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Abstract
Contextual dense representation models have revolutionized text processing by providing deeper semantic insights
and enhancing Information Retrieval (IR) capabilities. These models represent text within a latent space, where
shared underlying concepts are encoded beyond the explicit wording of the text. Nevertheless, previous studies
indicate that certain dimensions within these dense embeddings can be irrelevant—or even detrimental—to retrieval
success, depending on the specific information needs of the query. Limiting retrieval to a linear subspace that omits
these less useful dimensions has been shown to improve performance. To tackle this issue, Dimension IMportance
Estimators (DIMEs) were introduced to detect and remove harmful dimensions, thereby refining the representations
of queries and documents to highlight only the valuable aspects. Current DIMEs mostly rely on pseudo-relevance
feedback, which can be unreliable, or on explicit relevance judgments, which are often impractical to gather. Drawing
inspiration from counterfactual analysis, we present Counterfactual DIMEs (CoDIMEs), a new technique that lever-
ages noisy implicit feedback to assess the significance of each dimension. The CoDIME framework approximates
the connection between how frequently a document is clicked and its alignment with particular query dimensions
through a linear model. Empirical evidence demonstrates that CoDIME consistently outperforms traditional pseudo-
relevance feedback-based DIMEs and other unsupervised counterfactual methods that make use of implicit signals.

1. Introduction

Dense text representations have demonstrated remarkable capability in capturing semantic meaning,
emerging as the dominant technology across numerous text-related tasks in Information Retrieval (IR)
and Natural Language Processing (NLP). These representation models are based on neural networks
that project the text onto a dense representation space where semantically similar contents tend to be
arranged closely. While these novel representations are more effective than traditional lexical approaches
(e.g., BM25 [16] and TF-IDF [10]) in handling the semantic gap, they are far less interpretable, even if
the dimensions of the representations are assumed to be associated with some latent semantic meaning.
Starting from this, Faggioli et al. [3] propose the so-called Manifold Clustering Hypothesis which posits
that it is possible to find a query-wise subspace of the dense representation space where the retrieval
is more effective, i.e., where the representations of the query and its relevant documents are more aligned.
to find such a subspace, Faggioli et al. define the concept of Dimension IMportance Estimator (DIME): a
model explicitly meant to estimate the query-dependent importance of each dimension to preserve only
the most important ones while discarding the others. In particular, Faggioli et al. propose DIMEs based on
Pseudo-Relevance Feedback (PRF) or relying on explicit feedback. The former is known to have variable
and not always consistent effectiveness, especially when it comes to dense models [12]. The latter, on the
other hand, can be much more challenging to gather. To overcome this limitation, in this paper, we propose
to employ an intermediate relevance signal, more reliable than PRF and far more available than explicit
feedback: implicit feedback. Implicit feedback leverages the analysis of user interactions, such as clicks
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and dwell times, to infer weak relevance signals for retrieved content.Akin to past efforts in the domain,
we employ a set of simulated click logs to estimate the frequency of clicks on the links in a Search Engine
Result Page (SERP). By relying on such click frequencies, we devise a counterfactual modelling of the click
probabilities. This model is then used as a source of implicit feedback information, and we exploit it to
determine the importance of the dimensions in the dense representation space, thus instantiating a set of
novel Counterfactual DIMEs (CoDIMEs). In particular, we design a set of linear CoDIMEs that quantifies
the importance of a dimension by considering the characteristics of a linear model that regresses the
documents’ click frequency on the interaction between the query and the documents on such a dimension.

Compared to CoRocchio [22], a state-of-the-art counterfactual approach, the CoDIME framework
achieves up to +0.235 nDCG@10 points, moving from 0.404 to 0.639 (+58%) (Dragon and Robust ‘04)
and +0.117 nDCG@100 points, moving from 0.356 to 0.473 (+33%) (Dragon and Robust ‘04).

