
Investigating Mixture of Experts in Dense Retrieval⋆

Effrosyni Sokli1,∗, Pranav Kasela1, Georgios Peikos1 and Gabriella Pasi1

1Department of Informatics, Systems and Communication (DISCo), University of Milano-Bicocca, Milan, Italy

Abstract
While Dense Retrieval Models (DRMs) have advanced Information Retrieval (IR), they often suffer from
limited generalizability and robustness. Various studies address these limitations with representation
learning techniques that leverage the Mixture-of-Experts (MoE) architecture. Unlike prior works
in IR that integrate MoE within the Transformer layers of DRMs, we add a single MoE block
(SB-MoE) after the output of the final Transformer layer. Our empirical evaluation investigates how
SB-MoE compares, in terms of retrieval effectiveness, to standard model fine-tuning. Given MoEs
sensitivity to its hyperparameters (i.e., the number of experts), we also investigate our model’s
performance under different expert configurations. Results show that SB-MoE is particularly effective
for lightweight DRMs, consistently outperforming their fine-tuned counterparts. For larger DRMs,
SB-MoE requires more training data to deliver improved retrieval performance. Our code is available
online at: https://anonymous.4open.science/r/DenseRetrievalMoE.
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1. Introduction

Dense Retrieval Models (DRMs) can capture the semantic context of queries and documents
[2] and often outperform sparse lexicon-based models such as BM25 [3] across various IR tasks.
However, their dependence on large labeled datasets and limited cross-domain generalizability
often requires additional fine-tuning for robust adaptation to different tasks or domains. In this
paper, we investigate the effectiveness of an enhanced bi-encoder DRM architecture leveraging
Mixture-of-Experts (MoE) [4] in various dense retrieval tasks. Unlike previous studies in IR
that integrate MoE within each Transformer layer [5, 6], we apply a single MoE block (SB-MoE)
on the final output embeddings of the underlying DRM. SB-MoE is trained in an unsupervised
manner to automatically optimize each expert and dynamically aggregate their outputs, adapting
predictions to the input embeddings, i.e., the query and document representations produced by
the underlying DRM. We utilize two datasets of the BEIR collection [7] (i.e., Natural Questions
(NQ) [8] and HotpotQA [9]), and two of the Multi-Domain Benchmark by Bassani et al. [10] (i.e.,
Political Science (PS) and Computer Science (CS)), to empirically evaluate SB-MoE’s retrieval
effectiveness for open-domain Q&A, and domain-specific academic search.

This work has the following contributions: (1) We introduce a modular MoE framework, SB-MoE,
which operates on the query and document embeddings produced by an underlying bi-encoder
DRM architecture; (2) We conduct an empirical evaluation using three DRMs (Contriever,
BERT, and TinyBERT) investigating SB-MoE’s retrieval performance and its sensitivity to
hyperparameters (i.e., the number of employed experts), compared to standard model fine-tuning
across four benchmarks.
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Figure 1: Overview of the SB-MoE architecture, highlighting its three main parts.

2. Related Work

DRMs often outperform lexicon-based models (e.g., BM25 [3]), since they can capture the
semantic context of queries and documents. They project both queries and documents in
a common dense vector space and score documents through similarity functions for a given
query [11, 12, 13]. In this work, we leverage three DRMs. Contriever [14] is a state-of-the-art
BERT-based model that exploits contrastive learning, a Machine Learning technique that uses
pairs of positive and negative examples to learn meaningful and distinctive representations
of queries and documents. Besides BERT [15], we also use TinyBERT [16], which leverages
knowledge distillation [17] to transfer knowledge from its larger counterpart (BERT) to a tinier
version, reducing training times and computational expenses. DRMs often showcase continuous
adaptation needs, which can lead to low generalizability and robustness [18, 19]. The MoE
[4] framework has been employed in various approaches to mitigate these issues. MoE can
handle multiple types of data and tasks [20, 21] and has been used in tasks such as classification
[22], and multi-lingual machine translation [23]. MoE has been employed for IR tasks such as
passage retrieval [5, 24], and Q&A [6, 25, 26]. These approaches either integrate MoE blocks
into every layer of the Transformer model (substantially increasing the number of parameters)
or only partially leverage MoE by applying it solely to the query representation. In our work, we
apply a single MoE block to both query and document representations and train the obtained
architecture end-to-end for retrieval.

3. Methodology

SB-MoE builds upon a bi-encoder DRM architecture [27], which allows for independent encoding
of documents and queries to enhance scalability and to enable the computation of relevance scores
through a similarity function (e.g., cosine similarity). The proposed model’s architecture consists
of three parts (Figure 1): (1) the experts, operating on the query and document representations
produced by the underlying DRM; (2) the gating function, trained in an unsupervised manner
to indicate the most appropriate expert(s) for a given input; and (3) the pooling module, used
in the final stage to aggregate the experts’ representations and produce the final embedding to
be used for similarity estimation between the query and documents.

The experts receive as input the query or document embedding as produced by the underlying
DRM. The output is 𝑛 modified representations, where 𝑛 is the number of employed experts. The
gating function receives the same input and produces an 𝑛-dimensional vector, which indicates
the importance of each experts contribution to the final query or document embedding. We
rely on noisy Top-1 gating, as proposed by Shazeer et al. [23], for training the gating function.
This approach ensures that SB-MoE can explore every expert during training, enhancing the
robustness of the model. During inference, the pooling module uses two different strategies. The



Table 1
Results on all four datasets. Symbol * indicates a statistically significant difference over Fine-tuned. The best
results for each model are underlined.

