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Abstract

Recent advances in Information Retrieval (IR) have utilized high-dimensional embedding spaces to enhance
the retrieval of relevant documents. The Manifold Clustering Hypothesis suggests that, although document
embeddings are high-dimensional, the documents relevant to a specific query lie on a lower-dimensional manifold
that depends on the query. This idea has motivated new retrieval methods, but current approaches still find it
hard to clearly separate relevant signals from irrelevant noise. To address this issue, we present a new method
called Eclipse, which uses information from both relevant and non-relevant documents. Our method calculates a
centroid from the non-relevant documents and uses it as a reference to detect and estimate noisy dimensions
in the relevant ones, leading to better retrieval results. Extensive experiments on three in-domain and one
out-of-domain benchmarks demonstrate an average improvement of up to 21.03% (resp. 22.88%) in mAP(AP)
and 12.04% (resp. 14.18%) in nDCG@10 w.r.t. the DIME-based baseline (resp. the baseline using all dimensions).
Our results pave the way for more robust, pseudo-irrelevance-based retrieval systems in future IR research. We
make the code available on Github1.
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1. Introduction

Dense retrieval models [17, 12, 18] embed queries and documents into a latent space with many
dimensions, where vector similarities capture nuanced semantic relationships [19, 20]. However, while
some dimensions encode meaningful semantic distinctions, others may introduce noise or contain
non-discriminative information [7, 1, 4]. To address this issue, Dimension Importance Estimation
(DIME) [14] was developed to identify and retain only the most informative dimensions, aiming to
enhance retrieval performance by filtering out those that either contribute little or mostly capture noise
[2, 8, 21]. Although DIME emphasizes relevant dimensions, the impact of irrelevant dimensions-those
that add noise or non-discriminative information-remains largely unexplored. Existing methods, such as
Rocchio’s algorithm [26], show that improving a query involves adjusting it to be more centered around
relevant documents, while also making it as far away as possible from irrelevant documents. We identify
that explicitly modeling both relevant and irrelevant feedback can significantly improve dimension
selection, thus improving dense retrieval performance. We introduce Eclipse, a novel method that
utilizes representations of both relevant and irrelevant documents to more accurately identify important
dimensions. In this paper, we explore how leveraging non-relevant documents through irrelevant
feedback can improve state-of-the-art DIME approaches. We evaluate ECLIPSE across state-of-the-art
TREC collections (Deep Learning 2019 [10], 2020 [9], DL-HARD 2021 [22], and Robust 2004 [28]),
demonstrating improvements of up to 21.03% (resp. 22.88%) in mAP(AP) and 12.04% (resp. 14.18%)
in nDCG@10 w.r.t the DIME-based baseline (resp. the baseline using all dimensions).
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2. Background and Preliminaries

In this section, we begin by outlining the classical Relevance Feedback model introduced by Rocchio
[26], followed by a comprehensive overview of the Dimension Importance Estimation paradigm.
Rocchio. Rocchio’s algorithm is a foundational method in information retrieval, refining query

vectors by pulling them toward relevant documents and pushing them away from irrelevant ones. As
modern IR systems rely on high-dimensional embeddings, moving beyond traditional vector space
models requires exploring how to identify an optimal subset of query dimensions, rather than solely
optimizing entire query vectors.
Dimension Importance Estimation (DIME). Faggioli et al. suggest that queries and documents

exist in a lower-dimensional, query-dependent subspace of their high-dimensional latent space R𝑑. By
projecting embeddings onto this subspace, a dense IR system can retain only the most informative
dimensions for distinguishing relevance. DIMEs assign importance scores to dimensions using a query-
dependent function. This score allows the system to rank the dimensions, retaining those with higher
scores and discarding the less important ones. The selected dimensions thus form a low-dimensional,
query-dependent subspace of R𝑑. Two methods for estimating the importance of dimensions are PRF
DIME and LLM DIME. The PRF DIME method utilizes pseudo-relevance feedback by assuming that the
top-𝑘 documents retrieved by a similarity measure, such as BM25 [25], are likely relevant to the query
[26, 30]. These documents are combined into a centroid vector p used to captures the alignment to the
query q, helping to rank and select the most relevant dimensions. LLM DIME, on the other hand, uses
a synthetic document a, generated by an LLM [12, 24, 16, 23, 3, 5, 27], assumed to be relevant to the
query.

3. Our Method: Eclipse

In this section we introduce Eclipse, a novel framework designed to improve dense vector retrieval by
including non-relevant documents in the decision-making of dimension importance estimation.