2. The CoDIME Framework

We refer to the list of the top 𝑘 documents retrieved in response to a query 𝑞 asℛ“t𝑑1,...,𝑑𝑘u where 𝑑𝑖 is
the i-th retrieved document. All users 𝒰 who submitted the query 𝑞 interact with ℛ, each one generating
a click log 𝒞𝑢 such that 𝑐𝑢,𝑑 is either 1 or 0, depending on whether the user clicked on document 𝑑Pℛ or
not. Based on this historical information, we can compute the observed frequency of clicks of 𝒰 for 𝑞 and
𝑑 as: 𝑓𝑑 “ 1

|𝒰 |

ř

𝑢P𝒰𝑐𝑢,𝑑. In other terms, 𝑓𝑑 describes the proportion of clicks received by a document 𝑑Pℛ
retrieved in response to 𝑞. We can expect this frequency to be somewhat correlated with the relevance of
the top 𝑘 documents retrieved in response to 𝑞, but also with the position at which the document is shown
in the ℛ. Akin to CoRocchio, we debias click frequencies using the Inverse Propensity Score (IPS) [6, 9].
The debiased click frequency is thus defined as: 𝑓𝑑 “ 𝑓𝑑 ¨ p1{𝑘q

´𝜂 Where 𝑘 is the position at which
the document 𝑑 was observed in ℛ and 𝜂 is the propensity parameter. The debiased click frequencies
describe how likely it is that a document is clicked, regardless of where it is placed in the SERP. Finally,
we define p𝑓𝑑1 ,...,𝑓𝑑𝑘q as the list of debiased click frequencies of the top 𝑘 documents for 𝑞, included in ℛ.

Given a query 𝑞 and a document 𝑑 and their respective dense representations q and d, we can define
the interaction 𝐻𝑑 between them as the Hadamard product between their representations. Assuming
each dimension corresponds to a latent concept, observing strong interaction𝐻𝑑,𝑖 between the query and
the document on the 𝑖-th dimension indicates that the concept is prime for the query and the document.

Linear CoDIME estimate the importance of a dimension for a query by examining the linear correlation
between the dimension’s interaction (𝐻) and the debiased click frequency (𝑓 ) on the documents.

Correlation CoDIME The first linear CoDIME is inspired by the Oracle DIME as proposed by Faggioli
et al. [3]. More in detail, we define 𝑓s and 𝐻s 𝑖 as the mean debiased click frequency and the interaction
on the 𝑖-th component for a given query and the corresponding retrieved documents, respectively.
Called 𝜌 the Pearson’s correlation, the Correlation CoDIME, or CoDIME𝑐𝑜𝑟𝑟 , is defined as follows:
𝐶𝑜𝐷𝐼𝑀𝐸𝑐𝑜𝑟𝑟p𝑖q“𝜌pp𝑓𝑑1 ,...,𝑓𝑑𝑘q,p𝐻𝑑1,𝑖,...,𝐻𝑑𝑘,𝑖qq.

This CoDIME quantifies the linear correlation between the interactions on a given dimension and the
debiased click frequencies as their Pearson’s 𝜌 correlation. If the interaction on a dimension between the
query and the documents aligns with the debiased click frequencies on such documents, the importance
will be 1, and the dimension likely belongs to the optimal subspace. If the interaction and the debiased
click probability are uncorrelated, the importance of the dimension will be zero. Finally, when the
interaction and the debiased click probability have a negative relation, the importance is negative, and
the dimension will likely be discarded.

Slope CoDIME One of the major limitations of the Correlation CoDIME is that it cannot consider
how fast the interactions and the click frequencies tend to vary. In fact, the linear model that best fits
the points might be more or less steep. A steeper linear model indicates that the dimension is better
at separating the good and the bad documents. Vice-versa, if the linear model grows slowly, it is harder to
separate documents clicked often from rarely clicked documents. The value of the Correlation CoDIME



does not depend on such steepness, but only on how well a linear model fits the data. Therefore, we
propose a second linear CoDIME that explicitly quantifies the dimension’s importance based on the
slope of the linear model that best fits the data according to the Ordinary Least Square (OLS) approach.

