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Abstract
In this paper, we propose a recommendation model exploiting a graph augmentation technique based on Large

Language Models (LLMs) to enrich information in its underlying Knowledge Graph (KG). We assume KG triples

can be noisy or incomplete, leading to sub-optimal modeling of item characteristics and user preferences. Graph

augmentation can thus improve data quality and provide high-quality recommendations.

Accordingly, we propose our framework, that starts with a KG and designs prompts for querying an LLM to

augment the graph by incorporating: (a) further item features; (b) further nodes describing user preferences,

obtained by reasoning over liked items. The augmented KG is then passed through a Knowledge Graph Encoder,

which learns user and item embeddings. These embeddings are used to train a recommendation model, provid-

ing personalized suggestions. Experiments show LLM-based graph augmentation significantly improves our

recommendation model’s predictive accuracy, confirming its effectiveness and the validity of our intuitions.
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1. Introduction

Nowadays, Recommender Systems (RSs) effectively handle information overload and support user

decision-making [15]. Knowledge-Aware RSs (KARSs) exploit side information, often Knowledge Graphs

(KGs) [6], to learn effective item representations and provide precise recommendations [14, 13, 11].

Despite their effectiveness [32, 1, 22, 24, 21, 25], KGs have flaws: first, they may overlook descriptive

item features [5]. Second, KGs in KARS typically overlook user preference into item groups (e.g., fantasy

movies) or specific characteristics (e.g., a director).

This paper
1

[18] proposes a methodology using Large Language Models [10] (LLMs) to augment the

original KG. Our graph augmentation strategy aims to incorporate: (a) missing item features; (b) user

preferences into item features. Our contributions are:

1. We design a novel framework for LLM-based graph augmentation in KARS.

2. We design prompts to extract new item features and user preference KG triples from LLMs.

3. We conduct extensive experiments, including ablation studies, and release the source code.

2. Related Works

Lately, KGs have enhanced KARS performance. CKE [32] and CFKG [1] enriched Collaborative

Filtering (CF) data with item features learned from KGs using TransE [3]. Later methods leveraged

graph neural networks. KGCN [22] used Graph Convolutional Networks (GCNs) [34] to aggregate KG
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Figure 1: Starting from the CF graph, we infer new triples describing users and items, and we incorporate them

to obtain our augmented KG.

information, capturing higher-order relationships. KGAT [24] employed Graph Attention Networks

to model high-order connections. None of them focus on encoding more detailed user preferences

inferred from liked items. KTUP [4] used TransH [26] for KG completion, transferring embeddings to

user modeling. KGNNLS [21] learned user-specific item embeddings by transforming the KG into a

user-specific graph.

Most graph augmentation for recommendation uses contrastive learning by perturbing the user-item

graph [9, 31, 29, 33]. In contrast, our method leverages pre-trained LLMs for KG augmentation. While

LLMs have been explored for graphs [30, 35], their application in recommendation remains limited.

KAR [28] and LLMRec [27] are the only related works. KAR infers textual knowledge for sequential

recommendation, later encoded via BERT [7], making direct comparison difficult. LLMRec uses LLM-

based feature augmentation via OpenAI APIs. Unlike these, we use an open-weight LLM (LLama)

to generate new triples, guided by tailored prompts that enrich the KG with unseen relations (e.g., a

movie’s mood, a book’s style), enhancing recommendation quality.

3. Problem Formulation

We define the data used and formalize the recommendation task.

CF Data. Given users 𝒰 and items ℐ , the user-item interactions are represented by a binary matrix

𝒴 ∈ R𝑛×𝑚
, where 𝑦𝑢,𝑖 = 1 if user 𝑢 liked item 𝑖, and 0 otherwise. This can be modeled as an interaction

graph 𝒢 with nodes for users/items and edges labeled like/dislike.

Knowledge Graph. Each item 𝑖 ∈ ℐ is described by triples from a knowledge graph 𝒦𝒢, such as (item,
relation, entity) (e.g., (Tender is the Night, author, Fitzgerald)).
Graph Augmentation. We use LLMs to generate additional triples describing item features and user

preferences. For each item 𝑖, a prompt 𝑝𝑖 is used to produce triples 𝒯𝑖 = 𝐿𝐿𝑀(𝑝𝑖) (e.g., (Nixon, theme,
political corruption)), forming a new KG 𝒦𝒢ℐ . Similarly, for each user 𝑢, we prompt the LLM with their

liked items to generate a KG 𝒦𝒢𝒰 describing preferences (e.g., (user83, fav_setting, post-apocalyptic)).
We then build an augmented KG by merging 𝒢, 𝒦𝒢, and either or both of 𝒦𝒢ℐ and 𝒦𝒢𝒰 .

