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Abstract
Recent studies have applied Denoising Diffusion Probabilistic Models (DDPMs) to recommender systems, re-
porting notable improvements. However, several reproducibility studies have shown that claims asserting the
superiority of new methods are frequently not substantiated by rigorous evidence, as they often rely on non-
reproducible experimental protocols, weak or untuned baselines, and questionable evaluation practices. This
extended abstract presents key findings from the manuscript “Diffusion Recommender Models and the Illusion of
Progress: A Concerning Study of Reproducibility and a Conceptual Mismatch” which investigates whether the
reported advancements of diffusion-based models in recommendation are supported by rigorous and reproducible
experimental evaluation.

The study re-executes the experiments of four DDPM-based models presented at SIGIR 2023 and 2024,
revealing substantial methodological issues and limited reproducibility. In addition, it highlights a conceptual
mismatch between the generative nature of DDPMs and the deterministic requirements of offline evaluation,
underscoring the need for a reconsideration of evaluation procedures for generative models.
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1. Introduction

With the emergence of advanced generative architectures, the recommender systems community has
made significant efforts to apply such models to the field. In addition to transformer-based architectures
[1, 2], which are state-of-the-art in natural language processing, Denoising Diffusion Probabilistic
Models (DDPMs) [3, 4] have also gained attention in recommendation research as generative models.
Originally developed to model and sample from complex distributions, DDPMs have shown remarkable
results in image and video synthesis. Due to their strong modeling capacity and denoising properties
[4], several works have adapted this architecture for collaborative filtering in recommender systems,
claiming superior accuracy compared to traditional baselines [5, 6, 7, 8, 9]. Many of these contributions
have appeared at top-tier venues such as ACM SIGIR 2023 and 2024, reinforcing the perception that
DDPMs represent a promising direction for top-n recommendation.

However, a decade of research has repeatedly shown that many claimed improvements in recom-
mendation effectiveness are often illusory, stemming from comparisons with weak or poorly tuned
baselines and flawed evaluation protocols [10, 11, 12, 13, 14, 15]. In some cases, even simple models
such as k-nearest neighbors [11] or matrix factorization [14, 15], when properly tuned, outperform
modern deep learning architectures. These observations raise the critical question of whether recent
advances in diffusion-based recommender systems truly reflect meaningful progress.

This extended abstract summarizes the work in [16], which addresses this question by examining the
reproducibility and effectiveness of four recent diffusion-based recommendation models from SIGIR
2023 and 2024 [5, 6, 7, 8, 9]. The analysis is threefold: (i) assessing the reproducibility of reported results
by re-executing experiments, (ii) comparing these models against a suite of strong, well-tuned baselines
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from different model families, and (iii) reflecting on the conceptual suitability of DDPMs for top-n
recommendation tasks.

The results of this analysis are concerning. Reproducibility remains elusive in many cases, often
due to incomplete experimental descriptions and high variability in results. Furthermore, comparisons
with well-tuned baselines reveal that the original experiments were not conducted under challenging
conditions, casting doubt on the validity of the claimed improvements. Finally, a fundamental conceptual
gap is highlighted between the probabilistic generative nature of diffusion models and the deterministic
requirements of top-n evaluation. These observations motivate a critical reassessment of current
evaluation practices and call for renewed scientific rigor and transparency in the field.

2. Methodology

2.1. Papers Selection

The analysis in [16] covers four articles, each introducing a different algorithm: DiffRec [6], CF-Diff [7],
GiffCF [8], and DDRM [9]. These papers were selected based on three criteria: (i) they were presented
in the Diffusion in RecSys session at SIGIR 2024, (ii) they propose a new algorithm for the top-k
recommendation problem, (iii) the algorithm employs diffusion-based techniques. Additionally, DiffRec
[6], published at SIGIR 2023, was included as it laid the foundation for the subsequent diffusion-based
recommendation algorithms analyzed.

2.2. Reproducibility

The reproducibility protocol adopted in [16] consists of the following steps:

• Artifact Verification: The availability and consistency of required artifacts (source code, datasets,
best hyperparameters values and experimental details) are checked. This step is essential for
replicating the experiments under the original conditions.

• Experimental Re-execution: Once artifacts are collected, experiments are re-run. Although
the original model code is used, it is integrated into the framework from [11] to ensure consistent
evaluation and early-stopping execution across experiments. Each DDPM model is trained using
the best hyperparameters values provided by the original artifacts, without any additional tuning.

