
Comparing LLMs and Traditional Privacy
Measures to Evaluate Query Obfuscation Approaches⋆

Francesco Luigi, De Faveri1, Guglielmo, Faggioli1 and Nicola, Ferro1

1Department of Information Engineering, University of Padova, Padova, Italy

Abstract
When interacting with Information Retrieval (IR) systems, users may inadvertently disclose sensitive personal
information, such as medical conditions, through their search queries. Therefore, evaluating the privacy these
queries afford during the retrieval process is critical. Query obfuscation has traditionally been employed to hide a
user’s information need by modifying the original query. 𝜀-Differential Privacy (𝜀-DP) mechanisms perturb query
terms by a privacy budget 𝜀 and guarantee a grounded in mathematical proofs of privacy. However, 𝜀 does not fully
capture the user’s subjective experience of privacy, needing additional empirical tests. Privacy assessments typically
rely on lexical and semantic similarity measures to quantify the difference between the original and obfuscated
queries. In this work, we investigate how Large Language Models (LLMs) can be used to perform a privacy evaluation
in such scenarios. Our central research question is whether LLMs can offer a new lens through which privacy can be
assessed, and whether their scores correlate with similarity-based metrics, such as Jaccard similarity and cosine sim-
ilarity between text embeddings. Our experimental results show a strong positive correlation between LLM-derived
privacy assessments and cosine similarity values computed with different Transformers. These findings suggest
that LLMs can effectively serve as proxies for traditional similarity measures in the context of privacy evaluation.
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1. Introduction

Users frequently disclose sensitive information—such as medical symptoms—when interacting with
search engines, social platforms, or smart devices, often compromising their privacy [2, 3, 4, 5]. Ensuring
adequate privacy protections in Information Retrieval (IR) systems is therefore essential to comply with
regulations like the GDPR [6, 7]. 𝜀-Differential Privacy (DP) [8] offers formal guarantees by injecting
noise into data, with the privacy budget 𝜀 controlling the trade-off between utility and protection.

However, the actual privacy experienced by users depends not only on 𝜀 but also on other factors
such as data distribution and processing characteristics [9, 10], making empirical evaluation necessary.
In this work, we investigate the use of Large Language Models (LLMs) as pseudo-assessors to evaluate
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Figure 1: Example of employing LLMs to evaluate query obfuscations, justifying to users the assigned score.

the effectiveness of query obfuscation mechanisms (Figure 1). After obfuscating a query using an 𝜀-DP
mechanism, we prompt an LLM to judge whether the resulting text still reveals the original need. Our
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contributions are threefold: (i) we formalise the task of evaluating actual textual obfuscation, (ii) we
propose LLM-based privacy evaluation as a proxy to traditional privacy metrics, and (iii) we show that
LLM-generated scores correlate with established measures such as lexical and semantic similarity. LLM
scores tend to integrate semantic and lexical aspects, offering a broader view of privacy evaluation.

2. Background

Query Obfuscation Protocol. Query obfuscation protocols [11, 12, 13] are a class of privacy
preserving strategies used to protect user information when interacting with IR systems. These protocols
work under the assumption that the IR system is non-collaborative towards protecting user privacy,
i.e., it does not implement any privacy mechanism to safeguard sensitive information needs. On the
client side, considered safe, the text of the original query is transformed by an obfuscation mechanism,
i.e., an algorithm that accepts the query text as input, masks the original information need, and outputs
one or more obfuscated queries. The obfuscated queries are submitted to the IR system, unsafe, and
retrieve and rank the documents in response to such queries. The 𝜀-DP framework [8] provides a formal
definition of privacy to the text, ensuring the privacy of the texts by employing randomisation during
the query obfuscation phase. The level of formal privacy is controlled by the Privacy Budget parameter
𝜀∈R+, which regulates the amount of statistical noise added query terms [14, 15, 16] or influences the
sampling probabilities for generating obfuscated terms [17, 18, 19, 20]. 𝜀 cannot be considered a perfect
proxy of the actual privacy experienced [21], as its effects depend on several aspects.

PrivacyMeasures. Assessing the privacy provided by an 𝜀-DP mechanism remains a well-established
challenge within the research community [9, 10]. Wagner and Eckhoff [9] define a set of aspects to assess
the obfuscations of a mechanism: lexical similarity, semantic similarity and failure rates. Lexical similarity
quantifies the term overlap between the original and the obfuscated texts. This metric is typically
assessed using indicators such as the Jaccard Score, BLEU [22], and ROUGE [23]. On the other hand, the
semantic similarity usually employs Transformers [24] or BERT Scores [25, 26]. Specifically, considering
a Transformer 𝒯 , the semantic similarity between the original and obfuscated text, respectively 𝑞 and 𝑞̃,
is computed as the cosine similarity 𝑐𝑠 between the embeddings in the latent space, i.e., 𝑐𝑠= 𝒯 (𝑞)·𝒯 (𝑞̃)

‖𝒯 (𝑞)‖‖𝒯 (𝑞̃)‖ .
Failure rates [27, 28], i.e., 𝑁𝑤 and 𝑆𝑤, measure the probability of masking a word 𝑤 with itself (𝑁𝑤)
and the size of the words that are used to mask the same term (𝑆𝑤). Notice that, these measures are
useful only for word-level obfuscation mechanisms and completely neglect the fact that a word can
be obfuscated with a synonym.