In more detail, let us call H𝑖 PR𝑘ˆ2 a matrix such that its first column contains 𝑘 1s and the second
column contains the values 𝐻𝑑1,𝑖,...,𝐻𝑑𝑘,𝑖. This is the regressor matrix, while we treat f “r𝑓𝑑1 ,...,𝑓𝑑𝑘sJ

as the response variable. We fit a linear model using the OLS approach by computing b𝑖 P R2:
b𝑖 “ pHJ

𝑖 H𝑖q
´1HJ

𝑖 f . Since we added a column of ones to the regressor matrix, the first element 𝑏𝑖,1
of b𝑖 is the intercept of the OLS linear model while the second element 𝑏𝑖,2 of b𝑖 is the slope.1 The
CoDIME𝑠𝑙𝑜𝑝𝑒 is defined as: 𝐶𝑜𝐷𝐼𝑀𝐸𝑠𝑙𝑜𝑝𝑒p𝑖q“𝑏𝑖,2.

3. Experimental Evaluation

Experimental Setup andQueryLogs Simulation To assess the proposed counterfactual strategy we
consider three well-known state-of-the-art dense encoders: Contriever [7], TAS-B [5], and Dragon [12],
fine-tuned on MSMARCO.2 Experiments are conducted on three well-known TREC collections: TREC
Robust 2004 (Robust ‘04) [19], TREC Deep Learning 2019 (DL ‘19) [2], and TREC Deep Learning 2020 (DL
‘20) [1]3. The parameter 𝜂, describing the user’s patience in clicking a document of the SERP, is set to 1,
while themaximumdepthof inspection is set to20documentsunless specifieddifferently. Furthermore, the
experimentsareconductedbyrepeating1000 times foreach topic thesimulationof theclick log. Differently
from Faggioli et al. [3], our CoDIMEs strategies choose the fraction𝛼of representation dimension retained
by applying a 5-fold cross-validation on the validation set. The code and the data are publicly released.4

The CoDIME approach is based on historical user feedback needed to instantiate the counterfactual
framework and estimate the click probabilities. In a real-world deployment with a consistent user base,
click logs are easy to collect and use for our purposes. Following the previous literature [22, 8, 13, 15, 23, 21,
14, 9, 20] on counterfactual implicit feedback and learning to rank, we simulate the interaction of the users
with the documents to generate a set of synthetic click logs. To do so, we need to simulate i) the selection
bias, ii) the position bias, and iii) the relevance bias. The selection bias is implemented by assuming that ev-
ery user interacts and inspects the SERP up to the document in position𝑘1. To simulate the click propensity,
we model 𝑝̂𝑒,𝑖, the probability of examination, as inversely proportional to the position, i.e., 𝑝̂𝑒p𝑘q“

`

1
𝑘

˘𝜂 .
To simulate the relevance bias, we model 𝑝̂𝑟p𝑞,𝑑q, the probability that the user will click on a document 𝑑,
given its relevance to 𝑞. More in detail, we consider three ideal user models: the perfect user (P) whose click
probability is directly proportional to the relevance of the document; the binarized user (B) that, clicks on a
non-relevant or partially relevant document with probability 0.1 and clicks on a relevant or highly relevant
document with probability 1; the near random user (R) that clicks on a non-relevant document with prob-
ability 0.4 and clicks on a highly relevant document with probability 0.6. For the perfect and near-random
users, the probabilities are a linear spacing between the minimum and maximum probabilities, with as
many steps as the relevance grades. For the binarized user, the click probability of a document with rele-
vance within the lowest half of the grades is set to 0.1; otherwise, it is set to 1. The simulated click probability
is computed as: 𝑝̂𝑐p𝑞,𝑑,𝑘q“ 𝑝̂𝑟p𝑞,𝑑q¨𝑝̂𝑒p𝑘q. In other terms, to simulate the click of a user on a document 𝑑
retrieved in position 𝑘 in response to the query 𝑞, we combine, by multiplying, the probability that the user
will click on such document given its relevance to the query (i.e., the relevance bias) and the probability that
the user will click on a document in position 𝑘, regardless of its relevance (i.e., the position bias). We con-
sider the following baselines Vector PRF (VPRF) [11], LLM DIME [3], PRF DIME [3], and CoRocchio [22].

