements on the preference relation (in [1] it must satisfy several conditions to be considered
reasonable) and it is only assumed that a preorder between arguments is given.

Definition 17. Given a preorder ⪯ on a set of arguments 𝑋 , we extend ⪯ to 2𝑋 × 𝑋 as follows. An
argument 𝛼 is at least as preferred as a set of arguments 𝑌 , denoted 𝑌 ⪯ 𝛼, iff ∃𝛽 ∈ 𝑌 such that 𝛽 ⪯ 𝛼. 𝛼
is strictly preferred to 𝑌 , denoted 𝑌 ≺ 𝛼, iff ∃𝛽 ∈ 𝑌 such that 𝛽 ≺ 𝛼, not strictly preferred to 𝑌 , denoted
𝑌 ⊀ 𝛼 iff ∄𝛽 ∈ 𝑌 such that 𝛽 ≺ 𝛼.

On this basis, an extended notion of defeat is introduced, replacing Definition 9.

Definition 18. Let the set of arguments 𝑌 attack an argument 𝛽 on 𝛽′ according to Definition 16. If 𝑌
undercuts, contrary-rebuts, or contrary-undermines 𝛽 on 𝛽′, then 𝑌 preference-independent attacks 𝛽
on 𝛽′, otherwise 𝑌 preference-dependent attacks 𝛽 on 𝛽′. Then, 𝑌 defeats 𝛽 iff either 𝑌 preference-
independent attacks 𝛽 on 𝛽′ or 𝑌 preference-dependent attacks 𝛽 on 𝛽′ and 𝑌 ⊀ 𝛽′. 𝑌 minimally
defeats 𝛽, denoted as 𝑌 ⇝ 𝛽, if 𝑌 defeats 𝛽 and ∄𝑌 ′ ⊊ 𝑌 such that 𝑌 ′ defeats 𝛽.

An argumentation framework based on the notion of defeat provided in Definition 18 is then defined
to evaluate the justification status of arguments. The idea is that the framework nodes represent
relevant sets of arguments. In particular, we need a node for each singleton corresponding to a produced
argument, and a node for each set of ultimately fallible arguments (as per Definition 19) that minimally
defeats some produced argument.

Definition 19. Given an argumentation theory𝐴𝑇 = (𝐴𝑆,𝒦), let S be the set of the arguments produced
in 𝐴𝑆 on the basis of 𝒦. The set of ultimately fallible arguments of 𝐴𝑇 is defined as UF(S) ≜ 𝒦𝑝 ∪ {𝛼 ∈
S | Top(𝛼) ∈ ℛ𝐷}.

Definition 20. Given an argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦) with ordering ⪯, let S be the set of the
arguments produced in 𝐴𝑆 on the basis of 𝒦. The set of relevant sets of arguments of 𝐴𝑇 , denoted as
RS(𝐴𝑇 ), is defined as RS(𝐴𝑇 ) = {{𝛼} | 𝛼 ∈ S} ∪ {𝑋 | 𝑋 ⊆ UF(S) and ∃𝛽 ∈ S : 𝑋 ⇝ 𝛽}.

Then, a relevant set of ultimately fallible arguments attacks another one simply if it minimally defeats
one of its members.

Definition 21. Let 𝑋,𝑌 ∈ RS(𝐴𝑇 ) for an argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦) and S be the set of the
arguments produced in 𝐴𝑆 on the basis of 𝒦. 𝑋 D-attacks 𝑌 , denoted as ‖𝑋‖ ↠ ‖𝑌 ‖, iff 𝑋 ⊆ UF(S)
and ∃𝛼 ∈ 𝑌 : 𝑋 ⇝ 𝛼.



The relevant set based argumentation framework is defined accordingly.

Definition 22. Given an argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦), the RS-based argumentation framework
induced by 𝐴𝑇 is defined as RS−F(𝐴𝑇 ) = ({‖𝑋‖ | 𝑋 ∈ RS(𝐴𝑇 )},↠).

Finally, given an argumentation semantics 𝜎, the justification status of an argument 𝛼 corresponds
to the one of ‖{𝛼}‖ in RS−F(𝐴𝑇 ) according to Definition 3.

It is proved in [8] that complete extensions of RS−F(𝐴𝑇 ) ensure the satisfaction of a generalized
form of the rationality postulates4 proved in [1] for ASPIC+.

4. Polymorphic attacks in ASPIC+

In ASPIC+ the potential occurrence of an attack betwen two arguments (Definition 8) depends essentially
on a relation of contrariness between the conclusion of the attacking argument and an attackable element
(either the conclusion or the name of a defeasible rule or a defeasible premise) of (a subargument of)
the attacked argument.

Three types of attack (undercut, rebut, and undermining) are identified, depending on the attackable
element involved. Moreover, rebutting and undermining attacks are partitioned into two subclasses,
depending on whether the relevant contrariness relation is symmetric or asymmetric (in the latter case
the attack is called a contrary-attack).

It is worth noting5, that given two arguments 𝛼 and 𝛽, Definition 8 does not per se guarantee that
the three types of attack are mutually exclusive. In fact, it is formally possible, in specific situations,
that more than one of the conditions establishing the occurrence of an attack hold at the same time for
the same pair of arguments 𝛼 and 𝛽.

In more detail, in order to have that 𝛼 undercuts and rebuts 𝛽 at the same time, the conclusion of 𝛼
should be a contrary both of a conclusion of a subargument of 𝛽 and of the name of a defeasible rule
used in a subargument of 𝛽, as shown in Example 1.