NQ HotpotQA PS CS
Retriever Variant NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100 NDCG@10 R@100

TinyBERT
Fine-tuned .216 .689 .158 .394 .125 .262 .150 .308
SB-MoETOP-1 .219 .693 .162* .399* .130* .271* .153* .313*
SB-MoEALL .217 .697* .171* .411* .129* .270* .153* .315*

BERT
Fine-tuned .265 .846 .372 .660 .183 .374 .172 .362
SB-MoETOP-1 .261 .842 .349* .642* .183 .377* .175* .364
SB-MoEALL .258* .840 .362* .649* .184 .378* .167* .355*

Contriever
Fine-tuned .426 .934 .672 .862 .251 .483 .224 .437
SB-MoETOP-1 .416* .930* .653* .853* .250 .479* .222* .435
SB-MoEALL .416* .932 .667* .861 .251 .483 .223 .438

first one is Top-1 gating [28] (SB-MoETOP-1), which selects solely the output of the expert that
the gating function assigned the highest score to. The second strategy (SB-MoEALL) calculates
probability scores from the gating function’s output vector through a softmax normalization
[29], and produces the final embedding, which is the weighted sum of all experts’ outputs.

4. Experimental Analysis

This section presents the empirical evaluation conducted to answer the following research
questions (RQs):

RQ1 How does SB-MoE compare, in terms of effectiveness, to standard model fine-tuning?
RQ2 How does the number of experts impact the retrieval effectiveness of SB-MoE?

4.1. Experimental Setup

For RQ1, we employ 6 distinct experts across all models and datasets. For RQ2, we vary the
number of experts from 3 to 12 with a step of 3. This setup is based on previous studies [30, 31],
which suggest that a high number of experts does not always yield performance improvements [32],
and experiment with expert counts ranging from 2 to 8 [25, 24, 33]. We follow the architecture
proposed by Houlsby et al. [34], where each expert consists of a feed-forward network (FFN) with
a down-projection layer that reduces the input dimension by half, followed by an up-projection
FFN layer, which restores the vector dimension to the original embedding size. The gating
function includes a single hidden layer that reduces the input dimension by half, and an output
FFN layer with dimensionality equal to the number of experts. During training, we use a batch
size of 64. The learning rate is set to 10−6 for the underlying DRM and 10−4 for the experts.
TinyBERT is trained for 30 epochs across all datasets, while BERT and Contriever are trained
for 20 epochs due to resource constraints and longer training times, on all datasets except CS,
where they are trained for 10 epochs since the collection’s training queries are ∼3.5 times more
than the second largest collection used (PS). We reserve 5% of each training set for validation
and keep the checkpoint with the lowest validation loss. We set the random seed to 42 and
use contrastive loss [14] with a temperature of 0.05. For our evaluation, we use NDCG@10
and R@100, two metrics commonly used on BEIR, for comparability. Statistical significance
is assessed using two-sided paired Student’s 𝑡-tests with Bonferroni multiple testing correction,
at a significance level of 0.05. We integrate SB-MoE into three different DRMs and compare its
retrieval effectiveness to that achieved by the underlying DRM, fine-tuned on the same training
data and hyperparameters. We refer to these baseline experiments as Fine-tuned.

4.2. Results and Discussion

RQ1. As shown in Table 1, SB-MoE consistently improves NDCG@10 and Recall@100, especially
for lightweight models. For example, on TinyBERT, SB-MoE leads to noticeable performance
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Figure 2: SB-MoETOP-1 on TinyBERT with 3, 6, 9, and 12 experts.

gains in both metrics across all datasets, with a marked increase in HotpotQA, where SB-MoEALL
achieved an NDCG@10 score of .171 compared to .158 of the fine-tuned version. However, for
larger models like BERT and Contriever, the integration of SB-MoE had a marginal impact, with
similar or slightly worse retrieval performance compared to Fine-tuned. These results suggest
that in models already equipped with a substantial number of parameters, SB-MoE’s advantages
may not be so prominent, potentially due to redundancy when additional experts are employed.
Therefore, the integration of SB-MoE particularly benefits lightweight models.

RQ2. As SB-MoE seems to benefit significantly lightweight models, we leverage TinyBERT to
understand the impact of the number of experts, by configuring SB-MoE with 3, 6, 9, and 12
experts and evaluating across all datasets (Figure 2). Our findings show variations in performance
for different expert counts across datasets, which can also lead to the maximization of different
performance measures, as observed in the case of NQ, where the employment of 12 experts
maximizes NDCG@10, but Recall@100 is maximized with 9 experts. Therefore, the number of
employed experts is a hyperparameter that requires tuning with respect to the domain and the
addressed retrieval task.

5. Conclusions

In this work, we integrate a single Mixture-of-Experts block (SB-MoE) into Dense Retrieval Models
(DRMs) and conduct an experimental investigation on its effectiveness in different dense retrieval
tasks. Results show that SB-MoE significantly enhances the retrieval performance of lightweight
DRMs, consistently improving NDCG@10 and R@100 across datasets. However, larger DRMs
only marginally benefit from SB-MoE, indicating that models with a higher parameter count need
dataset-specific optimization to see measurable gains. Our analysis reveals that the number of
employed experts is a key hyperparameter, which influences SB-MoE’s performance and requires
task and domain-specific calibration.
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