Performance We report the comparison in terms of effectiveness between the different approaches.
Table 1 report the effectiveness of our solution and the competitors on DL ‘19. In bold, we report the

1We also experimented with a linear model without the intercept, obtaining slightly inferior empirical results.
2We use the model weights publicly available on https://huggingface.co/
3For space reasons, we report here only the results for DL ‘19. The interested reader can find the results for other collections, for
which we observe substantially similar patterns, in the original paper.

4https://github.com/guglielmof/25-SIGIR-FFPT
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https://github.com/guglielmof/25-SIGIR-FFPT


Table 1
Performance comparison on DL ‘19. In bold the most effective approach, underlined the runner-up. The top-tier according to
an ANOVA is marked with ˚. P, B, and R are the Perfect, Binarized, and Near Random user models.

Contriever Dragon TAS-B Contriever Dragon TAS-B
P B R P B R P B R P B R P B R P B R

nDCG@10 nDCG@20

retrieval only .674 .674 .674 .740 .740 .740 .717 .717 .717 .655 .655 .655 .726 .726 .726 .679 .679 .679
VPRF-5 .664 .664 .664 .752 .752 .752 .721 .721 .721 .656 .656 .656 .743 .743 .743˚ .701 .701 .701

VPRF-20 .636 .636 .636 .732 .732 .732 .667 .667 .667 .643 .643 .643 .717 .717 .717 .651 .651 .651
DIME𝐿𝐿𝑀 .742 .742 .742˚ .767 .767 .767 .749 .749 .749 .710 .710 .710 .746 .746 .746˚ .724 .724 .724˚

DIME𝑃𝑅𝐹 .668 .668 .668 .740 .740 .740 .717 .717 .717 .655 .655 .655 .726 .726 .726 .682 .682 .682
CoRocchio .804˚ .766˚ .632 .830 .824˚ .724 .810˚ .780˚ .665 .761˚ .729˚ .634 .805˚ .796˚ .721 .771˚ .746˚ .642

CoDIME𝑐𝑜𝑟𝑟 .851˚ .828˚ .810˚ .891˚ .854˚ .831˚ .856˚ .835˚ .804˚ .796˚ .786˚ .777˚ .830˚ .815˚ .792˚ .807˚ .781˚ .760˚

CoDIME𝑠𝑙𝑜𝑝𝑒 .855˚ .829˚ .809˚ .897˚ .854˚ .842˚ .863˚ .839˚ .821˚ .796˚ .774˚ .770˚ .838˚ .817˚ .793˚ .821˚ .785˚ .775˚

nDCG@50 nDCG@100

retrieval only .642 .642 .642 .686 .686 .686 .650 .650 .650 .634 .634 .634 .673 .673 .673 .637 .637 .637
VPRF-5 .644 .644 .644 .718 .718 .718˚ .677 .677˚ .677˚ .647 .647 .647 .703 .703 .703˚ .667 .667˚ .667˚

VPRF-20 .637 .637 .637 .698 .698 .698 .641 .641 .641 .636 .636 .636 .692 .692 .692˚ .636 .636 .636
DIME𝐿𝐿𝑀 .686˚ .686˚ .686˚ .709 .709 .709˚ .693˚ .693˚ .693˚ .676˚ .676˚ .676˚ .700 .700 .700˚ .684˚ .684˚ .684˚

DIME𝑃𝑅𝐹 .647 .647 .647 .686 .686 .686 .653 .653 .653 .643 .643 .643 .673 .673 .673 .647 .647 .647
CoRocchio .737˚ .708˚ .625 .772˚ .767˚ .698 .741˚ .723˚ .626 .733˚ .703˚ .628 .757˚ .750˚ .689˚ .726˚ .710˚ .621