Example 1. Consider an argumentation system 𝐴𝑆1 = (ℒ, ,̄ℛ, 𝑛) such that: ℒ = {𝜙,𝜓, 𝜒, 𝜔}; 𝜔 ∈ 𝜓;
𝜔 ∈ 𝜒; ℛ = ℛ𝐷 = {𝑟1} where 𝑟1 = 𝜙 ⇒ 𝜓; 𝑛(𝑟1) = 𝜒. Consider then the following knowledge base
in 𝐴𝑆1: 𝒦 = 𝒦𝑝 = {𝜙, 𝜔}. We have then the following arguments: 𝛼1 = 𝜙, 𝛼2 = 𝜔, 𝛼3 = 𝛼1 ⇒ 𝜓. It
turns out that 𝛼2 both rebuts and undercuts 𝛼3

Similarly, in order to have that 𝛼 undercuts and undermines 𝛽 at the same time, the conclusion of 𝛼
should be a contrary both of an ordinary premise of 𝛽 and of the name of a defeasible rule used in a
subargument of 𝛽, as shown in Example 2

Example 2. Consider an argumentation system 𝐴𝑆2 = (ℒ, ,̄ℛ, 𝑛) which is a variation of 𝐴𝑆1 with
the only difference that 𝜔 ∈ 𝜙 instead of 𝜔 ∈ 𝜓. Consider then the same knowledge base in 𝐴𝑆2:
𝒦 = 𝒦𝑝 = {𝜙, 𝜔}. We have, similarly to above, the following arguments: 𝛼1 = 𝜙, 𝛼2 = 𝜔, 𝛼3 = 𝛼1 ⇒ 𝜓.
It turns out that 𝛼2 both undermines and undercuts 𝛼3.

Turning to a further case, in order to have that 𝛼 rebuts and undermines 𝛽 at the same time, the
conclusion of 𝛼 should be a contrary both of an ordinary premise of 𝛽 and of the conclusion of a
subargument of 𝛽, as shown in Example 3

Example 3. Consider an argumentation system 𝐴𝑆3 = (ℒ, ,̄ℛ, 𝑛) which is a variation of 𝐴𝑆1 with
the only difference that 𝜔 ∈ 𝜙 instead of 𝜔 ∈ 𝜒. Consider then the same knowledge base in 𝐴𝑆3:
𝒦 = 𝒦𝑝 = {𝜙, 𝜔}. We have, similarly to above, the following arguments: 𝛼1 = 𝜙, 𝛼2 = 𝜔, 𝛼3 = 𝛼1 ⇒ 𝜓.
It turns out that 𝛼2 both undermines and rebuts 𝛼3.
4More precisely, in [8] it is shown that any LAF-ensemble satisfying a given set of conditions obeys the rationality postulates
and that ASPIC𝑅 is an instance of LAF-ensemble complying with the required conditions.

5As to our knowledge this aspect has never been pointed out explicitly in the literature. We were stimulated to analyse this
aspect by the occurrence of polymorphic attacks in ASPIC𝑅, discussed later.



Finally, note that, as is probably already evident, it is also possible to have a situation where an
argument attacks another argument in all three possible ways.

Example 4. Consider an argumentation system 𝐴𝑆3 = (ℒ, ,̄ℛ, 𝑛) which is a variation of 𝐴𝑆1 with
the only difference that 𝜔 ∈ 𝜙 in addition to 𝜔 ∈ 𝜓 and 𝜔 ∈ 𝜒. Consider then the same knowledge base
in 𝐴𝑆4: 𝒦 = 𝒦𝑝 = {𝜙, 𝜔}. We have, similarly to above, the following arguments: 𝛼1 = 𝜙, 𝛼2 = 𝜔,
𝛼3 = 𝛼1 ⇒ 𝜓. It turns out that 𝛼2 undermines, rebuts, and undercuts 𝛼3.

In all the examples above, there is a language element that belongs to the contrariness function of
at least two other elements. One may wonder whether this is a necessary condition for 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐
attacks to occur in ASPIC+, i.e., whether 𝑝𝑜𝑙𝑦𝑚𝑜𝑟𝑝ℎ𝑖𝑐 attacks may occur even under the constraint that
each language element belongs to at most one contrariness function. The answer is positive, though
rather peculiar situations must be considered, as shown by the following examples.

Example 5. Consider an argumentation system 𝐴𝑆5 = (ℒ, ,̄ℛ, 𝑛) such that: ℒ = {𝜙,𝜓, 𝜒, 𝜔}; 𝜔 ∈ 𝜒;
ℛ = ℛ𝐷 = {𝑟1} where 𝑟1 = 𝜙, 𝜒 ⇒ 𝜓; 𝑛(𝑟1) = 𝜒. Consider then the following knowledge base
in 𝐴𝑆1: 𝒦 = 𝒦𝑝 = {𝜙, 𝜒, 𝜔}. We have then the following arguments: 𝛼1 = 𝜙, 𝛼2 = 𝜔, 𝛼3 = 𝜒,
𝛼4 = 𝛼1, 𝛼3 ⇒ 𝜓. It turns out that 𝛼2 both undermines and undercuts 𝛼4.

Example 6. Consider an argumentation system 𝐴𝑆6 = (ℒ, ,̄ℛ, 𝑛) such that: ℒ = {𝜙,𝜓, 𝜒, 𝜔, 𝜂};
𝜔 ∈ 𝜒; ℛ = ℛ𝐷 = {𝑟1, 𝑟2} where 𝑟1 = 𝜙, 𝜒 ⇒ 𝜓 and 𝑟2 = 𝜂 ⇒ 𝜒; 𝑛(𝑟1) = 𝜒. Consider then the
following knowledge base in 𝐴𝑆1: 𝒦 = 𝒦𝑝 = {𝜙, 𝜔, 𝜂}. We have then the following arguments: 𝛼1 = 𝜙,
𝛼2 = 𝜔, 𝛼3 = 𝜂,𝛼4 = 𝛼3 ⇒ 𝜒, 𝛼5 = 𝛼1, 𝛼4 ⇒ 𝜓. It turns out that 𝛼2 both rebuts and undercuts 𝛼5.

