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Abstract

Large Language Models (LLMs) have emerged as a powerful new paradigm for recommender systems. However,
their effectiveness is often constrained by the general-purpose knowledge acquired during pre-training, which
may lack the domain-specific detail required for specialized recommendation tasks. To address this, we introduce a
comprehensive pipeline for injecting multi-source knowledge directly into an LLM. Our methodology extracts and
lexicalizes information from item descriptions (textual), knowledge graphs (structured), and user-item interactions
(collaborative). This external knowledge is then infused into the model through a unified fine-tuning process
that simultaneously adapts the LLM to a top-k re-ranking task. We conduct extensive experiments across movie,
music, and book domains, demonstrating that our approach significantly enhances recommendation accuracy,
especially in domains less-covered by the LLM’s original training data. Our knowledge-injected model achieves
state-of-the-art performance, outperforming a wide array of baselines, including powerful zero-shot models like
GPT-4, in the music and book domains. This paper serves as a discussion of the research originally presented in
the paper referenced as [12].
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1. Introduction

The evolution of recommender systems has progressed from collaborative filtering [7], which suffers
from data sparsity, towards Knowledge-Aware Recommender Systems (KARS) that leverage external
data [4]. The latest paradigm shift involves Large Language Models (LLMs), which offer unprecedented
zero-shot reasoning capabilities [11].

Current LLM-based recommendation strategies fall into two categories. Non-tuning approaches use
pre-trained models like GPT-4 as-is, relying on sophisticated prompt engineering to elicit recommenda-
tions [15]. This method is limited by the LLM’s static, general-purpose knowledge. Tuning approaches
adapt smaller, open-source LLMs (e.g., LLaMA [14]) to recommendation tasks via instruction tuning
[5]. While frameworks like P5 [5] unify various recommendation tasks into a text-to-text format, they
primarily focus on task adaptation rather than enriching the model’s core knowledge base.

We identify a critical gap: the need to explicitly infuse LLMs with curated, domain-specific knowledge.
This process, which we term knowledge injection, is vital for enhancing the model’s understanding of
items, particularly in niche domains (e.g., technical books, indie music) that are underrepresented in
general pre-training corpora.

This paper introduces a novel pipeline for injecting multi-source knowledge into an LLM for top-k
recommendation. Our contributions are:

1. A modular pipeline for extracting, lexicalizing, and injecting knowledge from textual descriptions,
knowledge graphs, and collaborative signals into an LLM.
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2. A comprehensive analysis across three domains demonstrating how different knowledge types
impact recommendation accuracy.

3. Evidence that our knowledge-injected model achieves state-of-the-art performance, outperform-
ing strong baselines, including GPT-4, particularly in specialized domains.

2. Methodology

Our goal is to improve top-k item recommendation by training an LLM to re-rank a candidate list
of items for a user u. The methodology involves two primary phases: a unified training stage for
knowledge injection and task adaptation, followed by an inference stage. A detailed rappresentation of
our methodology is illustrated in Figure 1
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Figure 1: High-level architecture of the proposed knowledge injection and recommendation pipeline.

2.1. Knowledge Extraction and Lexicalization

We extract knowledge from three heterogeneous sources and convert it into a natural language format
suitable for LLM consumption.

» Textual Data: Raw item descriptions (¢;) are used directly as they are already in text format.

« Knowledge Graphs (KG): Structured KG triples (e.g., (Tenet, director, Christopher Nolan)) are
converted into sentences using predefined templates (e.g., "Tenet was directed by Christopher
Nolan.").

« Collaborative Data: We mine association rules from the user-item interaction matrix using
the Apriori algorithm [1]. Rules (e.g., {item A} — {item B, C}) are lexicalized into sentences like,
"People who like item A also tend to like item B and item C."

This multi-source approach is inspired by KARS research showing that combining these data types
yields robust performance [3].

2.2. Unified Training Phase

We adopt a unified training strategy that combines task adaptation with knowledge injection in a single
step. The model is fine-tuned on a dataset containing two types of examples:

1. Instruction-Tuning Data: For each user, we generate prompts that frame the re-ranking task.
The input contains the user’s history and candidate items, and the target is the ground-truth
ranked list.



Table 1

Main results comparing our method (LLaMA-KI) against baselines. LLaMA-KI uses the best knowledge
configuration for each domain (Collaborative for Movies, Text for Music, All for Books). * indicates
statistical significance (p < 0.05) over the best baseline.

MovielLens ITM Last.FM (Music) DBbook (Books)
Model P@51 R@57 NDCG@57 Pop@5) | P@57 R@51 NDCG@51 Pop@5)| | P@57 R@51 NDCG@51 Pop@5.
Traditional Baselines
BPR 0.7519 0.1860 0.7592 0.1617 0.6615 0.3313 0.6867 0.0701 0.5777 0.4672 0.6053 0.0166
LightGCN 0.7410 0.1811 0.7540 0.1491 0.6732 0.3381 0.7056 0.0659 0.5749 0.4639 0.6101 0.0163
LLM Baselines
LLaMA 3 (zero-shot) 0.5615 0.1418 0.7130 0.1226 0.3861 0.2116 0.5340 0.0404 0.4630 0.3813 0.6369 0.0128
P5 0.6532 0.1602 0.6524 0.1077 0.5881 0.2920 0.5978 0.0597 0.5433 0.4413 0.5728 0.0115
GPT-4 (zero-shot) 0.7683  0.1820 0.8132 0.1443 0.5888 0.2880 0.6503 0.0455 0.5748 0.4590 0.6802 0.0120
Our Approach
LLaMA (w/o knowledge) | 0.7654  0.2105 0.7728 0.0921 0.8089 0.4272 0.8042 0.0390 0.7816 0.6317 0.8601 0.0113
LLaMA-KI (Ours) 0.7611 0.2070 0.7709 0.0927 0.8428"  0.4433" 0.8490" 0.0392 0.8122*  0.6615* 0.9015" 0.0113"*

2. Knowledge-Tuning Data: The lexicalized textual, KG, and collaborative information for each
item is formatted as input-output pairs where the model learns to reconstruct this knowledge.

