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Abstract
Argumentative learning amounts to integrating argumentative reasoning into forms of machine learning from
examples. Amongst several approaches, ABA Learning is a form of argumentative learning that, given a back-
ground knowledge, and positive and negative examples, derives an Assumption-Based Argumentation (ABA)
framework. The learnt ABA frameworks can be deployed to make run-time inference about previously unseen
examples, even after having seen very few positive and negative examples. This inference is determined by
(non-)acceptance of examples in extensions of the ABA frameworks. However, it may be impossible to determine
definite (non-)acceptance when the learnt ABA frameworks admit no or several extensions. In this paper, we
explore how this behaviour can be managed by “agentifying” ABA learning. This agentification amounts to
leveraging the use of rules in non-flat ABA frameworks, representing denial integrity constraints, towards
definite conclusions. Specifically, agentified ABA Learning can identify actions in the external environment
aimed at generating observations for expanding the original ABA frameworks so that they admit extensions and
at choosing amongst the extensions of (expanded) ABA frameworks.
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1. Introduction

Argumentative learning amounts to integrating argumentative reasoning into forms of machine learning
from examples [1]. ABA Learning [2, 3, 4] is a recent approach to argumentative learning, generating
Assumption-based Argumentation (ABA) frameworks [5, 6, 7, 8] from (possibly very few) positive and
negative examples of learnable predicates, given an initial ABA framework serving as a background
knowledge. The ABA frameworks generated by ABA Learning can be deployed to make run-time
inference about previously unseen examples, by determining whether these examples are accepted or
not in extensions (such as stable extensions [5, 6, 7, 8]) of the frameworks expanded with information
about the unseen examples. However, especially when the (positive and negative) examples seen
during training are very few, the learnt ABA frameworks may admit no or several extensions, thus
leading to the inability to determine definite (non-)acceptance of the new examples. For illustration
(see Section 3 for a formalisation with the help of the well-known Nixon diamond example [9]), the
learnt ABA framework may include (non-defeasible) rules that quakers are pacifists and republicans
are militarists, as well as background knowledge that pacifists tend to vote against war and militarists
tend to vote for war, but individuals cannot vote for both (here votes are assumptions, each being the
contrary of the other). Suppose then that, at inference time, we are interested in determining whether a
previously unseen individual nixon , who is both quaker and republican, is pacifist or militarist: the
learnt ABA framework admits no stable extension (as both voting assumptions need to be accepted, but
they are in conflict), and, if modified so that the learnt rules become defeasible, we get two different ABA
frameworks accepting conflicting claims about nixon . So no conclusion can be drawn about nixon .

In this paper we explore how this behaviour can be managed by “agentifying” ABA learning. Like
in standard autonomous agent systems [10], ABA Learning agents are able to decide actions to be
performed in the external environment (possibly including humans, data repositories and/or other
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agents) and draw observations from this environment as concerns the actions’ outcomes. The actions
consist in consulting an external source (human, agent or data repository) in the environment; the
observations amount to learning the outcome of the consultation. To continue the nixon illustration
(again, see Section 3 for details), an ABA Learning agent will decide to check how nixon voted in
the past and, upon observing that he voted for war, extend the learnt ABA framework to obtain a
single stable extension where nixon is militarist. The action results from the need to “satisfy” the
original background knowledge (that pacifists/militarist tend to vote against/for war but individuals
cannot vote for both). This behaviour is aided by the presence, in the ABA frameworks, of rules with
“actionable”assumptions (e.g. votes) in the head. Thus, our agentification of ABA Learning needs to
extend it beyond flat ABA frameworks (without assumptions in the head of rules) that have been the
focus of existing approaches to date [2, 3, 4].

This paper introduces the general vision of agentified ABA Learning (Section 4), after providing
the core background (Section 2) and formalising the earlier illustration (Section 3). It concludes by
discussing directions for future work (Section 5).

Related work Our use of rules with assumptions in the head towards actions aimed at choosing
amongst extensions of (expanded) ABA frameworks is reminiscent of enforcement of integrity con-
straints seen as agents’ goals, e.g. in the spirit of [11, 12]. Indeed, non-flat ABA rules can be equivalently
understood as denials, under stable extensions [13]. Works on argumentative agents exist (e.g. towards
persuasion [14]), including recent ones where agents are based on Large Language Models (e.g. for
explainability [15]). Unlike these works, we see agentification as a way to support a form of active
learning.