3. Privacy Assessments Generation

When determining if the query’s text has been obfuscated, multiple aspects should be considered. For
instance, minor modifications–such as altering a few characters in a term or changing the term order–can
significantly alter the text’s overall meaning. Conversely, two sentences may differ syntactically while
retaining the same semantic meaning. Traditional privacy evaluation metrics based on lexical similarity
between original and obfuscated queries can be trivially fooled using synonyms to replace the query
terms. Conversely, semantic similarity measured by transformers can be more robust towards identifying
the similarities between texts. However, employing Transformers to determine whether a text has been
obfuscated presents limitations when the text is rephrased. For example, encoding the sentences “Mr.
Doe was born in 1985 and lives in LA.” and “John D., in his 40s, lives in Los Angeles.” using MiniLM [26]
and computing the cosine similarity between their embeddings is 0.56, which poorly reflects the absence
of privacy if we obfuscate the first sentence with the second. Despite reducing the cosine between the
two texts, rephrasing a sentence does not ensure adequate privacy.



Prompt Template

“Evaluate the information leakage from the original text to the obfuscated texts, providing a justification for each

score given. Consider lexical and semantic similarities between original and obfuscated texts. The score should be

an integer/float between min and Max, where min indicates no information leakage, and Max indicates complete

information leakage. The original text is: original_text. The obfuscated texts are: obfuscated_texts.”

On a different research line, when it comes to IR evaluation, several studies [29, 30, 31, 32] investigated
the possibility of using LLMs to judge relevance. However, to the best of our knowledge, no prior research
has explored the application of LLMs for privacy assessments of textual data. To address this gap, we
propose leveraging LLMs to assess privacy, providing the first experimental insights into the LLMs
’s capabilities for understanding privacy, limiting assessment costs and time. In this task, both lexical
and contextual aspects—traditionally considered in privacy relevance assessments [33, 34]—must be
jointly analysed to understand the extent of information leakage from obfuscated versions of queries.
Thus, we develop a prompt to ask a LLM to evaluate the privacy levels attained by an obfuscated query
compared to the original one, extending beyond conventional evaluation metrics. This template takes
the original_text as the reference and the obfuscated_texts as a set of corresponding obfuscated
versions. Additionally, it specifies the expected output score domain (integer or floating values) and
the key aspects to consider when evaluating privacy, i.e., lexical and contextual similarity. The template
also requires justification with each score assigned by the LLM, ensuring a wide leakage assessment.

4. Experimental Evaluation

To empirically test the methodology1, we consider two TREC collections MSMARCO Deep Learning
2019 track (DL’19)[35], consisting of 43 queries, and the TREC Medline 2004 collection (Med’04) [36],
comprising 50 queries. Adopting the Med‘04 queries represents a real obfuscation scenario, where the
user is interested in finding information about a disease and, thus, aims to protect the confidentiality
of the queries. We employ the pyPANTERA Python package[37] applying four state-of-the-art DP
mechanisms implemented in it, namely Cumulative Multivariate Perturbation (CMP) [16], Mahalanobis
perturbation [14], and their respective Vickrey’s variants [15]. We selected two open-source LLMs, i.e.,
one reasoning-oriented model, DeepSeek-R1 [38]-distill-Llama70b a fine-tuned version of Llama 3.3
70B using samples generated by DeepSeek-R1, and the standard version of LLama 3.3 70B [39].