Training optimizes a total loss Lt = Li + Li, where Ly is the reconstruction loss for the knowledge
data and L; is the prediction loss for the instruction-tuning (re-ranking) data. Both are standard
cross-entropy losses for next-token prediction. We use Low-Rank Adaptation (LoRA) [8] for parameter-
efficient fine-tuning.

2.3. Inference

At inference time, the fine-tuned LLM is given a prompt containing a test user’s history and a list
of candidate items. The model generates a ranked list, which is parsed to extract the final top-k
recommendations.

3. Experimental Setup

Our experiments address three research questions: (RQ1) How do individual knowledge types affect
performance? (RQ2) How does combining knowledge sources impact performance? (RQ3) How does
our model compare to state-of-the-art baselines?

Datasets. We use three public datasets: MovieLens 1M (movies), Last.FM (music), and DBbook
(books). Item features (textual, graph) are mapped from DBpedia.

Implementation. We use LLaMA 3 8B Instruct as our base model. The evaluation protocol follows a
standard user-based split (80% fine-tuning, 20% test).

Baselines. We compare our model against three families of baselines:

« Collaborative Filtering: BPR [13], MultiVAE [9], and SimpleX [10].

« Graph-based: LightGCN [6] and CFKG [2].

« LLM-based: Zero-shot prompting with GPT-3.5, GPT-4, the base LLaMA 3 model, and the
tuned P5 model [5].

Metrics. We evaluate top-5 recommendations using Precision@5, Recall@5, nDCG@5, and average
item Popularity@5 (lower is better, indicating less reliance on popular items).

4. Results and Discussion

Our results are summarized in Table 1 and organized by our research questions.



4.1. RQ1 & RQ2: Impact of Knowledge

We first analyzed the effect of injecting different knowledge sources individually and in combination.
The findings are highly domain-dependent.

For MovieLens, simply fine-tuning the LLM on the re-ranking task without any external knowledge
(‘LLaMA w/o knowledge®) yielded the best results within our framework. Injecting additional knowledge
did not provide further gains and in some cases slightly degraded performance. This suggests that the
base LLaMA 3 model already possesses extensive knowledge about the popular movie domain, making
additional injection redundant. The massive, proprietary GPT-4 model performs best overall on this
dataset, likely due to its even larger scale and more comprehensive pre-trained knowledge base.

For Last.FM (Music), the scenario is reversed. Here, injecting external knowledge provides a
substantial and statistically significant performance boost. The best-performing single source was
Textual data, which significantly outperformed the no-knowledge variant. Combining knowledge
sources did not yield further improvements over using textual data alone. This indicates that for music,
rich descriptive text is the most critical missing piece of information for the LLM.

For DBbook (Books), knowledge injection was again highly effective. The best performance was
achieved by combining all three knowledge sources (Collaborative + Graph + Text), which delivered
a statistically significant improvement over the no-knowledge baseline. This suggests that the book
domain benefits from a more holistic set of information, blending content descriptions, structured
metadata, and user behavior patterns.

A key takeaway is that the value of knowledge injection is inversely proportional to the
domain’s representation in the LLM’s pre-training data. For well-covered domains like movies,
task-tuning is sufficient. For specialized or niche domains like music and books, explicit knowledge
injection is crucial for achieving high accuracy.

4.2. RQ3: Comparison with Baselines

As shown in Table 1, our approach demonstrates state-of-the-art performance.

First, fine-tuning LLaMA 3 (even without knowledge) dramatically outperforms zero-shot LLM
baselines (including GPT-4 in many cases) and traditional methods on the music and book datasets.
This highlights the power of adapting an LLM to the specific task and data distribution.

Second, our final knowledge-injected model, LLaMA-KI, sets a new state of the art on the music
and book domains, decisively outperforming all other models, including the much larger GPT-4. This
is a critical finding: a smaller, open-source model, when infused with the right domain knowledge, can
surpass a massive, general-purpose model. This shows that targeted knowledge is a more efficient path
to high performance in specialized domains than simply scaling up the model size.

In the movie domain, while our tuned model significantly outperforms traditional baselines and
other LLM approaches like P5, it does not surpass GPT-4 in terms of nDCG. However, it achieves higher
recall and recommends less popular items, indicating a better ability to handle the cold-start setting of
our evaluation.

5. Conclusion and Future Work

We presented a versatile pipeline for injecting multi-source domain knowledge into LLMs for recom-
mendation. Our experiments demonstrate that this approach is highly effective, yielding state-of-the-art
results, particularly in domains where a general-purpose LLM’s pre-trained knowledge is insufficient.
The results underscore a key principle: for specialized recommendation tasks, targeted knowledge
injection can be more valuable than raw model scale.

Future work will focus on: (1) integrating more diverse knowledge sources like user reviews and
multimodal data (e.g., images, audio); (2) developing methods to automatically assess the quality and
relevance of knowledge sources before injection; and (3) exploring the trade-offs between model size,
the amount of injected knowledge, and computational costs.
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