Intelligent agents for high availability systems*

Fabrizio Messina?', Domenico Rosaci*' and Giuseppe M.L. Sarné*f

?University of Catania
Universita Mediterranea di Reggio Calabria
*Department of Psychology, University of Milan Bicocca, Piazza dell’Ateneo Nuovo, 1, 20126 Milan, Italy

Abstract

High availability (HA) systems are designed to guarantee availability of process and data for more then 99% of
their operational time. HA are nowadays present in many contexts, both government and commercial services.
In particular, the widespread of IoT smart devices has increased the need of HA systems providing broad network
access. Many HA systems are built on top of the cloud, which is the standard de facto for small and medium
companies to exploit reliable computational resources capable to scale up and down very quickly. Intelligent
agents were developed more than 20 years ago, they have assumed a great importance in various context. Indeed,
they are capable, in principle, to perceive the environment where they live and autonomously take actions to
achieve goals in a wide range of contexts. Moreover, agents can improve their own performance by adopting
machine learning techniques or by gaining knowledge about both environment and application domains. This
position paper explores the use of intelligent agents to support core mechanisms—specifically monitoring, failure
detection, and recovery—in HA systems. The discussion begins by reviewing key background concepts of HA
architectures, followed by a structured characterization of their main components.

Keywords
High availability systems, High Availability cluster, Cloud computing, Software agents

1. Introduction

In the past, system availability was traditionally a requirement for mission-critical applications. Nowa-
days this system-wide non-functional requirement has the same importance for a wide range of
commercial and government systems. Indeed, High Availability (HA) systems —designed to maintain
continuous operation and accessibility, even in presence of failures— are needed in many context to
guarantee essential services, as government services, as well as commercial applications, like Face-
book or Linkedin, being the users connected 24 hours a day with smartphones and similar IoT smart
devices[1].

As stated in [2], the flavors of system availability are i) continuous availability, ii) fault tolerance,
and iii) HA. While the former represents an ideal state (non stop service), implying perfect components
that never fail, the second one deals with the presence of faults in a real system by introducing some
kind of redundancy at various levels (hardware, software, and time). Finally, High Availability systems
represent a viable alternative to fault tolerant systems: in this case specific solutions to deal with Single
Point of Failures are adopted.

Common solutions for HA deal with Single Point of Failures (SPOF) by means of redundant com-
ponents and a sort of automation to switch from the failed component to the another one that can
ensure the provisioning ot the same functionality. This kind of solution is called, in the literature, High
Availability Cluster (HAC) [3]. Such solutions, widely adopted by major companies as HP and Oracle,
employ a wide range of techniques to monitor the “health” of the system components (application
layers and resources), to restart the application components after a failure.

For our purposes, in this paper we take into account the three main operations of i)monitoring, ii)
fault detection and iii)recovery. The capability of a system to detect a fault, or even to anticipate a

CEUR-WS.org/Vol-4028/paperl.pdf

26" Workshop “From Objects to Agents”
& fabrizio.messina@unict.it (F. Messina); domenico.rosaci@unirc.it (D. Rosaci); giuseppe.sarne@unimib.it (G. M.L. Sarne);
giuseppe.sarne@unimib.it (G. M.L. Sarne)

PN
ams

&? https://www.unimib.it/giuseppe-maria-luigi-sarne (G. M.L. Sarne)

© 2025 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
5

CEUR
E Workshop
Proceedings

mailto:fabrizio.messina@unict.it
mailto:domenico.rosaci@unirc.it
mailto:giuseppe.sarne@unimib.it
mailto:giuseppe.sarne@unimib.it
https://www.unimib.it/giuseppe-maria-luigi-sarne
https://creativecommons.org/licenses/by/4.0/deed.en

fault, is clearly connected to the monitoring capability. Moreover a fine monitoring of the health of the
systems components (i.e., applications, middleware, operating systems, device, and so on) is important
to predict/detect failures. On the other hand, the system —as well as the applications— may be complex
in nature, therefore the monitoring of both the system and the application may represent a challenge.
Finally, the recovery/failover process should be implemented in an efficient and effective way. The first
characteristic is important to not incur in expensive downtime, while the latter is crucial for obvious
reason. For example, an unrealible failover mechanism may have negative effects on the availability of
the system itself.

