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Abstract

Privacy laws now require data minimization, but its broader effects on recommender systems (RS) are still unclear.
We systematically study how common minimization techniques reshape the three key RS goals—accuracy,
user fairness, and provider fairness. Across multiple datasets and models we (i) measure performance shifts
under data minimization strategies, (ii) pinpoint techniques that best balance the three objectives, and (iii)
compare model robustness to data reduction. We find that while several strategies improve group-level consumer
fairness, they often reduce accuracy and can even worsen provider fairness; the size of these trade-offs strongly
depends on the chosen technique and model. Code and data are public at https://github.com/salvatore-bufi/
DataMinimizationFairness.
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1. Introduction

Recommender systems (RSs) form the backbone of many digital platforms, tailoring content in e-
commerce, streaming, and social media [34, 25, 13, 23, 27, 8]. Their accuracy, however, is increasingly
at odds with growing concerns over privacy, security risks, and the challenges of scalability, due to
their reliance on fine-grained user data [17, 15, 5, 29]. Laws such as the GDPR, CCPA/CPRA, and
China’s PIPL mandate data minimization, i.e., retaining only what is strictly necessary [3, 1, 2, 4]. Initial
work has examined how data minimization affects accuracy [7], privacy [16], bias [10, 26, 28], and per-
user performance [35]. Yet, data minimization reshapes available user-item interactions by discarding
or selectively retaining interactions, potentially altering the distribution of users and items. These
alterations can amplify existing biases and undermine system fairness from consumer and producer
perspectives. Despite the field’s growing focus on fairness [38, 12, 31, 30, 6, 37], a rigorous account
of data minimization impact on both accuracy and fairness is still missing. This study bridges the
gap by systematically investigating the interplay between data minimization, accuracy, and fairness
in recommendation, specifically, we: (i) Evaluate how minimization strategies impact accuracy and
fairness on multiple real-world datasets; (ii) Pinpoint data minimization strategies that best balance
the three objectives via a multi-objective evaluation; (iii) Investigate how different model architectures
react to data minimization when balancing the competing objectives of accuracy and fairness. Code
and data are available at https://github.com/salvatore-bufi/DataMinimizationFairness.

2. Experimental Setup

This research carries out a comprehensive investigation into the effects of data minimization on
recommender systems, moving beyond a simple accuracy analysis to consider its broader implications
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for both users and item providers. In this section, we detail the experimental setup employed to address

the following research questions:

RQ1: How does data minimization impact the accuracy, provider fairness, and consumer fairness of
recommendations? What are the observable trade-offs at the strategy level?

RQ2: Which data minimization strategies most effectively preserve recommender system performance
compared to training on the full dataset?

RQ3: How robust are different recommendation models to data minimization, particularly concerning
maintaining a balance between accuracy and fairness?

Data Preparation and Protocol. Experiments rely on two public benchmarks: MovieLens IM (ML1M)
[20, 14] and Ambar[19]. To make data-minimization effects observable while keeping models trainable,
we follow Biega et al. [7]. Specifically, we retain users with at least 45 ratings (and for Ambar, items as
well), then randomly sample 2500 users from each dataset.

Following this pre-processing, we implement our evaluation protocol which adapts the methodology

from Biega et al. [7] to simulate a real-world user consent scenario, where the availability of data is
determined by individual user choices. We randomly select 30% of users from the full dataset to form
our experimental group, whose interaction data constitutes Dj;. For each user in D, we partition
their ratings into a candidate set (70%), a validation set (10%), and a test set (20%). The final training
data is created by applying various minimization strategies to the candidate set, selecting only n ratings
per user, with n = {1, 3,7, 15,100}
Algorithms and Metrics. Our study evaluates the impact of data minimization on five representative
algorithms from distinct methodological families: the graph-based LightGCN [21], neighborhood-based
User-kNN [33], matrix factorization (BPRMF [32]), a linear model (EASER [36]), and a variational autoen-
coder (MultiVAE [24]). This diverse selection ensures our findings are comprehensive across different
recommendation approaches. We assess performance across three objectives. We use nDCG [22] to mea-
sure accuracy. For fairness, we evaluate consumer fairness with Mean Absolute Deviation (MAD) [11],
which quantifies quality disparities between user groups, and provider fairness with Ranking-based
Statistical Parity (RSP) [39], which measures how uniformly item categories are exposed. Finally, we
use the Hypervolume (HV) [18] to analyze the simultaneous performance on accuracy, consumer, and
provider fairness.

Data Minimization Strategies. In our study, we evaluate several approaches to minimize user
data. These strategies are designed to select subsets of user-item interactions that serve as input to the
system. In this paper, we study the data minimization strategies explored by Biega et al. [7], aiming at
broadening their assessment to fairness issues. These include a Full data baseline and methods that
select n interactions per user based on: Random selection; recency (Most Recent)'; highest/lowest
scores (Most/Least Favorite); global popularity (Most Rated); proximity to the average item profile
(Most Characteristic); and highest rating variability (Highest Variance).