Formally, for a given query q ∈ R𝑑, which is embedded in a latent space using a bi-encoder, we follow
the same procedure as in DIME to retrieve a set of 𝑘 documents from the corpus. These documents are
ranked using similarity measures such as cosine similarity or inner product. This set of documents,
denoted as 𝒟𝑞 = {d1,d2, . . . ,d𝑘}, contains pseudo-relevant documents, whose content captures
mainly relevant information and typically found at the top positions, and potentially pseudo-irrelevant
documents at the bottom positions, whose content captures mainly irrelevant information. Now, fixing
a parameter 0 < 𝑘− < 𝑘, we can define pseudo-irrelevant feedback by aggregating the embeddings of
the bottom 𝑘− documents in 𝒟𝑞 into an irrelevant representative embedding p as:

p =
1

𝑘−

𝑘−−1∑︁
𝑖=0

d𝑘−𝑖.

We define Eclipse as a weighted difference between a pseudo-relevant representative embedding p*

and the irrelevant representative embedding p as:

𝑢*𝑞(𝑖) = 𝛼(q𝑖 · p*
𝑖 )− 𝛽(q𝑖 · p𝑖). (1)

In Eq. (1), the embedding p* depends on the original DIME used to compute the relevant signal. This
formulation allows for the extension of any framework of DIME. Using pseudo-relevant feedback we
can instantiate the vector p𝑃𝑅𝐹 by aggregating the top 0 < 𝑘+ < 𝑘 − 𝑘− document embeddings from
𝒟𝑞 as: p𝑃𝑅𝐹 = 1

𝑘+

∑︀𝑘+

𝑖=1 d𝑖.
We can also instantiate an LLM-based approach using the following pipeline: (1) Zero-shot prompt-

ing an LLM using the query 𝑞; (2) Use an encoder to embed the generated text into a latent vector
representation a ∈ R𝑑; (3) Set p𝐿𝐿𝑀 = a.



Table 1

Effectiveness metrics of our methods Eclipse (𝑢𝑃𝑅𝐹
, 𝑢𝐿𝐿𝑀

) and baselines on different query sets and bi-

encoders. In bold, the best performance observed for each triple IR system, test collection, and evaluation

measure. Superscripts
a

and
b

indicate that the result is statistically significantly (p < 0.05) better than Baseline

or standard DIMEs, respectively.

AP nDCG@10 AP nDCG@10

Retained 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1 0.2 0.4 0.6 0.8 1

DL ’19 DL ’20

ANCE

𝑢𝑃𝑅𝐹
.032 .253 .339 .370 .082 .552 .639 .657 .083 .287 .364 .390 .154 .541 .616 .651

𝑢𝐿𝐿𝑀
.039 .267 .351 .370 .361 .104 .570 .660 .663 .645 .086 .281 .372 .397 .392 .174 .533 .622 .658 .646

𝑢𝑃𝑅𝐹
.264

b
.361

b
.400

ab
.412

ab
.540

b
.624

b
.658

b
.674

a
.270

b
.364

b
.399

b
.413

ab
.477

b
.607

b
.627 .637

𝑢𝐿𝐿𝑀
.239

b
.380

b
.415

ab
.435

ab
.507

b
.684

b
.719

ab
.702

ab
.243

b
.346

b
.399

ab
.417

b
.350

b
.578 .633

a
.669

Contriever

𝑢𝑃𝑅𝐹
.497 .507 .511 .509 .675 .683 .692 .689 .484 .489 .497 .495 .713 .701 .704 .693

𝑢𝐿𝐿𝑀
.522 .523 .521 .519 .494 .731 .736 .733 .745 .677 .491 .500 .504 .501 .478 .697 .695 .697 .689 .666

𝑢𝑃𝑅𝐹
.523 .535

ab
.542

ab
.535

ab
.696 .710 .701 .704 .492 .509

ab
.509

a
.511

ab
.716

a
.706

a
.700

a
.696

a

𝑢𝐿𝐿𝑀
.534 .554

ab
.558

ab
.547

ab
.734

a
.747

ab
.749

ab
.751

a
.497

a
.510

ab
.517

ab
.511

ab
.686 .688 .704

a
.709

ab

TAS-B

𝑢𝑃𝑅𝐹
.496 .509 .512 .507 .725 .737 .738 .735 .473 .486 .489 .489 .698 .705 .712 .706

𝑢𝐿𝐿𝑀
.509 .527 .520 .514 .476 .748 .762 .758 .757 .719 .469 .495 .494 .495 .475 .693 .697 .697 .705 .685