CoDIME𝑐𝑜𝑟𝑟 .743˚ .735˚ .721˚ .778˚ .764˚ .751˚ .745˚ .725˚ .712˚ .734˚ .716˚ .708˚ .747˚ .741˚ .729˚ .725˚ .711˚ .703˚

CoDIME𝑠𝑙𝑜𝑝𝑒 .741˚ .721˚ .715˚ .766˚ .763˚ .754˚ .747˚ .729˚ .733˚ .735˚ .723˚ .699˚ .739˚ .739˚ .726˚ .723˚ .711˚ .712˚

highest performance achieved, underlined the runner-up. At the same time, the symbol ˚ denotes the top
tier of systems (i.e., the set of systems deemed statistically not distinguishable) according to an ANalysis Of
the VAriance (ANOVA) [17] with Tukey’s Honestly Significant Differences (HSD) [18] pairwise multiple
comparison test and significance level of 0.05. The columns (P, B, and R) correspond respectively to
Perfect, Binarized, and Near Random users. Within each measure, the first line reports the performance of
the base encoder. Notice that some of the baselines (the encoder itself, VPRF, DIME𝐿𝐿𝑀 and DIME𝑃𝑅𝐹 )
are not based on users’ clicks, and thus, they are not affected by the user model, and their performance
is the same across all user models. We notice that the most effective approaches for nDCG@10 and
nDCG@20 are those based on the Linear CoDIMEs (CoDIME𝑐𝑜𝑟𝑟 and CoDIME𝑠𝑙𝑜𝑝𝑒). Both approaches have
comparable performance, with no clear dominance between the two: in all the cases, the two approaches
are statistically equivalent according to the chosen statistical testing procedure. In general, the approaches
based on the weighted magnitude of the dimensions (CoDIME𝑤𝑎𝑣𝑔 and CoDIME𝑤𝑚𝑎𝑥) tend to be far less
effective and are generally surpassed by the CoRocchio baseline. Comparing the Linear CoDIMEs with
the most effective baseline, CoRocchio, we notice that the CoDIMEs are almost always more effective than
CoRocchio for cutoffs lower than 100 (the only exception is Dragon with nDCG@50 and the binarized
model). If we consider nDCG@100, CoRocchio is more effective than the CoDIMEs in the case of TAS-B
and Dragon with a perfect or binarized user model but the difference is not statistically significant and small
(0.01 or less nDCG@100 points). Compared to CoRocchio, all CoDIMEs are less vulnerable to changes in
the user model considered. In fact, for CoRocchio, when moving from the perfect to the near-random user
model, we notice a performance drop which is in the range of 10 to 15 points, depending on the considered
measure or cutoff. Vice versa, the CoDIMEs tends to be stable, with variations between the perfect and
near-random users in the 1-3 points range, up to 5 points in the worst scenarios. This is a desirable property:
in a real-world scenario, where the clicks are far more affected by noise than in a simulated environment,
a more stable solution as the Linear CoDIMEs offers better guarantees of a good performance.

4. Conclusion

In this work, we introduced CoDIME, a novel counterfactual framework for dimension importance
estimation in dense text representations, leveraging implicit user feedback to address challenges
in existing DIME approaches. By incorporating counterfactual modelling of click probabilities in
various dimension importance estimation strategies, our CoDIME approaches achieved state-of-the-art
performance in multiple dense IR testbeds. Compared to CoRocchio [22], a state-of-the-art counterfactual
approach, the CoDIME framework achieves up to +0.235 nDCG@10 points, moving from 0.404 to 0.639
(+58%) (Dragon and Robust ‘04) and +0.117 nDCG@100 points, moving from 0.356 to 0.473 (+33%)
(Dragon and Robust ‘04). These findings highlight the efficacy of counterfactual techniques and DIME
approaches in adapting dense representations and improving retrieval effectiveness.
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