2. Background

An ABA framework [5, 6, 7, 8] is a tuple ⟨ℒ, ℛ, 𝒜, ⟩ such that
• ⟨ℒ,ℛ⟩ is a deductive system, where ℒ is a language andℛ is a set of (inference) rules of the form
𝑠0 ← 𝑠1, . . . , 𝑠𝑚 (𝑚 ≥ 0, 𝑠𝑖 ∈ ℒ, for 1 ≤ 𝑖 ≤ 𝑚);

• 𝒜 ⊆ ℒ is a (non-empty) set of assumptions;1
• is a total mapping from 𝒜 into ℒ, where 𝑎 is the contrary of 𝑎, for 𝑎 ∈ 𝒜.

Given a rule 𝑠0 ← 𝑠1, . . . , 𝑠𝑚, 𝑠0 is the head and 𝑠1, . . . , 𝑠𝑚 is the body; if 𝑚 = 0 then the body is said
to be empty (represented as 𝑠0 ←) and the rule is called a fact. Elements of ℒ can be any sentences,
but in this paper we focus on ABA frameworks where ℒ is a finite set of ground atoms. However, we
will use schemata for rules, assumptions and contraries, using variables, similarly to logic programs, to
represent compactly all instances over some underlying universe. We will also use equalities of the form
𝑡1 = 𝑡2, where 𝑡1, 𝑡2 are ground terms, and we assume that, for all ground terms 𝑡, the fact 𝑡 = 𝑡← is in
ℛ. In particular, we will feel free to write a fact 𝑝(𝑡)←, with 𝑡 a (tuple of) terms, as 𝑝(𝑋)←𝑋 = 𝑡, with
𝑋 a (tuple of) variables. Unlike other works [2, 3, 4], in this paper ABA frameworks are not required
to be flat, and thus assumptions can be heads of rules. As customary, we leave ℒ implicit, and use
⟨ℛ,𝒜, ⟩ to stand for ⟨ℒ, ℛ, 𝒜, ⟩.

The semantics of an ABA framework is given in terms of sets of assumptions, called extensions (for a
formal definition see, e.g., [5, 8, 6]). A set of assumptions 𝑆 ⊆ 𝒜 attacks an assumption 𝛼 ∈ 𝒜 iff there
is a finite deduction (i.e., an argument) from 𝑆′ ⊆ 𝑆 to 𝛼 using rules inℛ; a set of assumptions 𝑆1 ⊆ 𝒜
attacks a set of assumptions 𝑆2 ⊆ 𝒜 iff 𝑆1 attacks some 𝛼 ∈ 𝑆2. Then, a set of assumptions 𝑆 ⊆ 𝒜 is
stable iff 𝑆 is conflict-free (i.e., 𝑆 does not attack itself), closed (i.e., there is no 𝛼 ̸∈ 𝑆 such that there is
an argument, i.e., a deduction, from some 𝑆′ ⊆ 𝑆 to 𝛼 using rules inℛ), and 𝑆 attacks all 𝛼 ̸∈ 𝑆. An
ABA framework is satisfiable iff it admits at least one stable extension. A claim 𝑠 ∈ ℒ is accepted in a
stable extension ∆ of an ABA framework 𝐹 iff there is an argument from ∆ to 𝑠 using rules of 𝐹 .

1The non-emptiness requirement can always be satisfied [7].



Example 1. Consider the following non-flat ABA framework ⟨ℛ,𝒜, ⟩, where:2

ℛ = {𝛽(𝑋)← 𝛼(𝑋), 𝑝(1)←, 𝑞(2)←, 𝑟(3)←};
𝒜 = {𝛼(𝑋), 𝛽(𝑋)};
𝛼(𝑋) = 𝑞(𝑋), 𝛽(𝑋) = 𝑟(𝑋);

for 𝑋 ∈ {1, 2, 3}. A stable extension is given by {𝛼(1), 𝛽(1), 𝛽(2)}. Instead, for example, {𝛼(1)} is not
stable as it is not closed, {𝛽(3)} is not stable as it is not conflict-free, and {𝛼(1), 𝛽(1)} is not stable as it
does not attack 𝛽(2).