𝑢𝑃𝑅𝐹
.523

ab
.547

ab
.548

ab
.542

ab
.734 .745

a
.735 .736 .472 .501

ab
.510

ab
.506

ab
.697 .726

ab
.720

a
.717

a

𝑢𝐿𝐿𝑀
.514 .544

a
.557

ab
.545

ab
.750 .775

ab
.771

ab
.769

ab
.470 .503

a
.510

ab
.512

ab
.676 .701 .702 .716

a

DL HD RB ’04

ANCE

𝑢𝑃𝑅𝐹
.019 .128 .176 .180 .057 .278 .340 .335 .015 .084 .135 .148 .055 .269 .357 .383

𝑢𝐿𝐿𝑀
.014 .125 .172 .186 .180 .040 .253 .329 .346 .334 .015 .082 .137 .148 .146 .063 .257 .381 .392 .385

𝑢𝑃𝑅𝐹
.105

b
.168

b
.183 .195

ab
.220

b
.324

b
.333 .349 .106

b
.147

b
.172

ab
.179

ab
.255

b
.362

b
.390

b
.405

ab

𝑢𝐿𝐿𝑀
.122

b
.172

b
.200

b
.214

a
.239

b
.318

b
.353 .370

a
.065

b
.124

b
.161

ab
.175

ab
.226

b
.356

b
.419

ab
.439

ab

Contriever

𝑢𝑃𝑅𝐹
.247 .255 .252 .251 .395 .393 .387 .384 .243 .254 .256 .257 .476 .489 .491 .492

𝑢𝐿𝐿𝑀
.256 .259 .262 .261 .241 .377 .376 .390 .392 .375 .253 .263 .261 .259 .239 .516 .527 .519 .517 .480

𝑢𝑃𝑅𝐹
.243 .260 .277

ab
.274

ab
.380 .402

a
.410

ab
.408

ab
.256

ab
.267

ab
.269

ab
.266

ab
.479 .492 .496

a
.501

ab

𝑢𝐿𝐿𝑀
.248 .271 .274

a
.267

a
.367 .390 .400 .392 .254

a
.264

a
.262

a
.261

ab
.516

a
.526

a
.529

ab
.520

a

TAS-B

𝑢𝑃𝑅𝐹
.235 .243 .250 .256 .366 .383 .388 .394 .199 .219 .224 .222 .418 .442 .448 .448

𝑢𝐿𝐿𝑀
.257 .261 .265 .260 .238 .389 .402 .408 .395 .374 .177 .214 .218 .218 .197 .428 .466 .469 .467 .428

𝑢𝑃𝑅𝐹
.261

b
.275

ab
.279

ab
.278

ab
.385 .408

ab
.421

ab
.410

a
.222

ab
.232

ab
.233

ab
.232

ab
.440

b
.446

a
.451

a
.458

a

𝑢𝐿𝐿𝑀
.267 .282

ab
.285

ab
.279

ab
.385 .410

a
.407 .423

ab
.189

b
.206

a
.216

a
.222

a
.433 .456

a
.467

a
.475

a

Lastly, the parameters 𝛼, 𝛽 ∈ R control the balance between the relevant and irrelevant document
signals. Rather than using a convex combination, we apply independent weighting to each term. This
method provides greater flexibility and demonstrates superior performance in our experiments.

4. Experimental Setup

In our experiments, we compare our proposed Eclipse against the state-of-the-art DIMEs for dense IR
systems. We experiment with three dense retrieval models: ANCE [29], Contriever [16], and TAS-B
[15], all of which have been fine-tuned using the MS MARCO [6] passage dataset.

Datasets. We evaluate our methodology on three widely used benchmark collections for in-domain
evaluation: TREC Deep Learning 2019 (DL ’19) [10], TREC Deep Learning 2020 (DL ’20) [9], and Deep
Learning Hard (DL HD) [22]. To assess the robustness we further evaluate Eclipse on out-of-domain
data based on the TREC Robust ’04 (RB ’04) collection [28]. We evaluate the systems using standard
metrics such as mean Average Precision (AP) and nDCG@10.
Hyperparameters. We define four primary hyperparameters that influence different aspects of

the model’s decision-making process: 𝑘+, 𝑘−, 𝛼, and 𝛽. The parameter 𝑘+ ∈ {1, . . . , 10} (resp. 𝑘− ∈
{1, . . . , 14}) determines the number of relevant (resp. irrelevant) documents, used to build our pseudo-
relevance embeddings. The hyperparameter 𝛼 controls the strength of the relevant representative
embedding, while 𝛽 modulates the denoising effect of the irrelevant representative embedding. Both
are positive values increasing linearly from 0.1 up to 1. For combinations where 𝛼 = 𝛽 we test the base
case of 𝛼 = 𝛽 = 1.
Baselines. We compare our method to standard DIMEs, PRF DIME and LLM DIME. We use GPT4

[13] as LLM in our experiments. We will refer to the dense IR system at full dimensionality as Baseline.
All the DIMEs, including Eclipse version, use a retrieved collection of documents 𝒟𝑞 of size 1, 000.