Intelligent agents[4, 5, 6, 7] have been developed for more than 20 years and have assumed a great
importance in various contexts, for instance in healthcare[8]. Basically, agents are designed to perceive
the environment where they are living and autonomously performing a wide range of tasks to achieve
specific goals in a wide range of computational context. Furthermore, their performance can improve
over time by acquiring new, specific, and updated knowledge about both environments and application
domains.

Given the premises above, in this paper we discuss and analyze the possible role of intelligent agents
to support high available systems. After that we describe the key concepts about HA systems and,
thereafter, we focus on the general problem of monitoring fault detection and recovery, along with a
broad analysis of the possible role of software agents, will be focused.

The paper is organized as follows: Section 2 discusses key concepts and terminology. Sections 3 —6
present a broad discussion about the main characteristics of the agents in the context of HA systems. In
particular, as stated before, we focus on the role of software agents w.r.t. the three main operations
monitoring, fault detection and recovery in HA systems. Section 7 presents some interesting related
work about HA systems and the employment of software agents in HA systems. Finally, in Section 8
our conclusions are drown.

2. Key concepts and terminology

In this Section the key concepts of high availability systems, as well as basic terminology used in the
following Sections, will be introduced.

A high available (HA) computing system can be defined as a system capable to deal with failures
through the introduction of redundant components, as well as software solutions to recover/restart
failed components. Redundant components are introduced at various levels to address the presence of
SPOF. The final goal is to provide a continuous service or, at least, the minimum amount of downtime.
Availability of a system can be calculated as the ratio between the amount of time a system is operational
and the total time over which the system was observed, for example a year.

As stated in the introductory section of this work, High availability is nowadays a key element
of production systems. Indeed, Cloud providers offers their customers to sign an SLA (Service Level
Agreement) with an explicit statement about the minimum level of availability to guarantee to the
customer, for example 99.5% [9].

A typical example of highly available system is represented by a HAC (High Availability Cluster): a
server hosts the application, while one or more additional servers are introduced as failover servers, i.e.
servers capable to host the main application once the main server is down due to a failure of one or
more of its components. A failover solution must be designed to act transparently for the client and
the process should be totally automatic, in the sense that no manual operations will be involved in the
overall process. These characteristics must hold, in principle, for every solution for high availability.

In this sense automation represents a key aspect of HA systems: a high level of automation in HA
systems is needed not only to replace failed component (software or hardware), but also to analyze any
aspect of the life-cycle of the system components. The process of retrieving and analyzing data allows
a program or, event better, an intelligent agent to gain an in depth knowledge of a system component
and, as a consequence, to better manage a failover process. In principle, an agent which is able to
perform data analysis about the behavior of system components, can also detect malfunctions in order

to anticipate possible failures.

In the following Section we discuss the possible role of software agents in HA systems, w.r.t. the
three operations related to monitoring, failure detection and recovery. In particular, the main features
and characterization of software agents in HA systems will be analyzed.

3. Monitoring, failure detection and recovery in High Availability
Systems

Nowadays, HA systems are supported, in their architecture, by the cloud computing paradigm [10, 11,
12, 13, 14, 15, 16, 17, 18] which is, in turn, based on the virtualization technology [19, 20]. Indeed, cloud
computing provides a broad network access, server consolidation, fast migration of virtual machines
and many other features that support the provider in offering HA computing resources to their clients.
This is mainly due to the flexibility offered by the virtualization and the related middleware built on
it [21, 22, 23]. At the same time, applications retain their complexity[24, 25], and single point of failure
still exist in every production system. Therefore the basic mechanisms to provide HA are still needed,
although they are applied in different context (for instance, hypervisors and virtual machine) than 20
years ago. For example, a failover server can be a virtual machine instead of a physical machine.

