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Abstract
Loss functions, such as categorical cross-entropy (CCE), binary cross-entropy (BCE), and Bayesian personalized
ranking (BPR), play a central role in training modern recommender systems. Although evaluations are often
based on ranking metrics, such as Normalized Discounted Cumulative Gain (NDCG) and Mean Reciprocal Rank
(MRR), a direct understanding of how these losses relate to target metrics remains incomplete. Furthermore,
full-item training is computationally prohibitive, which has led to the widespread use of negative sampling. In
this extended abstract, we (i) derive theoretical equivalences and bounds relating these loss functions under
negative sampling; (ii) prove that BPR and CCE become identical under a single negative sample; and (iii) show
that BCE provides the tightest bound on NDCG and MRR when negative sampling is used. We complement
our theoretical findings with empirical results on five datasets and four neural architectures, which consistently
validate the theory.
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1. Introduction

Recommender systems (RSs) have become indispensable in e-commerce, media streaming, and social
platforms. Training these models usually involves optimizing a loss function based on user-item
interactions. Common choices include:

• Categorical Cross-Entropy (CCE): Treats recommendations as a multi-class classification problem
across all items.

• Binary cross-entropy (BCE): Considers each positive interaction against sampled negatives in a
binary classification framework.

• Bayesian Personalized Ranking (BPR)[2]: Directly optimizes pairwise ranking by contrasting
positive and negative items.

Despite their prevalence[3, 4, 5, 6, 7, 8, 9, 10], the formal connection between these losses and
downstream ranking metrics (e.g., NDCG[11], MRR) is often assumed rather than proven. Moreover,
real-world systems rely on negative sampling [2, 12, 13, 14, 15, 16, 17], i.e. selecting a subset of
unobserved items per positive, due to scalability concerns. Our prior work [1] addressed this issue
by providing a unified theoretical framework to analyze how loss functions behave under negative
sampling and how they bound the actual ranking objectives of interest.
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2. Theoretical Analysis

We consider a user 𝑢 and a set of items ℐ , where 𝒫𝑢 ⊂ ℐ are positive (interacted) items and 𝒩𝑢 are
negative (non-interacted) items. Let 𝑠(𝑢, 𝑖) denote the model’s score for item 𝑖.

2.1. Loss Definitions under Sampling

CCE - Categorical cross-entropy:

ℒCCE = − log
𝑒𝑠(𝑢,𝑖

+)

𝑒𝑠(𝑢,𝑖+) +
∑︀𝑘

𝑗=1 𝑒
𝑠(𝑢,𝑖−𝑗 )

BCE - Binary cross-entropy:

ℒBCE = − log 𝜎
(︀
𝑠(𝑢, 𝑖+)

)︀
−

𝑘∑︁
𝑗=1

log
(︁
1− 𝜎(𝑠(𝑢, 𝑖−𝑗 ))

)︁
BPR - Bayesian personalized ranking:

ℒBPR = −
𝑘∑︁

𝑗=1

log 𝜎
(︁
𝑠(𝑢, 𝑖+)− 𝑠(𝑢, 𝑖−𝑗 )

)︁
where 𝑖+ ∈ 𝒫𝑢 and 𝑖−𝑗 ∈ 𝒩𝑢.

2.2. Ranking Metrics

The Normalized Discounted Cumulative Gain (NDCG) is a widely used recommendation metric that
accounts for the graded relevance of items depending on their position in the ranked list:

𝑁𝐷𝐶𝐺(𝑟+) =
1

𝑙𝑜𝑔2(1 + 𝑟+)

if there’s only one relevant item and 𝑟+ is its rank position.
Another key ranking measure is the Mean Reciprocal Rank (MRR), which computes the inverse of

the rank position 𝑟+ of the first relevant item in the recommendations:

𝑀𝑅𝑅(𝑟+) =
1

𝑟+

2.3. Equivalence of BPR and CCE

Under a single negative sample (𝑘 = 1), we prove that ℓ𝐵𝑃𝑅 is equivalent to ℓ𝐶𝐶𝐸 .

Proposition 1. ℓ𝐵𝑃𝑅 = ℓ𝐶𝐶𝐸 if one negative item𝐾 = 1 is sampled for each user.

This highlights that, when sampling only one negative per positive, optimizing CCE or BPR leads to
the same parameter updates.

2.4. Equivalence of Global Minima

We now present a result that establishes the equivalence of the global minima of the three loss functions
when a single negative is sampled and item scores are bounded.