For the sake of brevity and simplicity, the examples presented above are rather compact. More
articulated examples, in particular involving longer rule chains, can easily be generated. Thus, it
emerges that a variety of polymorphic attacks are actually possible in the context of ASPIC+.

Two main questions then arise. On the application side, one may wonder whether polymorphic
attacks may occur in practice, i.e., if there are realistic reasoning contexts giving rise to them. On the
technical side, one has, in any case, to consider whether they are problematic in any sense and how
they are managed by the current definition of the formalism.

As to the first question, consider the following situation. Suppose you have a defeasible rule 𝑟1
stating that people wearing overalls are usually workers, and another defeasible rule 𝑟2 stating that
workers are typically adults. Moreover you know that 𝑟1 is not applicable to children (since they may
wear overalls in masquerade or for other fun reasons) and that children are not adults. Now you have a
picture including a person who seems to be wearing overalls and to be a child: being a child is both a
rebut and an undercut for the argument that the person is an adult, as shown in the example below.

Example 7. Consider an argumentation system 𝐴𝑆𝑤 = (ℒ, ,̄ℛ, 𝑛) defined as follows. ℒ =
{Wo,Wk ,Ch,Ad ,N1 ,N2} where Wo means wears overalls, Wk means is a worker, Ch means is
a child, Ad means is an adult, and N1 and N2 are symbols used for rule names. Then we assume
Ch ∈ Ad , Ad ∈ Ch and Ch ∈ N1 . We consider a set of two defeasible rules: ℛ = ℛ𝐷 = {𝑟1, 𝑟2} where
𝑟1 = Wo ⇒ Wk with 𝑛(𝑟1) = 𝑁1 and 𝑟2 = Wk ⇒ Ad with 𝑛(𝑟2) = N2 . We assume the following
knowledge base in 𝐴𝑆𝑤: 𝒦 = 𝒦𝑝 = {Wo,Ch}. We have then the following arguments: 𝛼1 = Wo,
𝛼2 = Ch , 𝛼3 = 𝛼1 ⇒ Wk , 𝛼4 = 𝛼3 ⇒ Ad . It emerges that 𝛼2 undercuts 𝛼3 and then 𝛼2 both rebuts 𝛼4

(on 𝛼4) and undercuts 𝛼4 (on 𝛼3). Moreover 𝛼4 undermines 𝛼2.

Example 7 provides an instance of polymorphic attack (rebut and undercut) arising from a realistic
reasoning situation. While a systematic analysis of realistic examples (if any) giving rise to other
combinations of types of attack is left to future work, we suggest that Example 7 is sufficient to show
that polymorphic attacks are more than a formal curiosity and should not be overlooked.

We turn, therefore, to consider the questions raised by polymorphic attacks from a technical and
conceptual perspective.



Figure 1: The argumentation framework ℱ𝑤 corresponding to Example 7.

Starting from the technical side, we remark first that Definition 8 is agnostic with respect to polymor-
phic attacks: it says that an argument 𝛼 attacks an argument 𝛽 iff 𝛼 undercuts, rebuts, or undermines 𝛽,
and does not explicitly assume nor implicitly relies on the fact that the disjunction is exclusive.

Definition 9 then distinguishes preference-dependent and preference-independent attacks from an
argument 𝛼 to an argument 𝛽 with reference to the subargument 𝛽′ to which the attack is directed.
Thus, it turns out that an argument 𝛼 can attack another argument 𝛽 in a preference-dependent and in
a preference-independent way at the same time (on different subarguments). For instance, in Example
7, 𝛼2 preference-dependent attacks 𝛼4 on 𝛼4 and preference-independent attack 𝛼4 on 𝛼3.

While this is a bit peculiar, it is, per se, not problematic for the notion of defeat introduced in Definition
9. It states that an argument 𝛼 defeats an argument 𝛽 if there is some 𝛽′ ∈ Sub(𝛽) on which the attack
is successful. As previously discussed, it may happen that: (i) there can be several such subarguments
𝛽′ and (ii) preferences may or may not play a role for the success of attacks concerning different
subarguments. However the facts (i) and (ii) do not represent a problem: there will in any case a single
defeat from 𝛼 to 𝛽 (possibly corresponding to more than one attack).

The defeat relation is then the basis for the construction of the argumentation framework in Definition
11, on which the assessment of the acceptability of arguments is based. Thus, technically speaking,
polymorphic attacks do not pose problems nor require a revision of the relevant definitions in ASPIC+.

We argue, however, that from the conceptual point of view, some issues arise. As remarked above,
Definition 9 admits that an argument 𝛼 can both preference-independent and preference-dependent
attack another argument since the quality of being preference-(in)dependent depends on the pair (𝛼, 𝛽′),
where 𝛽′ is the subargument of 𝛽 which is attacked, rather than on the pair (𝛼, 𝛽).

Let us refer to Example 7. The undercutting attacks from 𝛼2 to 𝛼3 and from 𝛼2 to 𝛼4 are, of course,
preference-independent, while the rebutting attacks from 𝛼2 to 𝛼4 and vice versa are preference-
dependent. According to Definition 9, 𝛼2 then defeats both 𝛼3 and 𝛼4 independently of any preference
while 𝛼4 defeats 𝛼2 only if 𝛼4 ⊀ 𝛼2. Assuming 𝛼4 ⊀ 𝛼2, we get that in the argumentation framework
ℱ𝑤 prescribed by Definition 11 for Example 7 (see Figure 1) there is a formally symmetric defeat between
𝛼4 and 𝛼2 whose branches are however conceptually asymmetric: one branch has a polymorphic origin,
while the other arises from a rebutting attack.