In this paper the focus is on i) monitoring, ii) failure detection and iii) recovery, that can be considered
the core mechanisms in the context of HA systems. We denote the three operations together as the
MFR (Monitoring, Failure detection, Recovery) loop (see figure 1). In the following of this Section we
report a few specific considerations about the main tasks of software agents to support such operations.

For the convenience of the reader, in the remaining of this work, software agents will be denoted on
the basis of their responsibilities, as follows:

« M-agent: a software agent capable of performing one of more specialized monitoring tasks;

« F-agent: a software agent capable of analyzing monitoring data sent by an M-agent in order to
detect a failure or a malfunction (useful to predict a failure);

« R-agent: a software agent capable of performing a number of specialized tasks to recover a
failed computing resource;

Failure detection

Monitoring Recovery

Figure 1: The loop monitoring-failure detection-recovery

4. Monitoring

Monitoring represents a crucial service in HA systems. An M-agent having the responsibility of
monitoring a computing resource (physical or software) must observe continuously the entity under
observation.

An M-agent can perform its task into two different way, which are labeled, for convenience, as (O)

and (I):

(O) the monitoring task is aimed at observing the computing resource from the outside, in order to
detect relevant events to send to the failure detection agent: for example, sending a heartbeat
message to a node;

(I) amore intrusive approach, where the agent operate together with the computing resource,
inside the same operating environment. In principle, this approach allows the agent to collect
fine-grained data about the behavior of the computing resource.

Generally, the former case (O) says us that the M-agent operates by sending sort of messages to
the computing resource at regular intervals from the outside, then it waits for a response that would
indicate that the resource is still alive. This characterization is illustrated in Figure 2. For instance, the
agent may send a simple HTTP message to a web server to get the status. In other words, the agent
behavior follows a polling-based approach, which is commonly denoted as reactive behaviour. Another
typical example is represented by the heartbeat message, which is periodically sent by the passive
node(s) of a High Availability Cluster (HAC) to the active one by the agent of the cluster management
software [3], for instance Pacemaker, which is a component of Clusterlabs [26].

With reference to Figure 2, an M-agent sends data to the F-agent (discussed in the next Section)
which, in turn, analyze these data to determine whether the resource is alive or there is a malfunction,
even a failure. Please note that the two agents may be the same agent. Figure 2 also represents that
the computing resource may be represented by the application itself (i.e., a web server), or a virtual
machine. In this last case, the agent may interface with the hypervisor or to another agent which is

F-agent -
Data
Collect Collect
.............. data, 7 ... [.... 0 data
virtual S
. application sensor
machine

Figure 2: An M-agent performing monitoring tasks from the outside the resource environment.

running inside the virtual machine. The computing resource can be represented by a sensor, and the
M-agent may send simple messages to the sensor to understand if it is still alive.

We observe that an M-agent polling the computing resource to get data from the outside of the
operating environment, must necessary rely on some interface published by the computing resource
or by the operating environment. By this approach the agent will not be able, in principle, to inspect
the computing resource from inside (i.e., get fine-grained accurate data about the behavior of the
resource); on the other side the advantage is that the agent itself will not be affected by any fault of the
environment hosting the computing resource.

Operating L ! |
system application : |

~_—_- _- — - = =

—_—_— - —_— —_— = —

Figure 3: An M-agent performing monitoring tasks inside the resource environment.

The second characterization (I) represents the scenario in which the M-agent is running inside the
execution environment of the computing resource (figure 3). For example, an M-agent running into the
virtual machine can be able to inspect and analyze the log file produced by a specific application [27].
The agent may also monitor the whole operating environment (e.g. the resource usage, CPU and/or
memory) to characterize the behavior of the computing resource (for instance the application), in terms
of resource consumption. A suitable M-agent may, in principle, reside within a sensor, in order to
characterize its behavior and send relevant data to the F-agent. This behavior can be classified as a
push-based approach, because the agent operates together with the computing resource and push data
to the outside to the F-agent.