• Reproducibility Assessment: In this extended abstract, reproducibility is intended as the ability
to obtain numerical results that are sufficiently close to the original ones. However, due to the
inherent stochasticity of diffusion models, a broader definition is adopted. For each experimental
configuration, ten runs are performed to compute the mean 𝜇 and standard deviation 𝜎 of each
evaluation metric. A metric is considered reproducible if: (i) the original value falls within the
interval [𝜇 − 𝜎, 𝜇 + 𝜎], and (ii) the metric is stable, which in [16] means that 𝜎 ≤ 𝜏 ⋅ 𝜇 , with
𝜏 = 0.02 be a chosen threshold. Stability is crucial for reproducibility: if a metric exhibits high
variability, obtaining consistent results becomes inherently difficult.1

2.3. Benchmarking Against Baselines

In parallel with the reproducibility analysis, the diffusion models were benchmarked against 19 strong
and widely adopted baseline methods, covering matrix factorization, neighborhood-based techniques,
graph-based models, and neural architectures.2 These baselines were carefully optimized using 50

1Notably, standard deviations are rarely reported in recommender system research. None of the papers analyzed in [16]
reported variance measures, although the reproducibility analysis shows substantial variability.

2The selected baselines are: Random, TopPop, Global Effects, UserKNN [17, 18], ItemKNN [19, 18], P3𝛼, RP3𝛽 [20], GF-CF [21],
EASE𝑅 [22], SLIM-BPR [23], SLIM [24], MF-BPR [23], MF-WARP, SVDpp [25], PureSVD [26], iALS [27], MultVAE [28], and
LightGCN [29].



Bayesian trials following the search space from [11, 12], ensuring near-optimal performance and offering
a robust estimate of the current state-of-the-art in top-k recommendation.

While the diffusion models may not have undergone equally extensive tuning, the purpose of this
comparison is not to penalize them, but to assess whether the original papers evaluated their proposals
against sufficiently strong baselines to support their claims.

3. Key Findings

3.1. Reproducibility and Benchmarking Results

DiffRec DiffRec [6] applies unguided Gaussian diffusion to user profiles for collaborative filtering. It
includes three variants: L-DiffRec (using profile partitioning and latent space diffusion), T-DiffRec (with
temporal weighting), and LT-DiffRec (a hybrid approach). Experiments were conducted on MovieLens-
1M, Yelp, and Amazon-Books datasets, with each dataset processed using three strategies: “clean,”
“natural noise,” and “random noise.” Minor inconsistencies in data statistics were observed, along with
some overlap between training and test sets. The total number of configurations (i.e., dataset and
DiffRec variant) potentially reproducible was 16, as not all DiffRec variants were tested on all dataset
versions, and the “random noise” datasets splits were not shared.

Reproducibility experiments were only partially successful: results were fully or partially reproduced
for 8 out of 16 configurations, with significant variance across runs. Methodological flaws were also
noted, including a narrow hyperparameter search space and the use of fixed hyperparameters values
without sufficient justification. It remains unclear whether the baselines were properly tuned, as the
original paper omits key details and the provided code does not include baseline implementations.
Additionally, no information is provided about how the models used to generate the pre-trained latent
embeddings required by L-DiffRec and LT-DiffRec were trained.

In benchmarking, DiffRec consistently underperforms compared to well-established baselines. For
instance, on MovieLens-1M and Amazon-Books, KNN-based methods, graph-based models and SLIM
outperform all DiffRec variants. On Yelp, DiffRec is surpassed by graph-based models and iALS.

CF-Diff CF-Diff [7] employs Gaussian diffusion guided by a multi-hop graph random walk. It
was evaluated on MovieLens-1M, Yelp, and Anime. However, inconsistencies were found in dataset
statistics, data split ratios, and guidance construction. Preprocessing steps were not documented.
Moreover, discrepancies between the implementation and the paper description were frequent, with
model components present in the code but missing or misdescribed in the paper.

Reproducibility was largely unsuccessful: only 1 out of 12 metrics was reproduced, with deviations as
high as 40% and standard deviations up to 15% of the mean. Methodological issues such as inadequate
hyperparameter tuning and the use of fixed values were present. Baseline optimization is again not
sufficiently described, as the shared code omits the corresponding implementation.

Benchmarking results show that CF-Diff is outperformed on all datasets and all metrics by at least
four and up to ten baselines. In many cases, simpler models such as UserKNN, RP3𝛽, and SLIM perform
significantly better.