Let us examine the outcomes of the evaluation of the arguments in ℱ𝑤 according to standard
semantics. The grounded extension consists of the unique unattacked argument 𝛼1 (GR(ℱ𝑤) = {𝛼1}),
while in the case of preferred, stable, and semi-stable semantics, we have two extensions: ℰPR(ℱ𝑤) =
ℰST(ℱ𝑤) = ℰSST(ℱ𝑤) = {{𝛼1, 𝛼2}, {𝛼1, 𝛼3, 𝛼4}}.

In words, 𝛼1 is the only argument skeptically accepted with any semantics, while 𝛼2 (namely the
evidence that the person is a child) is regarded as dubious, due to the mutual attack with 𝛼4. It is
interesting to note that 𝛼4 defends its own subargument 𝛼3 from the undercutting attack coming from
𝛼2. This is a bit peculiar: a consequence that the undercutting attack is meant to prevent to draw is
used to rebut the source of the undercutting attack itself.

Whether this is conceptually legitimate or problematic can be regarded as a matter of discussion,
which we leave to future work. In this paper, we limit ourselves to suggesting that further investigation
on polymorphic attacks in ASPIC+ is worth pursuing and that it may stimulate the study of alternative
notions of defeat in ASPIC+. In particular, one might consider a revision of Definition 9 where the fact
that an attack whose source is an argument 𝛼 gives rise to a successful defeat takes into account the
possible existence of polymorphic attacks involving proper subarguments of 𝛼, which, in a sense, might
override the self-defence capability of 𝛼 against them.



5. Polymorphic attacks in ASPIC𝑅

In the context of ASPIC𝑅, the notions of undercutting, rebutting, and undermining attacks refer to the
relation between a set of arguments, in the role of attacker, and an individual argument, in the role of
attackee, as specified in Definition 16. Essentially, the starting point for the identification of attacks is
the extended contrariness relation EC(𝐴𝑆), which consists of pairs of sets of language elements, say
pairs (𝑇,𝑈) with 𝑇,𝑈 ⊆ ℒ. Intuitively, each such pair indicates that the elements in 𝑇 ∪𝑈 cannot stay
together and, more precisely, indicates that if all the elements in 𝑇 hold, then an least one element of 𝑈
cannot hold. It follows that if there are arguments such that all their conclusion or names of top rule
coincide with the set 𝑇 ∪ 𝑈 , one of the arguments whose conclusion or name of top rule is included in
𝑈 cannot be accepted if all the others are. The three kinds of attacks realize this idea in different ways
depending on the role of the language element involved and on the structure of the attacked argument.
Thus:

• a set 𝑋6 undercuts an argument 𝛽 on a subargument 𝛽′ when 𝛽′ has a defeasible top rule whose
name is included in 𝑈 ;

• a set 𝑋 rebuts an argument 𝛽 on a subargument 𝛽′ when 𝛽′ has a defeasible top rule and its
conclusion is included in 𝑈 ;

• a set 𝑋 undermines an argument 𝛽 on a subargument 𝛽′ when 𝛽′ is an ordinary premise which
is included in 𝑈 .

Concerning the occurrence of polymorphic attacks in ASPIC𝑅, it is first of all interesting to examine
what happens in the examples introduced in Section 4 for ASPIC+.

As a general observation, with reference to Definition 15 we can remark that since the examples do
not contain any strict rule in all cases EC2(𝐴𝑆) and EC3(𝐴𝑆) do not contain any additional element
with respect to EC1(𝐴𝑆). i.e. EC*𝑚(𝐴𝑆) = EC1(𝐴𝑆). Moreover, since the examples do not contain any
axiom, for any set 𝑆 of arguments it follows that ̂︀𝑆 = 𝑆. We get then that EC𝑚(𝐴𝑆) = EC*𝑚(𝐴𝑆) =
EC1(𝐴𝑆) and by Proposition 1 EC(𝐴𝑆) = EC1(𝐴𝑆). In words this amounts to the fact that, in
the examples, the extended contrariness function EC(𝐴𝑆) of ASPIC𝑅 essentially coincides with the
contrariness function of ASPIC+, the only difference being that the pair of language elements are
replaced by the pairs of the corresponding singletons. For instance, in Example 1 𝜔 ∈ 𝜓 becomes
({𝜔}, {𝜓}) ∈ EC(𝐴𝑆) (and similarly for 𝜔 ∈ 𝜒 and for all the pairs in the other examples).

Since every pair in EC(𝐴𝑆) consists of two singletons, in turn the attacks prescribed by Definition 16
have necessarily a singleton as a source, and skipping some relatively straightforward steps, we reach
the conclusion that all the examples introduced in Section 4 are treated by ASPIC𝑅 essentially in the
same way as in ASPIC+, since (modulo the replacement of individual arguments with the corresponding
singletons) the attacks are the same and hence the argumentation frameworks prescribed by Definitions
11 and 22 are, in these examples, isomorphic.

In summary, all the considerations on polymorphic attacks drawn in Section 4 are still valid for
ASPIC𝑅.

In particular, it is worth remarking that Definition 16, like Definition 8 is agnostic with respect to
polymorphic attacks and does not explicitly assume nor implicitly relies on the fact that the disjunction
of the kinds of attacks is exclusive.