In this characterization we state that the M-agent acts “proactively”. A proactive approach can be
implemented also from the outside of the computing resource (O), although it is less common.

An obvious observation is that an M-agent, operating inside the operating environment of the
computing resource, will be affected by any failure of the operating environment. To address this issue,
an interesting approach found in literature in the context of cloud computing, proposes the combination
of the poll-based and push-based approach [28]: a monitoring agent runs inside the virtual machine to
notify events to another monitoring agent, which is hosted outside.

Table 1 summarizes the main features of an M-agent with respect to its deployment and behaviour
on the basis of the information presented in this Section.

©)

V)

Behavior Observations from outside the operating | Observations from inside the operating en-
environment of the computing resource vironment of the computing resource

Reactive approach | polling-based polling-based

Proactive approach | push-based with limitations on the quan- | push-based

tity and quality of monitoring data

Limitation limited data received from the interface | a failure of the computing environment
of the operating environment and/or the | will affect the operations of the M-agent.
computing resource It should be coupled with an external (O)
M-agent
Benefit a failure of the environment will not affect, | geta wide range of data from the operating
in principle, the operations of the M-agent | environment of the computing resource
Table 1

Main characterization of an M-agent.

5. Failure detection

We model an F-agent as a software agent holding the responsibility to identify a failure of the computing
resource from the collected data. An F-agent will send relevant information to the agent that has the
responsibility to deal with the failure (i.e., the R-agent).

With reference to Figure 4, an F-agent assumes that the computing resource is in failure once it
receives, from the M-agent, data indicating a certain anomaly. For instance, the M-agent did not receive
for a certain amount of time any response (polling-based approach) from the computing resource. In
this case, data received from the M-agent is the indication of such anomaly. This situation is depicted
in the right part of Figure 4. The F-agent, in turn, notifies the R-agent that will start proper actions.

On the other hand, when the M-agent is running inside the operating environment of the computing
resource (see the left part of Figure 4), the F-agent will receive from the M-agent detailed monitoring
information about the computing resource. In this case, the F-agent must hold suitable analysis
capabilities to extract relevant information to detect a failure or a malfunction. In particular, the ability
of an F-agent to detect malfunction, may help to predict possible failures. That represents a powerful
but not common approach: indeed, in this case the F-agent must hold a certain confidence or expertise
in the application domain, in order to extract relevant data from the data received by the M-agent.

To this regards, it is worth mentioning the work in [29], where the authors propose a middleware to
ensure high availability in the cloud. They employed the Effective Descriptive Set Theory to determine
a model of fault detection for real life applications running on the cloud; then, they present the design
of a deterministic algorithm to achieve automatic allocation of backup nodes in place of the nodes
affected by the faults. Indeed, their approach is proactive in nature for the monitoring and notification
of faults. Another interesting study following a proactive approach is that in [30] where the authors
deal with the issue of the HA requirements in the cloud by implementing the dynamic incorporation of
HA features into the deployed applications. This approach may be considered similar to that in [27],
where the authors propose to employ agents to monitor the VMs to collect data about the application
behavior and the resources used by the application themselves.

Last but not least, we illustrate in the left of Figure 4, a couple of M-agents. The former operates
outside of the computing environment and the latter operates inside the computing environment. This
is the correct approach because, as resumed in Table 1, an M-agent operating inside the same operating
environment of the computing resource, can be subject to the failure of the operating environment itself.
In this manner, the other M-agent will be able to notify to the F-agent the failure of the computing
environment.

Notify anomalies

Notify \
M-agent failure

M-agent (O)

M-agent (O)

Virtual/physical polling

Push Data machine/sensor

,——— = = = = = = = = = = =

e

I
I
I
I Virtual/physical machine/sensor
I
I
I

I E————————

Figure 4: The interactions between an F-agent and the M-agent.