ABA Learning [2, 3, 4] is a method that, given background knowledge, in the form of a satisfiable
ABA framework 𝐹 = ⟨ℛ,𝒜, ⟩, positive examples ℰ+ ⊆ ℒ, and negative examples ℰ− ⊆ ℒ, derives
an ABA framework 𝐹 ′ = ⟨ℛ′,𝒜′, ′⟩, withℛ ⊆ ℛ′, 𝒜 ⊆ 𝒜′, ⊆ ′, such that 1) 𝐹 ′ admits a stable
extension ∆, 2) all positive examples are accepted in ∆, and 3) no negative example is accepted in ∆.3

ABA Learning makes use of transformation rules, including the following ones4 (1) rote learning,
which, given a positive example 𝑝(𝑎), introduces a new rule 𝑝(𝑋)← 𝑋 = 𝑎, (2) folding, which, given
rules 𝐻 ← 𝐵,𝐶 and 𝐾 ← 𝐵, derives the new rule 𝐻 ← 𝐾,𝐶 , and (3) assumption introduction, which,
given rule 𝐻 ← 𝐵, introduces an assumption 𝛼, with contrary 𝛼, and derives the new rule 𝐻 ← 𝐵,𝛼.
As mentioned above, we can freely introduce equalities, which can then occur in rule premises (e.g.,
in 𝐵,𝐶). Thus, for instance, if ℛ contains two facts 𝑝(𝑎) ← and 𝑞(𝑎) ←, we can rewrite them into
𝑝(𝑋) ← 𝑋 = 𝑎 and 𝑞(𝑋) ← 𝑋 = 𝑎, and by folding, we can derive 𝑝(𝑋) ← 𝑞(𝑋). In previous
work [2, 3, 4], we have presented various learning algorithms, in the case of flat ABA frameworks, based
on these transformation rules. We will see examples of their application in our non-flat setting the next
section.

3. ABA Learning through Action and Observation

We illustrate our idea of an ABA Learning agent that proactively interacts with the environment, by
means of an example – a variant of the well-known Nixon diamond problem proposed in the field
of non-monotonic reasoning [9]. By considering non-flat ABA frameworks, we are able to represent
background knowledge in a richer way, also through certain types of denials that enforce a form of
integrity constraints. For instance, the following ABA framework ⟨ℛ,𝒜, ⟩ represents that individuals
𝑎, 𝑏 are quakers and individual 𝑐 is a republican and the general information that pacifists vote against
war, while militarists vote for war.
ℛ = { quaker(𝑎)←, quaker(𝑏)←, republican(𝑐)←,

voted(𝑋, 𝑎𝑔𝑎𝑖𝑛𝑠𝑡_𝑤𝑎𝑟)← pacifist(𝑋), voted(X , pro_war)← militarist(𝑋) }
𝒜 = { voted(𝑋, pro_war), voted(X , against_war) }

voted(X , against_war)=voted(X , pro_war) voted(X , pro_war)=voted(X , against_war)
This ABA framework is non-flat because the heads of the last two rule schemata inℛ are assumptions,
voted(X , against_war) and voted(X , pro_war), which are one the contrary of the other. Suppose now
that we want to learn an explicit definition of the concepts pacifist and militarist from the background
knowledge and the following positive and negative examples:
ℰ+ = { pacifist(𝑎), pacifist(𝑏),militarist(𝑐) } ℰ− = { militarist(𝑎),militarist(𝑏), pacifist(𝑐) }

This ABA Learning problem can be solved by applying the transformation rules presented in the
previous section, according to one of the ABA Learning algorithms5 presented in recent work [3, 4, 16].

2As in [2, 3, 4], we give components of ABA frameworks as schemata, with variables in capital letters implicitly universally
quantified with scope the schemata in which they occur.

3Note that this definition, originally given for flat ABA frameworks only, naturally extends to our setting, by adopting the
notion of acceptance given earlier.

4Here we present only the instances of the rules that are sufficient to present the example in the next section. For more
extended versions, we refer to previous work [2, 3, 4].

5The specific algorithm is not relevant in our development.



By rote learning, we introduce a new (ABA) rule:6

𝜌1. pacifist(𝑋)← 𝑋=𝑎.
Then, we rewrite the rule ‘𝑞𝑢𝑎𝑘𝑒𝑟(𝑎)←’ as ‘𝑞𝑢𝑎𝑘𝑒𝑟(𝑋)← 𝑋=𝑎’ and, by folding, we replace 𝑋=𝑎
in 𝜌1 by its consequence 𝑞𝑢𝑎𝑘𝑒𝑟(𝑋). Hence, we get a generalised rule:
𝜌2. pacifist(𝑋)← 𝑞𝑢𝑎𝑘𝑒𝑟(𝑋).