Representation Learning. We encode the augmented KG using a KG encoder to learn embeddings 𝑒𝑢⃗
and 𝑒𝑖⃗ for users and items, which are fed into a neural network for recommendation.

Problem Definition. Given 𝒦𝒢aug and model parameters 𝜃, we learn a function
̃︀𝑌 (𝑢, 𝑖 | 𝒦𝒢aug, 𝜃) to

predict user 𝑢’s interest in item 𝑖. We evaluate using a top-k recommendation setting based on predicted

scores.

4. Methodology

The augmentation workflow is shown in Figure 1. Starting from the user-item graph 𝒢 (Section 3),

we use LLMs for Item Feature Inference and User Preference Inference, generating triples of the form

(user/item, relation, entity). Merging these outputs forms the augmented KG used in our KARS. A

Knowledge Graph Encoder then learns user/item embeddings, which are fed into the RecSys module to

generate recommendations. We detail each module below.



Dataset # users # items # interactions sparsity

DBbook 5660 6617 129316 99.65%

ML1M 6036 3192 946120 95.09%

Table 1
Statistics of the Datasets

Item Feature Inference Module. To infer item features as KG triples, we use a zero-shot prompting

approach with an LLM. Our prompt takes an item’s name and returns descriptive triples. The prompt has

three parts: a System Prompt (instructing the LLM about the task), a User Prompt (providing task-specific

instance details), and the Model Output (the LLM’s response). In the System Prompt, we ask the LLM

to generate relevant item features for a given domain and specify the output format. In particular,

we request both common KG features (e.g., author, topic, genre) and novel ones (e.g., writing style,

mood) typically absent from KGs. This prompt allows the LLM to complete missing knowledge in the

original KG, addressing data sparsity on one side, and incorporating new, pre-trained features from the

LLM, enriching the data model, on the other side. This process is repeated for all items 𝑖 ∈ ℐ , and the

combined triples form 𝒦𝒢ℐ , representing all LLM-generated item features.

User Preference Inference Module. Next, a similar process is designed to infer user preferences in

the form of KG triples. To this end, we zero-shot prompt an LLM in such a way that, given the list of

items the user likes, the LLM returns a set of triples encoding her preferences. The structure of the

prompt is similar, but rather than incorporating further knowledge about the items, the goal of this

part of the augmentation process is to introduce new edges in the original KG. In our vision, these

edges may improve the quality of the underlying data model, thus improving the performance in a

downstream recommendation task as well. Regarding the choice of the elements included in the prompt,

we point out again that we mixed features encoded in the original KG (i.e., preferred genre or authors)

and more fine-grained characteristics, such as the mood of movies liked by the user. Also in this case,

the prompt is generated for all the users 𝑢 ∈ 𝑈 based on the items they like, and the triples returned by

the LLM are merged in the graph 𝒦𝒢𝒰 , which encodes all the user features obtained through the graph

augmentation process.

Knowledge Graph Encoder and RecSys Modules. After prompting the LLMs, we build an aug-

mented graph that merges 𝒢 and 𝒦𝒢 with either one between 𝒦𝒢ℐ and 𝒦𝒢𝒰 , or both of them Based

on this data model, a Knowledge Graph Encoder comes into play to learn embeddings representing

users and items in the augmented graph. In this work, we used CompGCN [20] as a Graph Encoder.

This choice is justified by the competitive performance shown by other models exploiting GCNs for

recommendation tasks [8, 16, 23, 17]. More details about this encoder can be found in the original

papers [20, 18]. After the encoding, the resulting user and item embeddings are used to train a deep

recommendation architecture; in particular, this is trained on a subset of ratings from 𝑌 using binary

cross-entropy as the loss function. During inference, scores are computed for all test set items, ranked,

and the top-k items form the recommendation list

5. Experimental Evaluation

Our experiments aimed to answer this Research Questions: How does each KG configuration contribute

to the overall performance of the model?

5.1. Experimental Design

Datasets and Knowledge Graphs. We considered DBbook and MovieLens1M (ML1M) for our

experiments. We used DBpedia [2] as base KG, by using publicly available mappings. We augmented

such KGs according to the methodology previously introduced. More details are on our full paper [18].