3. Results and Discussion

This section presents the empirical findings that address our three research questions by analyzing the
impact of data minimization on accuracy and fairness”.

Impact of Data Minimization on Key Objectives (RQ1). We find that data minimization significantly
impacts recommendation quality, as shown in Table 1. Accuracy consistently drops as fewer interactions
are retained (i.e., smaller n), with extreme minimization (n = 1) rendering recommendations imprac-
tical. This reduction, however, generally improves consumer fairness (lower MAD) by leveling the
performance across user groups, albeit at the cost of relevance. The effect on provider fairness (RSP) is
more complex. At low n values, the impact is unpredictable, but a clear trade-off with accuracy emerges:
strategies that yield higher accuracy, e.g. “Most Rated”, tend to degrade provider fairness by narrowing

'The Most Recent strategy was not applied to the Ambar dataset due to a lack of timestamps.
*Full results on the ML1M and Ambar datasets are available in the original paper.



Table 1

Performance results of UserKNN and LightGCN on the Ambar dataset forn = 1,n = 7, and n = 100.
The percentage difference between each value and the corresponding value obtained with the full
strategy is indicated below each result. For each scenario, bold and underline stand for best and second-
to-best values, respectively. All results are statistically significant based on paired t-tests (p < 0.05),
except for the values denoted with .

Strategy
nDCGT RSP, MADJ] HV?T ‘nDCGT RSPl MADJ] HVT ‘nDCGT RSPl MAD| HV?T
UserKNN
0.0036 1.4422 0.0049 0.0577 | 0.0572 0.7075 0.0324 0.8107 | 0.13737 0.8199 0.062 0.7255
Random Pem— T

(-97.26) (75.43) (-91.79) (-94.23)| (-56.55) (-13.95) (-46.17) (-18.93)| (4.29) (-0.27) (2.93) (-27.45)
0.0101 1.4621 0.0044 0.0381 | 0.1092 0.7307 0.0361 0.8225 | 0.14047 0.8755 0.06 0.6694
(-92.35) (77.84) (-92.72) (-96.19)| (-17.03) (-11.12) (-40.13) (-17.75)| (6.64) (6.5) (-0.42) (-33.06)
0.0055 1.4863 0.0354 0.0133 | 0.0345 0.5747 0.0153 0.9426 | 0.13627 0.8072 0.0683 0.7335
(-95.84) (80.79) (-41.26) (-98.67)| (-73.81) (-30.1) (-74.6) (-5.74) | (3.48) (-1.82) (13.31) (-26.65)
0.0164 1.447 0.0101 0.0534 | 0.0938 1.0878 0.0525 0.4272 |0.13117 0.8177 0.0594 0.7259
(-87.55) (76.0) (-83.21) (-94.66)|(-28.74) (32.31) (-12.91) (-57.28)| (-0.4) (-0.53) (-1.54) (-27.41)
0.0016 15222 0.0005 0.0 | 0.0285 0.491 0.0077 1.0297 |0.14377 0.8548 0.0707 0.6858
(-98.75) (85.16) (-99.18) (-100.0)| (-78.37) (-40.28) (-87.17) (2.97) | (9.13) (3.97) (17.29) (-31.42)
0.0015 0.9225 0.0007 0.578 | 0.062 0.6658 0.0396 0.8508 |0.13187 0.8138 0.0598 0.7301
(-98.83) (12.21) (-98.84) (-42.2) | (-52.9) (-19.01) (-34.26) (-14.92)| (0.09) (-1.01) (-0.72) (-26.99)

Most Favorite

Least Favorite

Most Rated

Most Characteristic

Highest Variance

LightGCN

0.0083 0.7742 0.0302 0.7097 | 0.053 0.7235 0.0525 0.7747 | 0.1291 0.7887 0.0532 0.7604
(-93.95) (-9.77) (-46.03) (-29.03)| (-61.18) (-15.69) (-6.11) (-22.53)| (-5.46) (-8.09) (-4.85) (-23.96)
0.0108 05157 0.0058 0.9891 | 0.1078 0.6993 0.0231 0.8665 | 0.1287 0.8545 0.0496 0.6924
(-92.1) (-39.9) (-89.55) (-1.09) | (-21.1) (-18.5) (-58.74) (-13.35)| (-5.73) (-0.42) (-11.31) (-30.76)
0.008 0.6632 0.0132 0.8324 | 0.0353 0.6342 0.1252 0.7842 | 0.134 0.8338 0.062 0.7086
(-94.13) (-22.72) (-76.33) (-16.76) | (-74.15) (-26.1) (123.74) (-21.58)| (-1.9) (-2.84) (10.85) (-29.14)
0.0233 1.1165 0.0082 0.3892 | 0.0853 1.1706 0.044 0.3417 | 0.12787 0.8384 0.0545 0.7055
(-82.98) (30.11) (-85.38) (-61.08)| (-37.51) (36.42) (-21.29) (-65.83)| (-6.46) (-2.3) (-2.66) (-29.45)
0.001 0.3557 0.0004 1.145 | 0.0256 0.4283 0.028 1.0684 | 0.1302 0.8584 0.0584 0.6828
(-99.26) (-58.55) (-99.31) (14.5) |(-81.23) (-50.09) (-50.0) (6.84) | (-4.66) (0.04) (4.33) (-31.72)
0.0047 05715 0.0026 0.9304 | 0.0587 0.6896 0.0317 0.8308 | 0.1244 0.8497 0.0544 0.6915
(-96.59) (-33.4) (-95.35) (-6.96) |(-57.02) (-19.64) (-43.4) (-16.92)| (-8.88) (-0.98) (-2.84) (-30.85)