Definition 18, similarly to Definition 9, is compatible with the fact that a set of arguments attacks
an argument both in a preference-independent and in a preferemce-dependent way and the notion of
defeat simply requires that at least one successful attack exists, not excluding that there are several.
Subsequent definitions from 19 to 22 are not affected by polymorphic attacks.

While the discussion above suggests a substantial similarity between ASPIC+ and ASPIC𝑅 concerning
polymorphic attacks, it is worth noting that extending the consideration to examples where strict rules
are present, ASPIC𝑅 raises further questions on polymorphic attacks. To see this, consider the following
example.
6For brevity, we do not repeat here the condition of coverage of 𝑇 ∪ 𝑈 that the set 𝑋 , together with the attacked argument,
must satisfy.



Example 8. Consider an argumentation system 𝐴𝑆𝑟 = (ℒ, ,̄ℛ, 𝑛) such that: ℒ =
{𝜙,¬𝜙,𝜓, 𝜒, 𝜔, 𝜂, 𝜃}; 𝜙 ∈ ¬𝜙; ¬𝜙 ∈ 𝜙; 𝜓 ∈ 𝜒; ℛ = ℛ𝑆 = {𝑟1, 𝑟2, 𝑟3, 𝑟4} where 𝑟1 = 𝜔 → 𝜙;
𝑟2 = 𝜂, 𝜃 → ¬𝜙; 𝑟3 = 𝜂 → 𝜓; 𝑟4 = 𝜔, 𝜃 → 𝜒. Consider then the following knowledge base in 𝐴𝑆𝑟 :
𝒦 = 𝒦𝑝 = {𝜔, 𝜂, 𝜃}. We have then the following arguments: 𝛼1 = 𝜔; 𝛼2 = 𝜂; 𝛼3 = 𝜃; 𝛼4 = 𝛼1 → 𝜙;
𝛼5 = 𝛼2, 𝛼3 → ¬𝜙; 𝛼6 = 𝛼2 → 𝜓; 𝛼7 = 𝛼1, 𝛼3 → 𝜒. According to Definition 15 we get:

• EC1(𝐴𝑆) = {({𝜙}, {¬𝜙}), ({¬𝜙}, {𝜙}), ({𝜓}, {𝜒})};
• EC2(𝐴𝑆) ∖ EC1(𝐴𝑆) = {({𝜔}, {¬𝜙}), ({𝜂, 𝜃}, {𝜙}), ({𝜂}, {𝜒})};
• EC3(𝐴𝑆)∖(EC1(𝐴𝑆)∪EC2(𝐴𝑆)) = {({¬𝜙}, {𝜔}), ({𝜂, 𝜃}, {𝜔}), ({𝜙}, {𝜂, 𝜃}), ({𝜔}, {𝜂, 𝜃}),
({𝜓}, {𝜔, 𝜃}), ({𝜂}, {𝜔, 𝜃})}.

Given that 𝒦𝑛 = ∅ and that all pairs listed above respect the minimality condition specified in Definition
15 we get that the set EC(𝐴𝑆) consists exactly of these pairs.

Let us now focus on the attacks involving ultimately fallible arguments (namely 𝛼1, 𝛼2, 𝛼3) which,
in virtue of Definitions 16, 20, 21, are the basis for the construction of the argumentation framework
RS−F(𝐴𝑇 ) (Definition 22).

In particular, we note that there are two distinct conditions entailing that the set {𝛼2, 𝛼3} undermines
argument 𝛼1 (on 𝛼1) according to Definition 16. The first condition is the presence in RS−F(𝐴𝑇 ) of the
pair ({𝜂, 𝜃}, {𝜔}), the second condition is the presence of the pair ({𝜂}, {𝜔, 𝜃}).

The two conditions differ concerning the kind of undermining: in the first case we have that also
({𝜔}, {𝜂, 𝜃}) ∈ RS−F(𝐴𝑇 ), while in the second case ({𝜂}, {𝜔, 𝜃}) /∈ RS−F(𝐴𝑇 ). It follows that the first
condition corresponds to a preference-dependent undermining attack, while the second condition corresponds
to a preference-independent contrary-undermining attack.

Definition 16 does not consider explicitly the possible occurrence of situations like the one presented
in Example 8, however it implicitly gives the priority to contrary-undermining (and contrary-rebutting)
attacks: if there is a pair (𝑇,𝑈) ∈ RS−F(𝐴𝑇 ) satisfying the specified conditions and (𝑈, 𝑇 ) /∈
RS−F(𝐴𝑇 ) then the attack is of the contrary kind, and hence is preference-independent. This is not
affected by the possible existence of other pairs (𝑇 ′, 𝑈 ′) ∈ RS−F(𝐴𝑇 ) still satisfying the required
conditions and such that also (𝑈 ′, 𝑇 ′) ∈ RS−F(𝐴𝑇 ).

At a general level, this appears a sort of conservative choice: it prevents the possible preference-
dependent removal of the attacks whose nature is not univocal. In turn, given that attacks are motivated
by the contrariness relation, this choice can be regarded as favoring the respect of consistency properties.

There are however also potential downsides of conservativeness: on one hand, it seems to demote
the role of preferences, on the other hand, it tends to increase undecidedness, since it can preserve some
mutual attacks (which intuitively correspond to an undetermined conflict) in situations where they
could become a unidirectional attack (corresponding to a more determined conflict situation, where
one element dominates the other).

In general, it emerges that polymorphic attacks pose more questions, but possibly also more opportu-
nities, in ASPIC𝑅 than in ASPIC+, for the reasons discussed in the following.

We have already remarked that all the examples of polymorphic attacks presented in Section 4 for
ASPIC+, not involving strict rules nor axioms, have a direct correspondence in ASPIC𝑅. In the presence
of strict rules, the significant differences between ASPIC+ and ASPIC𝑅 emerge.