Proposition 2. If 𝑠+, 𝑠𝑖 ∈ [−𝑆, 𝑆] for some 𝑆 > 0, then:

argmin
𝑠+

ℓ𝐵𝐶𝐸 = argmin
𝑠+

ℓ𝐵𝑃𝑅 = argmin
𝑠+

ℓ𝐶𝐶𝐸 = 𝑆 argmin
𝑠𝑖

ℓ𝐵𝐶𝐸 = argmin
𝑠𝑖

ℓ𝐵𝑃𝑅 = argmin
𝑠𝑖

ℓ𝐶𝐶𝐸 = −𝑆



This proposition implies that, under bounded scores and single negative sampling, BPR, BCE, and
CCE converge to the same optimal solution. Practically, it means that the choice of loss function does
not affect the ideal parameter configuration.

However, in deep neural networks, these extreme score values are rarely reached due to regularization,
early stopping, and model inductive biases, which prevent overfitting and favour generalization [18, 19].
Hence, while useful, this result has limited applicability to real-world RS training scenarios.

2.5. Bounding Ranking Metrics

We now turn to the comparison of ranking losses from the perspective of their ability to upper bound
ranking metrics, particularly − log(NDCG), under uniform negative sampling.

Theorem 1. When uniformly sampling𝐾 negative items, in the worst-case scenario, and 𝑠+ ≥ 0:

P(− logNDCG(𝑟+) ≤ ℓ𝐵𝐶𝐸) ≥
P(− logNDCG(𝑟+) ≤ ℓ𝐵𝑃𝑅) ≥

P(− logNDCG(𝑟+) ≤ ℓ𝐶𝐶𝐸)

This result shows that BCE offers the tightest bound on NDCG among the three losses, followed by
BPR and then CCE. While the exact behaviour depends on the rank 𝑟+ of the positive item and the
number of sampled negatives 𝐾 , BCE consistently exhibits more favourable properties, especially when
item embeddings remain well-distributed, avoiding embedding collapse [20].

That said, practical dynamics during training, such as changing item ranks, differences in optimization
behaviour between losses, and embedding concentration due to popularity bias, can affect these bounds.
Thus, while BCE is theoretically preferable, its advantage may vary in real-world scenarios.

Additional theorems, full proofs, and the extension to MRR can be found in the original work [1].

3. Empirical Evaluation

We validate our theoretical insights on five benchmarks (MovieLens-1M[21], Amazon-Beauty[22],
Amazon-Books[22], Yelp [23], and Foursquare NYC [24]) and four architectures (matrix factorization[25],
Self-attentive Sequential Recommendation (SASRec) [26], GRU4Rec[27], and LightGCN[28]). For each
setting, we vary 𝑘 ∈ {1, 5, 10, 20} negatives per positive and measure NDCG@10 and MRR [29].

3.1. Effect of Negative Sampling
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(b) BCE – SASRec
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Figure 1: NDCG@10 over training epochs for BCE on ML-1M (GRU4Rec, SASRec) and Foursquare.

We analyze how varying the number of negative items affects training on ML-1M using BCE. As
shown in Fig. 1, fewer negatives yield faster improvements in early epochs, while a larger number (e.g.,
100) leads to slower starts but better final performance. This reflects a trade-off: fewer negatives ease



early learning, but more negatives improve generalization by providing harder contrasts. For BPR and
CCE, we observe similar trends with slightly more stable early-phase training (see complete results in
the original paper).

3.2. Loss Comparison: 1 vs 100 Negatives
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Figure 2: Loss comparison (BCE, BPR, CCE) with GRU4Rec on ML-1M and Foursquare.
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Figure 3: Loss comparison (BCE, BPR, CCE) with SASRec on ML-1M and Foursquare.

Figs. 2 and 3 compare loss functions using 1 and 100 negative samples. With a single negative, BPR
and CCE perform identically on SASRec, as predicted by theory. BCE shows superior final performance,
confirming its tighter bound to ranking metrics. On GRU4Rec, differences between losses are smaller.

When using 100 negatives, CCE generally performs better than BPR early in training, while BCE starts
slower but steadily improves, surpassing both losses in later epochs. On Foursquare (Figs. 2c and 3c),
BCE again starts behind but shows strong late-phase gains. However, due to its slower convergence,
CCE often remains the most stable choice in early-to-mid training.

4. Conclusion and Future Work

We presented a unified theoretical framework that (i) links popular recommendation losses under
negative sampling, (ii) uncovers an equivalence between BPR and CCE for a single negative, and (iii)
establishes BCE as the preferred surrogate for ranking metrics. Future directions include extending the
analysis to dynamic sampling schemes and to include gradient descent dynamics.
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