Table 2

Percentage improvement in Recall from LLM DIME to LLM Eclipse at different relevance levels for various

bi-encoders across multiple datasets. Low relevance = 1, Medium relevance = 2, High relevance = 3.

DL ’19 DL ’20 DL HD RB ’04

Relevance Low Medium High Low Medium High Low Medium High Low High

ANCE 16.91 12.86 8.74 2.43 2.34 2.10 15.65 0.09 1.35 12.78 6.53

Contriever 4.72 1.56 2.80 -1.49 -0.24 -0.20 4.53 0.75 -1.14 0.33 1.18

TAS-B 3.16 1.14 1.75 1.52 0.41 0.09 0.82 1.57 -0.85 0.39 1.33

5. Experiments

In our experiments, we investigate the following research questions: RQ1: Can non-relevant documents
be leveraged using irrelevant feedback to improve state-of-the-art DIME approaches? RQ2: Are metrics
of the retrieval pipeline impacted differently by nonrelevant results when used for dimension importance
estimation?
Results for RQ1: Table 1 compare both versions of Eclipse with standard DIMEs (PRF and LLM) on
the TREC DL ’19, DL ’20, DH, and RB ’04 datasets, using the ANCE, Contriever, and TAS-B models.
We report the performance using the best configuration for all the DIMEs (standards and Eclipse ) in
the table. The most interesting results is over ANCE, where Eclipsereduce the percentage of retained
dimensions needed to surpass the baseline when using all the dimensions to just 40-60%, demonstrating
that explicitly modeling both positive and negative feedback in the DIME framework yields a robust
improvement. The gains are especially notable, with improvements of 21.03% in AP and 12.04% in
nDCG@10 relative to DIMEs, and even higher margins over the standard baseline: 22.88% (AP) and
14.18% (nDCG@10).

Eclipse exhibits superior performance in the traditional evaluation protocol, improving performance
up to 21.03% (resp. 22.88%) in AP and 12.04% (resp. 14.18%) in nDCG@10 w.r.t. the DIME-based
baseline (resp. the baseline using all dimensions). In particular, both PRF Eclipse and LLM Eclipse
show statistically significant improvement with respect to their DIME counterparts and Baseline.
Results for RQ2: To understand how the presence of nonrelevant documents in the dimension

importance estimation pipeline affects different aspects of the retrieval pipeline, we analyzed the recall
performance of LLM Eclipse compared the standard LLM DIME. Table 2 demonstrates that LLM Eclipse
achieves consistent recall improvements over LLM DIME across multiple datasets and bi-encoders, with
the most notable gains observed for low and medium relevance documents. This effect is especially
pronounced in the DL collections, where recall increases of up to 16.91% are observed for marginally
relevant documents. As a result, this explain why LLM Eclipse yields a larger boost in AP, which is
sensitive to recall across all relevance levels. In contrast, improvements in nDCG@10 are more modest,
reflecting the smaller gains for highly relevant documents that dominate the top-ranked results.

6. Conclusion and Future Work

We present Eclipse, a novel method designed to enhance dense retrieval by exploiting pseudo-irrelevant
feedback. This approach offers improved separation between relevant and non-relevant dimensions
within document embeddings. Unlike conventional DIME methods that rely solely on relevance signals,
Eclipse introduces a contrastive perspective by utilizing irrelevant documents.

Eclipse achieves an average improvement of up to 21.03% (and 22.88% for AP) and 12.04% (and 14.18%
for nDCG@10) compared to the DIME-based baseline (and the baseline using all dimensions).

By emphasizing relevant embedding dimensions, Eclipse promotes moderately relevant documents
within the ranking, leading to marked gains in AP. Future research should focus on predicting a unique
percentage of retained dimensions for each queries. Another unexplored section is the use of irrelevant
documents generated by LLMs as a substitute for human-generated documents.
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