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Abstract
Academic Search is a search task aimed to manage and retrieve scientific documents like journal articles and
conference papers. Personalization in this context meets individual researchers’ needs by leveraging, through user
profiles, the user related information (e.g. documents authored by a researcher), to improve search effectiveness
and to reduce the information overload. While citation graphs are a valuable means to support the outcome
of recommender systems, their use in personalized academic search (with, e.g. nodes as papers and edges as
citations) is still under-explored.

Existing personalized models for academic search often struggle to fully capture users’ academic interests. To
address this, we propose a two-step approach: first, training a neural language model for retrieval, then converting
the academic graph into a knowledge graph and embedding it into a shared semantic space with the language
model using translational embedding techniques. This allows user models to capture both explicit relationships
and hidden structures in citation graphs and paper content. We evaluate our approach in four academic search
domains, outperforming traditional graph-based and personalized models in three out of four, with up to a 10%
improvement in MAP@100 over the second-best model. This highlights the potential of knowledge graph-based
user models to enhance retrieval effectiveness.
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1. Introduction

Academic search aims to retrieve relevant scientific documents, such as journal articles and conference
papers, from large repositories, based on queries, generally, formulated by researchers, students or
professionals with specific information need. While traditional retrieval systems focus on global
relevance signals, they often overlook individual users’ research profiles. Personalized academic search
addresses this gap by tailoring results to each user’s expertise and preferences. This task becomes
particularly significant in domains like scientific research, where users develop long-term, domain-
specific interests.
Despite increasing interest in personalized IR [2, 3, 4, 5, 6, 7, 8, 9, 10, 11], existing academic search

methods underutilize structured bibliographic information such as citation networks to personalize
search results. We propose PARK [1], Personalized Academic Retrieval with Knowledge Graphs, a novel
framework for personalized academic search. PARK leverages citation graphs and neural language
models to construct user embeddings and re-rank documents based on both semantic and structural
similarity. PARK aligns the neural language models with knowledge graphs using a two-stage modeling
strategy: (1) training a bi-encoder neural retrieval model for text relevance on an academic search
dataset, and (2) learning knowledge graph embeddings from a citation-derived graph using TransE [12]
and TransH [13]. By integrating these components, PARK achieves state-of-the-art performance in
personalized retrieval across multiple academic domains.
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2. PARK Architecture
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Figure 1: Overview of the PARK retrieval pipeline (Figure 1 from [1]).

As depicted in Figure 1, the architecture includes two main components:

• Retrieval Model: A two-stage IR pipeline using BM25 [14] for an efficient first stage document
retrieval and a following second stage based on bi-encoder dense neural model (MiniLM) [15] for
re-ranking.

• User Model: The proposed user model based on knowledge graph embeddings, which computes
user similarity scores, reflecting the alignment of research profiles and interests of the user issuing
the query and the authors of the documents retrieved by the first stage retriever.

The neural bi-encoder model is trained by minimizing the distance between the query representation
and the associated relevant document representations while increasing the distance between the query
representation and the non relevant documents representations using the Triplet Margin Loss [16].
The final score for each document is given by a weighted combination of:

• BM25(𝑞, 𝑑): lexical similarity.
• Dense(𝑞, 𝑑): semantic similarity from the neural model.
• UserSim(𝑢, 𝑎𝑑): cosine similarity between the user embedding and the authors of document 𝑑 in
the knowledge graph embedding.

𝑆(𝑞, 𝑑) = 𝜆1 ⋅ BM25(𝑞, 𝑑) + 𝜆2 ⋅ Dense(𝑞, 𝑑) + 𝜆3 ⋅ UserSim(𝑢, 𝑎𝑑) (1)

with 𝜆1 + 𝜆2 + 𝜆3 = 1 and 𝜆𝑖 are optimized on a validation split.

3. User Modeling with Knowledge Graphs

PARK encodes the authors in a vector space shared with the language model in order to capture both
bibliographic structure and textual semantics.

Academic Knowledge Graph Construction Starting from a citation graph (papers as nodes;
citations as directed edges), we build a heterogeneous Knowledge Graph (KG) with four node types and
five relations:

• Nodes: Author (user), Document (paper), Venue (conference or journal), and Affiliation (institu-
tion)

• Relations: wrote: Author→ Document, cited: Document → Document, co_author: Author↔
Author, in_venue: Document → Venue, and affiliated: Author→ Affiliation
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Figure 2: Overview of the process to obtain user embeddings from the citation Graph. The first step converts
the Citation Graph to an Academic Knowledge Graph, and the second step embeds the Academic Knowledge
Graph according to the proposed techniques.

Embedding Strategy We embed the KG into the same 𝑑-dimensional latent space as our neural
retriever (MiniLM):

1. Document nodes are initialized with fixed embeddings from the pre-trained MiniLM encoder.
2. Other nodes (authors, venues, affiliations) and all relations are jointly embedded using: TransE

[12] for PARK-E, TransH [13] for PARK-H

Fixing document embeddings preserves their semantic features, while TransE/TransH learn to position
authors and entities relative to these fixed points, aligning structural properties of KG with the textual
signals from the retrieval model.