Similarly, we can learn the rule:
𝜌3. militarist(𝑋)← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋).

Thus, we have learnt an ABA framework, where quakers are pacifists and republicans are not.
Suppose now that we get a new observation in the form of a new individual, e.g., nixon , who is both

a quaker and a republican. We can add the new information to the rules of the background knowledge,
thereby getting the new set of rules
ℛ′ = ℛ∪ {𝜌2, 𝜌3, quaker(nixon)←, republican(nixon)←}.

Unfortunately, the ABA framework with rules ℛ′ admits no stable extensions, as any closed exten-
sion is not conflict-free. Indeed, on one hand, from quaker(nixon), by 𝜌2, we get pacifist(nixon),
and therefore, by 𝑣𝑜𝑡𝑒𝑑(𝑋, 𝑎𝑔𝑎𝑖𝑛𝑠𝑡_𝑤𝑎𝑟)← pacifist(𝑋), we conclude 𝑣𝑜𝑡𝑒𝑑(nixon, 𝑎𝑔𝑎𝑖𝑛𝑠𝑡_𝑤𝑎𝑟).
On the other hand, from 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(nixon), by 𝜌3, we get 𝑚𝑖𝑙𝑖𝑡𝑎𝑟𝑖𝑠𝑡(nixon), and therefore, by
𝑣𝑜𝑡𝑒𝑑(𝑋, 𝑝𝑟𝑜_𝑤𝑎𝑟)← militarist(𝑋), we conclude 𝑣𝑜𝑡𝑒𝑑(nixon, 𝑝𝑟𝑜_𝑤𝑎𝑟), which is the contrary of
𝑣𝑜𝑡𝑒𝑑(nixon, 𝑎𝑔𝑎𝑖𝑛𝑠𝑡_𝑤𝑎𝑟). Thus, we can conclude neither pacifist(nixon) nor 𝑚𝑖𝑙𝑖𝑡𝑎𝑟𝑖𝑠𝑡(nixon).

We now show how to use ABA Learning, together with an act of learning from an external source,
to derive a new ABA framework 𝐹 ′′ that admits a stable extension, where either pacifist(nixon) or
militarist(nixon) is accepted. First of all, the rules learnt thus far are rendered defeasible by applying
the assumption introduction transformation and deriving the new rules:
𝜌4. pacifist(𝑋)← 𝑞𝑢𝑎𝑘𝑒𝑟(𝑋), 𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑘𝑒𝑟(𝑋)
𝜌5. militarist(𝑋)← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋), 𝑛𝑜𝑟𝑚𝑎𝑙_𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋)

where 𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑘𝑒𝑟(𝑋) and 𝑛𝑜𝑟𝑚𝑎𝑙_𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋) are new assumptions with contraries
𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑘𝑒𝑟(𝑋) = 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑘𝑒𝑟(𝑋) and
𝑛𝑜𝑟𝑚𝑎𝑙_𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋) = 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋),

respectively. Now, by rote learning, we may add one of the two rules:
𝜌6. 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑘𝑒𝑟(𝑋)← 𝑋 = nixon
𝜌7. 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋)← 𝑋 = nixon

each of which disallowing the deduction of conflicting claims about nixon . By folding, from 𝜌6 and 𝜌7,
respectively, we get:
𝜌8. 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑘𝑒𝑟(𝑋)← 𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋)
𝜌9. 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋)← 𝑞𝑢𝑎𝑘𝑒𝑟(𝑋)

The two derived ABA frameworks have rules, respectively:
ℛ∪ {𝜌4, 𝜌5, 𝜌8, quaker(nixon)←, republican(nixon)←}.
ℛ∪ {𝜌4, 𝜌5, 𝜌9, quaker(nixon)←, republican(nixon)←}.