First of all, it must be recalled that, in order to ensure the satisfaction of the rationality postulates,
ASPIC+ imposes several constraints limiting its expressiveness. In particular, Example 8, which is fully
legitimate and manageable in ASPIC𝑅, cannot be correctly handled and is simply forbidden in ASPIC+.
The reason is that the language element 𝜒 has a contrary (namely 𝜓) and is the consequent of a strict
rule (namely 𝑟4). This is not allowed in ASPIC+ since it violates the condition of well formedness (fifth
item of Definition 12 in [1]): elements which have a contrary cannot be axioms nor consequents of strict
rules. This restriction is related to the fact that, otherwise, it would be easy to build examples violating
the postulates of direct or indirect consistency7. In ASPIC𝑅, a relaxed condition of weak well-formedness

7Discussing in detail this matter is beyond the scope of this paper. In a nutshell, let 𝜓 be a contrary of 𝜒: then, if, for instance,



is adopted (see Definition 12) which allows an element that has a contrary to be consequent of strict
rules, provided that there is no strict derivation of this element from axioms. Example 8 satisfies weak
well-formedness and is therefore legitimate in ASPIC𝑅, as already mentioned.

Thus, it turns out that the larger variety of polymorphic attacks in ASPIC𝑅 is also related to its greater
expressiveness.

Another point to be remarked, concerns the different nature of attacks in ASPIC𝑅, with respect to
ASPIC+, when strict rules are involved. Both in ASPIC+ and in ASPIC𝑅 the so-called restricted rebut is
adopted, namely attacks can be directed only towards ordinary premises or arguments whose last rule
is defeasible and then on their superarguments (see Definitions 8 and 16).

The use of restricted rebut is crucial to ensure some desirable properties (see [12]), but in turn entails
that some attacks which are not ‘directly’ encompassed by the definitions are recovered in some other
way.

The, so to speak, ‘recovery strategy’ in ASPIC+ is based on ‘inverting’ strict rules so as to obtain
additional arguments which can attack other arguments as needed. For this reason, in ASPIC+ the
requirement of closure under transposition of the set of strict rules, recalled in Definition 5, has been
introduced8. This approach is based on the traditional notion of binary attack between arguments.

ASPIC𝑅 adopts a radically different ‘recovery strategy’, which, in a nutshell, aims at identifying the
sets of ultimately fallible arguments which are the roots of the occurring inconsistencies. The fact that
these arguments are incompatible is captured through an innovative notion of attack at the level of sets.

A side effect of the strategy illustrated above is that the same ultimately fallible arguments can
be identified as the roots of distinct inconsistencies. This is exactly what happens in Example 8: the
arguments 𝛼1, 𝛼2, and 𝛼3 are at the basis both of the inconsistency between 𝛼4 and 𝛼5 and of the one
between 𝛼6 and 𝛼7. The different nature of these inconsistencies (roughly speaking, one is symmetric
while the other is not) leads to the existence of a polymorphic attack.

It is then evident that, at least in principle, the cases of polymorphic attacks one can conceive are
virtually unlimited, given that nothing prevents having very different derivations based on the same
premises. It is also rather evident that most of these cases will hardly have a meaningful counterpart in
practice: while, as already discussed, the notion of polymorphic attacks is not just a technical curiosity,
it has also to be acknowledged that the practical interest of its instances is likely to decrease with the
increase of their complexity.

6. Perspectives on the technical treatment of polymorphic attacks

After having evidenced and discussed the phenomenon of polymorphic attacks, in this section we carry
out a preliminary discussion on possible variations of the ASPIC+ and ASPIC𝑅 formalisms oriented to
the treatment of polymorphic attacks.

Starting from ASPIC+, the first point of possible revision would be Definition 8. Here the key
point is that the notion of attack is equated to the disjunction of three conditions (undercut, rebut
or undermining). This implicitly prevents to distinguish the occurrence of one condition from the
occurrence of more of them, i.e. somehow ‘hides’ or ‘flattens’ the possible existence of polymorphic
attacks. To avoid this flattening, one could simply avoid, at the beginning, the reference to the common
notion of attack and simply introduce all the types of attack relation, with a more explicit emphasis
on the role of the subargument 𝛽′, i.e., as ternary relations. In the following (as in [1]) we assume an
argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦) and we refer to the set of all finite arguments constructed from
𝒦 in 𝐴𝑆, denoted as S and called the set of arguments on the basis of 𝐴𝑇 .

Definition 23. Let S be the set of arguments on the basis of an argumentation theory 𝐴𝑇 . We define the
following relations on S× S× S. Given arguments 𝛼, 𝛽, 𝛽′ ∈ S :

𝜒 is an axiom while 𝜓 is an ordinary premise, according to ASPIC+ there is no attack between them and both would be
accepted, leading to an inconsistency.

8In alternative, the requirement of closure under contraposition has been considered. It has not been recalled here as it is not
constructive and not necessary for the present paper. The interested reader may refer to Definition 12 of [1].



• 𝛼 undercuts 𝛽 on 𝛽′ iff Conc(𝛼) ∈ 𝑛(𝑟), 𝛽′ ∈ Sub(𝛽) and 𝑟 = Top(𝛽′) is defeasible. This is
denoted as (𝛼, 𝛽, 𝛽′) ∈ 𝒞.

• 𝛼 rebuts 𝛽 on 𝛽′ iff Conc(𝛼) ∈ 𝜙, 𝛽′ ∈ Sub(𝛽) and 𝛽′ has the form 𝛽′′1 , . . . , 𝛽
′′
𝑛 ⇒ 𝜙. In such a

case 𝛼 contrary-rebuts 𝛽 on 𝛽′ iff Conc(𝛼) is a contrary of 𝜙, denoted as (𝛼, 𝛽, 𝛽′) ∈ ℛ𝑐; otherwise
𝛼 plain-rebuts 𝛽 on 𝛽′ denoted as (𝛼, 𝛽, 𝛽′) ∈ ℛ.