GiffCF GiffCF [8] uses graph smoothing as the forward process and corrupted user profiles as guidance.
It relies on the same datasets and preprocessing as DiffRec, inheriting its inconsistencies. Reproducibility
attempts were unsuccessful, with one metric matched out of 18 and substantial instability observed.
For instance, on MovieLens-1M, the variance of GiffCF’s results ranged from 14% to 18% on different
evaluation metrics. Further methodological flaws include limited hyperparameter tuning, reliance on
default values, and unclear baseline optimization. The most concerning issue is that hyperparameters
were selected based on test performance, introducing data leakage and compromising the validity of
the reported results. Benchmarking shows that GiffCF is outperformed on all datasets and all metrics
by at least one baseline, including simple models such as UserKNN, RP3𝛽, and SLIM. On MovieLens-1M
in particular, most baselines outperform GiffCF.



DDRM DDRM [9] applies diffusion for denoising pre-trained user and item embeddings, using user
embeddings to guide item denoising and vice versa. It is evaluated on the “natural noise” and “random
noise” versions of MovieLens-1M, Yelp, and Amazon-Books, inheriting the same inconsistencies noted
for DiffRec. The “random noise” version of the datasets was not shared. Reproducibility was limited,
with only 3 out of 36 configurations showing results close to the original. Interestingly, DDRM exhibited
very low variance, in contrast to other diffusion-based models. Methodological issues include the use of
fixed or default hyperparameter values and a lack of clarity around baseline tuning. Again, the shared
code does not provide implementations for the baselines.

In benchmarking, DDRM is outperformed by simple models such as ItemKNN and SLIM on Amazon-
Books, EASE𝑅 on MovieLens-1M, and MultVAE and iALS on Yelp, often by a significant margin.

3.2. Theoretical Reflection and Outlook

The study in [16] also provides a conceptual analysis of the suitability of DDPMs for collaborative
filtering. Several foundational issues are highlighted.

One central concern is the mismatch between the generative nature of DDPMs and the deterministic
requirements of offline top-k recommendation evaluation. While DDPMs are designed to generate
diverse samples, offline evaluation instead requires identifying the most relevant items from a fixed set,
favoring deterministic outputs. In practice, DDPMs for recommendation are used more like multi-step
denoising autoencoders than true generative models. This is evidenced by the limited corruption of
input data (i.e., low number of diffusion steps and low noise levels), which restricts their generative
capacity, since complete deconstruction of input data is a key aspect of DDPMs. As already pointed
out by Yang et al. [30], in the context of recommendation tasks, a “diffusion model is mostly used for
adding noise in the training samples for robustness, and the learning objectives are largely categorized
as classification instead of generation”. Moreover, the recommendation systems field differs in several
ways from domains where DDPMs have been successfully applied, i.e., image and video generation, for
example, due to the lack of ground truth and the limited information structure [16].

These design choices and domain-specific constraints prevent DDPMs from fully exploiting their in-
tended functionality and raise questions about their suitability for current offline evaluation frameworks.
Going forward, research should better align DDPMs with the objectives of recommendation, possibly by
revisiting the guidance mechanism and inference procedure. Additionally, reconciling the probabilistic
outputs of DDPMs with deterministic evaluation protocols will likely require new evaluation paradigms
capable of fairly assessing the performance of generative models in recommendation settings.

4. Conclusions and Implications

The analysis in [16] shows that, despite the perceived potential of Denoising Diffusion Probabilistic
Models (DDPMs), their effectiveness for top-k recommendation is not convincingly demonstrated. The
experimental evaluations in the original papers were not conducted under sufficiently challenging
conditions, as highlighted by the benchmarking results, and the experiments are very often not re-
producible. While DDPMs may still hold promise for recommender systems, their current application
requires significant refinement.

Future research must focus on three critical areas. First, a more rigorous experimental methodology
is needed, including the use of strong, well-tuned baselines and clear reporting of variability in results.
Second, a better alignment between the generative nature of DDPMs and the deterministic nature
of top-k evaluation is essential, potentially requiring a rethinking of how these models are assessed.
Third, reproducibility must be prioritized. This includes the provision of complete artifacts, detailed
experimental protocols, and transparent reporting practices. Ultimately, ensuring scientific rigor and
methodological transparency will not only allow researchers to more reliably assess the contributions
of generative models, but also facilitate meaningful progress in the field of recommender systems.
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