User Embeddings & Scoring Each author 𝑢 is represented by their learned KG embedding. At query
time, we compute the user similarity score as the cosine similarity between the user embeddings of the
query issuer and the authors of the documents being scored. The score reflects the alignment of the
research profiles and interests of the user issuing the query and the authors of the paper being scored.
This score is integrated into our final ranking formula (Eq. 1).

4. Evaluation

The system is evaluated on four datasets specifically designed for evaluating model in the context
of personalized academic search (Computer Science, Political Science, Psychology, and Physics) [17].
We compare against the following baselines: BM25 [14], MiniLM [15], Mean [17], Attention [18],
Self Citation, CrossEncRA [3], CTRLIt [19], PageRank [20], POP (Popularity) [17]. We evaluate with
MAP@100, MRR@10, and NDCG@10. A convex sum of normalized scores ensures fair comparison
across models. The code is made publicly available1.

PARK outperforms all baselines in Political Science, Psychology, and Physics (Table 1). In Computer
Science, the POP baseline remains competitive due to the high predictive value of citation counts.
Overall, PARK demonstrates robust effectiveness across diverse disciplines.

5. Ablation Study

To understand the contribution of node types in the knowledge graph, we conduct an ablation study
using PARK-H (Table 2). The goal was to evaluate the effect of each node type (user, venue, and
affiliation) and their associated relations on the model’s retrieval performance. Results in Table 2
indicate:

• Using only user nodes yields substantial gains over baseline.

1https://github.com/pkasela/PARK-Personalized_Academic_Retrieval_with_Knowledge-graphs

https://github.com/pkasela/PARK-Personalized_Academic_Retrieval_with_Knowledge-graphs


Table 1
Effectivess of PARK-E and PARK-H compared to the competingmethods on the four datasets. The best-performing
model is highlighted in boldface. Symbol * indicates a statistically significant difference over the second-best-
performing model.

Computer Science Political Science Psychology Physics

Model MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10

BM25 0.123 0.489 0.225 0.133 0.502 0.241 0.126 0.512 0.239 0.128 0.537 0.269
MiniLM 0.193 0.600 0.301 0.186 0.580 0.297 0.218 0.647 0.342 0.183 0.624 0.335
Mean 0.199 0.606 0.308 0.193 0.598 0.306 0.220 0.652 0.347 0.189 0.639 0.345

Attention 0.201 0.612 0.312 0.199 0.612 0.314 0.220 0.656 0.349 0.190 0.648 0.348
Self Citation 0.213 0.624 0.325 0.205 0.613 0.321 0.237 0.689 0.370 0.204 0.671 0.365

CTRLIt - 0.629 0.322 - 0.648 0.338 - 0.685 0.370 - 0.667 0.366
CrossEncRA - 0.635 0.324 - 0.651 0.338 - 0.700 0.380 - 0.673 0.369
PageRank 0.213 0.644 0.331 0.203 0.622 0.324 0.230 0.670 0.360 0.189 0.636 0.346

POP 0.238* 0.684* 0.370* 0.214 0.649 0.345 0.225 0.656 0.356 0.206 0.670 0.370

PARK-E 0.228 0.651 0.344 0.232 0.661 0.356 0.261* 0.716* 0.397* 0.225 0.695 0.391
PARK-H 0.230 0.655 0.346 0.233* 0.662* 0.357* 0.255 0.712 0.392 0.225* 0.696* 0.391*

• Adding venue nodes provides minimal additional improvement.
• Including affiliation nodes significantly boosts performance in all domains, confirming the value
of institutional context.

Table 2
Ablation study results for each node type on four datasets.

Computer Science Political Science Psychology Physics
Node Types MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10 MAP@100 MRR@10 NDCG@10
Only User 0.223 0.644 0.336 0.220 0.637 0.343 0.244 0.693 0.379 0.221 0.686 0.383

↱ + Venue 0.225 0.642 0.337 0.225 0.646 0.348 0.247 0.694 0.381 0.222 0.686 0.383
↱ + Affiliation 0.230 0.655 0.346 0.233 0.662 0.357 0.255 0.712 0.392 0.225 0.696 0.391

6. Discussion and Future Work

PARK demonstrates how knowledge graph-based user embeddings, when aligned with neural document
encoders, can improve personalized academic search. By representing academic entities in a unified
latent space, PARK captures both explicit citation relationships and latent author-topic patterns.
While PARK performs well across most domains, limitations remain. The use of fixed document

embeddings may limit adaptability, and citation coverage biases could affect robustness. Future work
will explore: softening constraints on document embeddings; integrating popularity-based priors for
domains like CS; and adapting to open-world or streaming academic corpora.

Overall, PARK advances the state-of-the-art in personalized academic search by combining structured
knowledge with dense text representations.
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