• 𝛼 undermines 𝛽 on 𝛽′ iff Conc(𝛼) ∈ 𝜙 and 𝛽′ = 𝜙 for some 𝜙 ∈ Prem𝑝(𝛽). In such a case 𝛼
contrary-undermines 𝛽 iff Conc(𝛼) is a contrary of 𝜙 denoted as (𝛼, 𝛽, 𝛽′) ∈ ℳ𝑐; otherwise 𝛼
plain-undermines 𝛽 on 𝛽′ denoted as (𝛼, 𝛽, 𝛽′) ∈ ℳ.

Then, to explicitly take into account the possible occurrence of polymorphic attacks, one can introduce
the notion of attack set for a pair of arguments.

Definition 24. The set 𝒜ℛ of attack relations for ASPIC+ is defined as 𝒜ℛ = {𝒞,ℛ,ℳ,ℛ𝑐,ℳ𝑐}.
Given a pair of arguments (𝛼, 𝛽) the set of attacks from 𝛼 to 𝛽 denoted as 𝒮𝒜(𝛼, 𝛽) is defined as
𝒮𝒜(𝛼, 𝛽) = {(𝛼, 𝛽, 𝛽′,𝒳 ) | 𝒳 ∈ 𝒜ℛ and (𝛼, 𝛽, 𝛽′) ∈ 𝒳}. Given a set of arguments A, the set of all
the attacks relevant to A is defined as Ω(A) =

⋃︀
𝛼,𝛽∈A 𝒮𝒜(𝛼, 𝛽).

For instance, in Example 7, 𝒮𝒜(𝛼2, 𝛼4) = {(𝛼2, 𝛼4, 𝛼4,ℛ), (𝛼2, 𝛼4, 𝛼3, 𝒞)}, while 𝒮𝒜(𝛼4, 𝛼2) =
{(𝛼4, 𝛼2, 𝛼2,ℳ)}. Moreover, 𝒮𝒜(𝛼2, 𝛼3) = {(𝛼2, 𝛼3, 𝛼3, 𝒞)} and, as an example of the absence of
any attack, 𝒮𝒜(𝛼1, 𝛼3) = ∅.

Then, in place of Definition 9, one can introduce the notion of a function for deriving the defeat
relation from the set of attack tuples.

Definition 25. A defeat generation function for ASPIC+ 𝒟ℱ is a function which, given a set of arguments
A, its relevant set of attacks Ω(A) and a preorder on A, returns a binary relation on A.

Note that we do not make any assumption on the defeat generation function, leaving open, at this
stage, all possible alternatives for its design.

Definitions 10 and 11 can then be modified as follows.

Definition 26. Let𝐴𝑇 = (𝐴𝑆,𝒦) be an argumentation theory. A structured argumentation framework
(𝑆𝐴𝐹 ), defined by 𝐴𝑇 is a triple (S,Ω(S),⪯) where S is the set of all finite arguments constructed from
𝒦 in 𝐴𝑆 (called the set of arguments on the basis of 𝐴𝑇 ), Ω(A) is the set of all relevant attacks according
to Definition 24, and ⪯ is an ordering on S.

Definition 27. Let Δ = (S,Ω(A),⪯) be a 𝑆𝐴𝐹 and 𝒟ℱ be a defeat generation function. The 𝐴𝐹
corresponding to Δ is defined as ℱΔ = (S,𝒟ℱ(S,Ω(S),⪯)).

In particular, the defeat generation function corresponding to the traditional version of ASPIC+,
denoted as 𝒟ℱA+ , can be characterized as follows.

Definition 28. Given a set of argumentsA, a relevant set of attacksΩ(A) and a preorder⪯ onA, the defeat
generation function 𝒟ℱA+

is defined as follows: (𝛼, 𝛽) ∈ 𝒟ℱA+
(A,Ω(A),⪯) iff ∃(𝛼, 𝛽, 𝛽′,𝒳 ) ∈ Ω(A)

such that 𝒳 ∈ {𝒞,ℛ𝑐,ℳ𝑐} or ∃(𝛼, 𝛽, 𝛽′,𝒳 ) ∈ Ω(A) such that 𝒳 ∈ {ℛ,ℳ} and 𝛼 ⊀ 𝛽′.

The parametric scheme introduced above easily accommodates alternative treatments of polymorphic
attacks, by varying the function 𝒟ℱ . We leave this investigation to future work, remarking that, in
particular, it would be interesting to identify properties of the defeat generation function which provide
necessary or sufficient conditions for the satisfaction of the rationality postulates. Ideally, one could
achieve the characterization of a family of defeat generation functions, such that rationality postulates
are satisfied for every choice of a function 𝒟ℱ in that family.

Turning to ASPIC𝑅, a modification along the same lines can be devised.
First, we revise Definition 16 analogously to Definition 23.



Definition 29. Given an argumentation theory 𝐴𝑇 = (𝐴𝑆,𝒦), let S be the set of arguments on the basis
of 𝐴𝑇 . We define the following relations on 2S × S× S. Given a set of arguments 𝑋 ⊆ S and arguments
𝛽, 𝛽′ ∈ S:

• 𝑋 undercuts 𝛽 on 𝛽′ iff 𝛽′ ∈ Sub(𝛽) is such that 𝑟 = Top(𝛽′) ∈ ℛ𝐷 and the following condition
holds: ∃𝑇,𝑈 such that 𝑇 ∪ 𝑈 = Conc(𝑋) ∪ {𝑛(𝑟)}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝑛(𝑟) ∈ 𝑈 . This is
denoted as (𝑋,𝛽, 𝛽′) ∈ 𝒞𝑅.