They admit two distinct stable extensions: one accepting militarist(nixon) (and
hence 𝑣𝑜𝑡𝑒𝑑(nixon, 𝑝𝑟𝑜_𝑤𝑎𝑟)) and the other accepting pacifist(nixon) (and hence
𝑣𝑜𝑡𝑒𝑑(nixon, 𝑎𝑔𝑎𝑖𝑛𝑠𝑡_𝑤𝑎𝑟)). To decide which atom between 𝑣𝑜𝑡𝑒𝑑(nixon, 𝑝𝑟𝑜_𝑤𝑎𝑟) and
𝑣𝑜𝑡𝑒𝑑(nixon, 𝑎𝑔𝑎𝑖𝑛𝑠𝑡_𝑤𝑎𝑟) should be accepted, we assume that we can issue an action and
consult the past voting record for nixon . In general, we assume that (some of) the assumptions are
actionable,that is, they correspond to actions resulting in the acquisition (or rejection) as valid facts of
the background knowledge. Suppose that, in our example, the inquiry of nixon’s record established
𝑣𝑜𝑡𝑒𝑑(nixon, 𝑝𝑟𝑜_𝑤𝑎𝑟). Then, by rote learning, we add the rule:

𝜌10. 𝑣𝑜𝑡𝑒𝑑(𝑋,𝑌 )← 𝑋=nixon, 𝑌 =𝑝𝑟𝑜_𝑤𝑎𝑟.
6We assign identifiers 𝜌𝑖 to rules for ease of reference.



This last step can be seen as the result of an active learning step. By doing so, we obtain an ABA
framework 𝐹 ′′ with ℛ′′ = ℛ ∪ {𝜌4, 𝜌5, 𝜌8, 𝜌10, quaker(nixon) ←, republican(nixon) ←}, 𝒜′′ =
𝒜∪ {𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑞𝑢𝑎𝑘𝑒𝑟(𝑋), 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙_𝑟𝑒𝑝𝑢𝑏𝑙𝑖𝑐𝑎𝑛(𝑋)}, and the contrary mapping extended to the
new assumptions as indicated above. 𝐹 ′′ has a single stable extension, which accepts the conclusion
militarist(nixon).

4. Vision E+, E-, ABAFBK

actionsobservations
Agentified

ABA
Learning

ABAF (predicted) claims

Figure 1: Agentified ABA Learning reasons
with the learnt ABAF to determine ac-
tions (assumptions) to be performed
in the environment and observes the
outcomes of those actions to update
its ABAF.

Figure 1 summarizes the approach to agentified ABA
Learning that we propose in this paper. Conventional
ABA Learning, in its original formulation [2, 3, 4, 16],
is depicted in the upper part of the figure: it takes pos-
itive and negative examples and a background knowl-
edge to generate an ABA framework (ABAF, for short)
from which the acceptability of claims, with respect to
a given semantics, can be predicted. This process dis-
regards the interaction with the external environment.
Agentified ABA Learning aims to enhance this simple
schema, and enable ABA Learning to empower agent
interactions with the external environment. This may
possibly include other agents, humans as well as data
repositories, as depicted in the bottom part of Figure 1.
We advocate two main novelties: 1) the reliance on
non-flat ABAF (whereas originally ABA Learning only considered flat ABAF); and 2) the treatment
of some assumptions as actions to be executed in the environment. These actions are autonomously
identified to guarantee predictions for previously unseen cases and result in the addition of rules with
assumptions as heads to the learnt ABAF, by adapting the same ABA learning process.

5. Conclusions

We have proposed a novel vision for argumentative agents that can learn from examples while au-
tonomously deciding on actions to be executed in their environment to generate targeted expansions
of their knowledge. These argumentative agents are supported by an enhancement of ABA Learning,
leveraging on non-flat ABA frameworks.

Much future work is ahead of us. First, we need to formally define the enhanced ABA Learning
algorithm, catering in particular non-flat ABA frameworks. Second, there is substantial work to be
done to realise our approach. To this extent, we plan to use the recent understanding of non-flat ABA
frameworks as denial integrity constraints [13] to extend the existing ASP-based implementations of
conventional ABA Learning [3, 4]. Third, we plan to explore the use of the enhanced ABA Learning
in different types of environment (with humans and/or data repositories and/or other agents), which
will require different approaches to render assumptions actionable. For example, if the environment
amounts to a human user, then actionability will amount to a conversation with the user that may
benefit from a Large Language Model. Lastly, it would be interesting to relate agentified ABA Learning
to argumentative forms of contestable AI [17, 18], given that the interactions with the environment can
be interpreted as contestations that need redressing via argumentative learning.
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