Random

Most Favorite

Least Favorite

Most Rated

Most Characteristic

Highest Variance

item exposure. Conversely, strategies like “Most Characteristic” improve provider fairness but severely
compromise accuracy. “Most Favorite” strategy strikes a better balance, achieving competitive accuracy
while mitigating the fairness degradation seen in other approaches. These intricate trade-offs are also
reflected in the Hypervolume (HV) metric, underscoring that data minimization’s effectiveness cannot
be judged on accuracy alone. We conclude that data minimization introduces a critical trade-off: while
consumer fairness may improve, it comes at the expense of accuracy and can lead to unpredictable outcomes
for provider fairness, requiring nuanced strategies to balance these objectives.

Performance of Data Minimization Strategies (RQ2). To evaluate how well strategies preserve
overall performance compared to using the full dataset, we adopt a multi-objective approach. We
represent each outcome as a point in a 3D space (nDCG, RSP, MAD) and measure its Euclidean distance
(0) from the reference point (performance on full data). A smaller § indicates better preservation. As
shown in Figure 1, when n is large, most strategies perform similarly well, but a clear hierarchy emerges
as n decreases. The “Most Rated” and “Most Characteristic” strategies consistently exhibit the highest §
values, indicating poor overall performance preservation due to their strong biases toward accuracy
and fairness, respectively. In contrast, strategies that introduce variability into user profiles, such as
“Most Favorite,” and “Highest Variance”, achieve lower ¢ values. Thus, data minimization strategies that
effectively shape user profiles by introducing variability are best at retaining the holistic performance of
the recommender system.

Robustness of Recommender Models (RQ3). To assess model robustness, we analyze the mean
(1) and standard deviation (o) of the Euclidean distances (§), across all minimization strategies for a
given n, as reported in Table 2. A lower p signifies better overall robustness, while a lower o indicates
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Figure 1: Comparison of the Euclidean distance between model performance under each minimization strategy
and the full-data strategy, for the Ambar dataset. Smaller values indicate better preservation of overall perfor-
mance.

Table 2

Mean (1) and standard deviation (o) of the distances among the points represented by each model’s
performance under different strategies and the point corresponding to the model performance under
the “full” data strategy, for the Ambar dataset across different n. For each scenario, bold and underline
stand for best and second-to-best values, respectively.

n=1 n=3 n="7T n =15 n = 100 Global

pl ol pl ol pl ol pl ol pwl ol | pl ol

UserKNN 0.5821 0.2017 0.2212 0.1098 0.2163 0.0956 0.1043 0.0850 0.0212 0.0200|0.2290 0.2236
BPRMF  0.3166 0.1467 0.2223 0.0969 0.2245 0.1203 0.1090 0.1031 0.0698 0.0294|0.1884 0.1339
EASER 0.5516 0.1884 0.2063 0.0847 0.2328 0.1116 0.1350 0.0926 0.0133 0.0105|0.2278 0.2100
MultiVAE 0.2625 0.1433 0.2196 0.0809 0.2372 0.1506 0.1529 0.1145 0.0632 0.0216|0.1871 0.1275
LightGCN 0.3151 0.1254 0.2722 0.1351 0.2546 0.1113 0.1177 0.1000 0.0249 0.0231|0.1969 0.1483

Model

more consistent performance. Our analysis reveals that graph-based and factorization-based models
are the most resilient. LightGCN emerges as the most robust model overall, maintaining low yp and
o across all scenarios and proving particularly effective under extreme data sparsity (n = 1) due to
its information propagation mechanism. BPRMF also demonstrates strong generalization. In contrast,
traditional methods show limitations. UserKNN is robust for moderate minimization (n > 3) but
falters with scarcer data. EASER, relying on co-occurrence statistics, is highly sensitive to sparsity.
MultiVAE’s performance is dataset-dependent, showing weaker robustness in ML1M but achieving the
best performance in Ambar at the global level. We conclude that graph-based modeling, which enhances
classic factorization-based representations, is crucial for building recommenders that are robust to extreme
data reduction when accuracy and fairness are considered jointly.



4. Conclusion and Future Work

We audited the impact of data minimization on the accuracy and fairness trade-offs in RSs. Our findings
reveal a critical trade-off, where consumer fairness often improves at the cost of accuracy and provider
fairness. Strategies that introduce variability into user profiles, alongside robust graph-based models,
proved most effective at balancing these objectives. Future work will focus on engineering recommender
systems that are inherently fair and robust under severe data constraints.
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