Changing the prompt: Continuous andDiscrete Privacy Scores. We test two different prompts
for obtaining the privacy assessments. The LLMs are asked to provide: i) an information leakage score in a
continuous interval, i.e., ranging in the [0,1] interval where 0 means no information leakage from the pri-
vate query, and 1 means total information leakage; ii) a discrete value using a score in a Likert scale [40, 41]
from a minimum score of 1, indicating that no information is understandable from the obfuscated query to
a maximum score of 5, suggesting that the obfuscated query is identical to the original text. The prompts
adopted for getting the scores from the LLMs are available in the paper’s online appendix. To avoid
encumbering, we report only the results on the Med‘04 queries of two mechanisms (Mahalanobis and Vick-
reyMhl) for three privacy setups, 𝜀∈{1,15,50}. The results on DL’19 and other mechanisms are equivalent
and available in the paper repository. Figure 2 presents the score distributions for the Continuous and
Discrete prompts employed to evaluate different obfuscation mechanisms. The results indicate that the
distributions of scores exhibit similar patterns across the different prompting strategies used to obtain the
privacy assessments. Under a strong privacy regime, i.e., 𝜀=1, the LLMs consistently evaluate queries as
highly obfuscated for both mechanisms, yielding a low information leakage score centring the distribution
around 0.0 for continuous scores while frequently assigning a score of 1 for the discrete prompt. DeepSeek-
R1 identifies more information leakage compared to LLama 3.3. As 𝜀 increases, the degree of obfuscation
applied to the textual data decreases, leading to a shift in privacy assessments toward higher information

1The code, the results and the appendix are available in the repository https://github.com/Kekkodf/LLM4PrivacyEval

https://github.com/Kekkodf/LLM4PrivacyEval
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Figure 2: Changing the Prompts results. The Continuous score distributions report also the quartiles.

scores for DeepSeek-R1, with most privacy scores around 0.3. At 𝜀=15, a distinction emerges in the
obfuscation strategies, as the VickreyMhl mechanism tends to have lower leakage values: this is in line
with previous research [13, 37, 21], indicating that the evaluation approach is consistent. Finally, at 𝜀=50,
Mahalanobis often fails to obfuscate the query, as evidenced by the large number of obfuscation queries
labelled with 1 in the continuous case or 5 in the discrete case. VickreyMhl provides a more satisfactory
degree of privacy, demonstrating the same conclusions found in [15, 37] with standard measures.

Table 1
Correlation statistics of LLMs scores and Cosine Similarity obtained.

LLM Transformer CMP Mahalanobis VickreyCMP VickreyMhl

Kendall Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman Kendall Pearson Spearman

M
ed

‘0
4 DeepSeek-R1

MiniLM 0.721 0.875 0.869 0.691 0.866 0.841 0.576 0.753 0.748 0.563 0.762 0.729
DistilRoBERTa 0.711 0.870 0.862 0.683 0.865 0.835 0.577 0.752 0.747 0.558 0.759 0.723
MPNET 0.717 0.878 0.868 0.687 0.867 0.839 0.562 0.742 0.735 0.552 0.753 0.716

LLama 3.3
MiniLM 0.754 0.883 0.879 0.715 0.853 0.850 0.620 0.778 0.785 0.593 0.767 0.752
DistilRoBERTa 0.747 0.881 0.874 0.711 0.854 0.848 0.609 0.771 0.774 0.581 0.755 0.741
MPNET 0.752 0.886 0.881 0.708 0.854 0.844 0.606 0.769 0.770 0.583 0.759 0.741

LLMs Privacy Scores & Traditional Privacy Analysis. This section compares the privacy scores
obtained from the LLMs using the prompt that generated a score in the [0,1] range. As traditional privacy
measures to which we compare the LLMs score, we employ three Transformers [24] architecture, namely
MiniLM [42], DistilRoBERTa [26], and MPNET [43], to compute the cosine similarity between query
obfuscations. Results on the lexical analysis are reported in the repository in the full paper [1]. To validate
the correctness of the LLMs used to assess privacy, we compute the correlation between the LLMs
scores and the cosine similarities of the transformers measured as Kendall’s, Pearson’s and Spearman’s
correlations. Table 1 presents the correlation, organised by obfuscation mechanism, between the LLMs
privacy assessment scores and the cosine similarities calculated by the three different transformer models
on the obfuscated queries in the Med‘04. Our findings show that for all the mechanisms tested, Kendall’s
correlation is strongly positive and non-pathological, i.e., equal to 1, showing that while the measures
agree on assessing the privacy computed, they consider different aspects. The correlation decreases
when evaluating Vickrey’s variants, yet strong positive correlations between the measures are retained.

5. Conclusion

This study addressed the challenge of evaluating privacy in user queries obfuscated through 𝜀-DP
mechanisms. While traditional approaches rely on lexical and semantic similarity between the original
and obfuscated queries, we explored the use of LLMs as automated privacy assessors. Our empirical
analysis shows that LLM-generated leakage scores effectively capture aspects of both lexical and semantic
similarity, producing continuous and Likert-style outputs. The positive correlation with established
semantic metrics indicates alignment with existing evaluation methods, while minor differences with
lexical measures suggest a complementary perspective. Thus, LLM-based assessments offer a practical
middle ground between current privacy evaluation techniques. Future work will include human
judgments to validate LLM-based scores. Additionally, we aim to investigate the internal activation
patterns of LLMs during privacy assessments, contributing to the trustworthiness of their evaluations.
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