• 𝑋 (plain-)rebuts 𝛽 on 𝛽′ iff 𝛽′ ∈ Sub(𝛽) has the form 𝛽′′1 , . . . , 𝛽
′′
𝑛 ⇒ 𝜙 and the following condition

holds: ∃𝑇,𝑈 such that 𝑇 ∪ 𝑈 = Conc(𝑋) ∪ {𝜙}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝜙 ∈ 𝑈 and (𝑈, 𝑇 ) ∈
EC(𝐴𝑆). This is denoted as (𝑋,𝛽, 𝛽′) ∈ ℛ𝑅.

• 𝑋 contrary-rebuts 𝛽 on 𝛽′ iff 𝛽′ ∈ Sub(𝛽) has the form 𝛽′′1 , . . . , 𝛽
′′
𝑛 ⇒ 𝜙 and the following

condition holds: ∃𝑇,𝑈 such that 𝑇 ∪ 𝑈 = Conc(𝑋) ∪ {𝜙}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝜙 ∈ 𝑈 and
(𝑈, 𝑇 ) /∈ EC(𝐴𝑆). This is denoted as (𝑋,𝛽, 𝛽′) ∈ ℛ𝑅

𝑐 .
• 𝑋 (plain-)undermines 𝛽 on 𝛽′ iff 𝛽′ = 𝜙 for some 𝜙 ∈ Prem𝑝(𝛽) and the following condition holds:
∃𝑇,𝑈 such that 𝑇 ∪𝑈 = Conc(𝑋)∪ {𝜙}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝜙 ∈ 𝑈 and (𝑈, 𝑇 ) ∈ EC(𝐴𝑆).
This is denoted as (𝑋,𝛽, 𝛽′) ∈ ℳ𝑅.

• 𝑋 contrary-undermines 𝛽 on 𝛽′ iff 𝛽′ = 𝜙 for some 𝜙 ∈ Prem𝑝(𝛽) and the following condition
holds: ∃𝑇,𝑈 such that 𝑇 ∪ 𝑈 = Conc(𝑋) ∪ {𝜙}, (𝑇,𝑈) ∈ EC(𝐴𝑆) and 𝜙 ∈ 𝑈 and (𝑈, 𝑇 ) /∈
EC(𝐴𝑆). This is denoted as (𝑋,𝛽, 𝛽′) ∈ ℳ𝑅

𝑐 .

On this basis, the notion of attack set for ASPIC𝑅 can be introduced.

Definition 30. The set 𝒜ℛ𝑅 of attack relations for ASPIC𝑅 is defined as 𝒜ℛ =
{𝒞𝑅,ℛ𝑅,ℳ𝑅,ℛ𝑅

𝑐 ,ℳ𝑅
𝑐 }. Given a pair (𝑋,𝛽) where 𝑋 ⊆ S and 𝛽 ∈ S the set of attacks from 𝑋 to 𝛽

denoted as 𝒮𝒜𝑅(𝑋,𝛽) is defined as 𝒮𝒜𝑅(𝑋,𝛽) = {(𝑋,𝛽, 𝛽′,𝒳 ) | 𝒳 ∈ 𝒜ℛ𝑅 and (𝑋,𝛽, 𝛽′) ∈ 𝒳}.
Given a set of arguments A, the set of all the attacks relevant to A is defined as Ω𝑅(A) =⋃︀

𝑋⊆A,𝛽∈A 𝒮𝒜𝑅(𝑋,𝛽).

Then, in place of Definition 18, one can introduce the notion of a function for deriving the defeat
relation from the set of attack tuples.

Definition 31. A defeat generation function for ASPIC𝑅 𝒟ℱ𝑅 is a function which, given a set of ar-
guments A, its relevant set of attacks Ω𝑅(A) and a preorder on A, returns a binary relation on 2A ×A,
denoted as⇝.

Definitions 20, 21, and 22 are then unchanged, under the assumption that a defeat generation function
is used to generate the defeat relation⇝.

Similarly to the case of ASPIC+, this generalization paves the way to several possible developments
which are left to future work. In particular, also for ASPIC𝑅, it will be very interesting to investigate
general properties of the defeat generation function ensuring the satisfaction of rationality postulates.

7. Conclusions

In this paper we have carried out a preliminary analysis concerning polymorphic attacks, namely the
occurrence of multiple attacks of different kinds between the same pair of entities in the context of
the ASPIC+ and ASPIC𝑅 formalisms for structured argumentation. As to our knowledge, this peculiar
phenomenon has not been considered in previous literature. We presented and discussed several
examples of its occurrence, showing in particular that there are realistic reasoning cases where it may
occur and that the increased expressiveness of ASPIC𝑅 with respect to ASPIC+ also gives rise to a richer
variety of polymorphic attacks.

From a technical viewpoint, we have commented how polymorphic attacks are (in a sense, implicitly)
treated in the current versions of ASPIC+ and ASPIC𝑅 and suggested that dealing with them explicitly



may lead to considering alternative options for handling them. Towards this investigation direction, we
presented a preliminary proposal of suitable revisions of some definitions of ASPIC+ and ASPIC𝑅 in
order to make the notion of defeat relation parametric with respect to a defeat generation function.

In addition to those already discussed in previous sections, among the directions of future work we
mention a broader analysis of the potential importance of polymorphic attacks in practical reasoning
contexts and the study of the possible relationships with formalisms where attacks are associated with
a numerical weight, like for instance in weighted argument systems [15].
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