Protocol. Graph augmentation relies on training data: positive ratings are used to infer user preferences

(𝒦𝒢𝒰 ), and training items to infer item features (𝒦𝒢ℐ ). User embeddings are learned on the training



Dataset DBbook ML1M

KG Precision Recall F1 NDCG Gini EPC APLT Precision Recall F1 NDCG Gini EPC APLT

∅ 0.6858 0.5450 0.5590 0.8781 0.6458 0.6162 0.2279* 0.8022 0.4574 0.4938 0.9438 0.7504 0.6642 0.0803
𝒦𝒢 0.7006 0.5575 0.5720 0.8912 0.6641 0.6318 0.2091 0.7965 0.4550 0.4907 0.9400 0.7576 0.6624 0.0782

𝒦𝒢ℐ 0.6976 0.5547 0.5688 0.8958 0.6815 0.6313 0.1877 0.7995 0.4569 0.4926 0.9421 0.7261 0.6761* 0.0897*
𝒦𝒢𝒰 0.6996 0.5557 0.5704 0.8927 0.6792 0.6315 0.1892 0.8029 0.4578 0.4942 0.9435 0.7725 0.6539 0.0707

𝒦𝒢ℐ𝒰 0.6992 0.5547 0.5699 0.8932 0.6797 0.6307 0.1902 0.7919 0.4534 0.4882 0.9364 0.7514 0.6558 0.0734

𝒦𝒢+
ℐ 0.7028 0.5617 0.5745 0.8905 0.6755 0.6342 0.1958 0.8035* 0.4585* 0.4947* 0.9440* 0.7489 0.6629 0.0701

𝒦𝒢+
𝒰 0.7043* 0.5619 0.5755 0.8950 0.6640 0.6364* 0.2108 0.7990 0.4557 0.4919 0.9421 0.7725 0.6512 0.0605

𝒦𝒢+
0.6931 0.5498 0.5646 0.8881 0.6844 0.6246 0.1861 0.8007 0.4570 0.4931 0.9423 0.7795 0.6511 0.0663

Table 2
Ablation studies. Best results are in bold, while second-best results are in italic; * means the difference

with the 𝒦𝒢 results is statistically significant, with 𝑝 = 0.05.

set, and top-k recommendations are generated by ranking predicted scores on the test set.

Implementation Details. We use Llama3-ChatQA-1.5-8B with 4-bit quantization via BitsAndBytes
for efficiency. Graph encoding is done using Pykeen’s CompGCN, and the recommendation model is

implemented in PyTorch (available in our repository). We release more detail on our repository
2
.

Experimental Settings. The Graph Encoder is trained for 15 epochs, with embedding size 𝑘 = 64 and

3 GCN layers. Recommendation models are trained for 30 epochs (batch size 512, learning rate 0.01,

𝛼 = 0.9, Adam optimizer). Dropout is set to 0.2 for DBbook and 0.4 for ML1M.

Ablation Studies. To evaluate our method’s effectiveness, we compare recommendation performance

across eight graph variants: (1) CF-only (𝒢), (2) original KG (𝒢 + 𝒦𝒢), (3) item-only LLM graph (𝒦𝒢ℐ ),

(4) user-only LLM graph (𝒦𝒢𝒰 ), (5) full LLM-generated KG (𝒦𝒢ℐ + 𝒦𝒢𝒰 ), (6) item-augmented KG (𝒦𝒢
+ 𝒦𝒢ℐ ), (7) user-augmented KG (𝒦𝒢 + 𝒦𝒢𝒰 ), and (8) fully augmented KG (𝒢 + 𝒦𝒢 + 𝒦𝒢ℐ + 𝒦𝒢𝒰 ). We

analyze and compare results across these setups.

Evaluation Metrics. We evaluate with ClayRS [12] for reproducibility. Accuracy metrics include

Precision, Recall, F1, and nDCG; diversity and novelty are assessed with Gini Index, EPC [19], and

APLT. Paired t-tests assess statistical significance.

5.2. Discussion of the Results

Ablation Study. Table 2 reports ablation results across combinations of 𝒦𝒢, 𝒦𝒢ℐ , and 𝒦𝒢𝒰 , with ∅ in-

dicating no side information. On DBbook, 𝒦𝒢+
𝒰 performed best, highlighting the value of LLM-inferred

user preferences in sparse settings. On ML1M, 𝒦𝒢+
ℐ led, suggesting item features are more beneficial in

denser datasets—supported by the strong performance of ∅. Combining all sources (𝒦𝒢+
) sometimes

hurt performance, likely due to noise from excessive entities and relations. Graph augmentation also

improved novelty, especially on DBbook. Notably, LLM-generated KGs (𝒦𝒢ℐ , 𝒦𝒢𝒰 ) performed on par

with the original KG, underscoring LLMs’ potential for knowledge creation. Overall, RQ2 confirms
that graph augmentation improves performance, with optimal gains depending on dataset
characteristics.

6. Conclusions

We proposed a general graph augmentation methodology for KARSs using LLM prompting to infer

missing item features and user preferences. Focusing on DBpedia, our approach enriches KGs with LLM-

generated knowledge. Experiments, including ablation studies and baselines, validated its effectiveness.

While LLM limitations like hallucinations exist, carefully designed prompts helped mitigate them, as

supported by our results. Future work will explore adding richer context (e.g., item abstracts or plots)

to improve prompt quality.
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