6. Recovery

An R-agent must be capable of performing recovery —if a failure is detected— of a resource (i.e., an
application, a virtual machine, a sensor, etc.). Similarly to M and F agents, this agent must hold a relevant
knowledge about the application/environment to execute suitable procedures aimed at recovering the
service with the minimum impact in terms of total measured availability.

An R-agent can operates outside or inside the computing environment (Figure 5). In the first case, if
the R-agent has to restart the computing environment, it can achieve this task by means of suitable
interfaces. For instance, in a virtual environment, a virtual machine can be resumed or restarted in
a different physical machine; similarly, in a HAC, the application (e.g. a DB or a web server) will be
restarted in a failover server.

An R-agent running inside the computing environment will be capable, in principle, to recover the
computing resource running in the computing environment (e.g. a scheduler, a daemon, a web server,
an operating system, etc) from the inside.

Figure 5 illustrates these two typical scenarios: the left part represents an R-agent running inside the
computing environment, trying to restart the computing resource. If such tentative does not succeed,
the R-agent running outside the computing environment will start an alternative environment along

R-agent %
Restart computing ;rt computing
resource
Virtual/physical resource
machine/sensor
ya - - -"—-"=-"—--""-"""-"""=-"""=-""" - - = = ~ — - - - - - " == - - - - - = ~
[\ 4 \
| ' : |
| ! ' |
| ! ' |
| I I Virtual/physical machine/sensor |
I [
| |
Restart | |
| computing \ | I l
\ resource , L\ /’

Figure 5: The interactions between an R-agent and the computing resource.

with the computing resource. It is the typical case of a service or an application running in a HAC: if
the application is affected by a failure, the resource agent tries to restart the application itself, thereafter
the application is restarted in a a failover server.

For instance, Pacemaker (which is the main component of the Clusterlabs project) will manage a
failure trying to i) restart the computing resource/service (e.g. a web server) and, thereafter, if the
tentative has not given success, ii) trying to start the service into the failover node [3]. In other words,
recovery actions may be classified into two macro-categories: i) actions aimed at restarting the failed
resource (e.g. a virtual machine, a web server, etc.), and ii) actions aimed at recovering the service by
employing a redundant resource.

On the basis of the considerations reported above, we outline the main characteristics of a R-agent:

knowledge represents the basic foundation for its own capabilities: the R-agent must hold an in depth
knowledge of the computing resource, in order to understand how to deal with the failure;

capabilities are strictly related to the knowledge of the agent itself; an R-agent can start operating
holding basic knowledge, therefore basic capabilities to recover the computing resource;

reliability and availability: i) an R-agent should be 100% available because any unavailability may
have negative effects on the overall availability of the system itself; ii) it should be reliable because
any malfunction in the MFR loop will have a negative impact on the total system availability.

For example an R-agent for a web server must be aware of the computing environment (e.g., OS
version, web server version and so on) as well as the key tools needed to manage the corresponding
process. Similarly, an R-agent that needs to resume a virtual machine from a snapshot must be capable

of exploiting specific tools and/or services in the virtualization platform or cloud platform. In addition,
during the lifetime of the computing resource, every time the R-agent deals with a failure, in principle
it gains knowledge. For example, an R-agent may gain knowledge about the time needed to restart the
computing resource in the same computing environment, or the time needed to restart the computing
resource/service in a failover computing environment. In principle, this knowledge can help the R-agent
to perform better in the future.

Moreover, an R-agent can be further categorized on the basis of its own capabilities:

the R-agent acts as an orchestrator of services and tools that must be coordi-
nated in order to perform efficient and effective recovery of the computing resource;
the R-agent relies on very simple mechanism to recovery the computing resource.

specialized
unspecialized

For instance, if the R-agent does not rely into specific and/or sophisticated services as, for example
checkpoints, to provide a restoration of the state of the application or part of it, it can be categorized
as unspecialized. An example of an unspecialized R-agent my be represented by the resource agent of
Pacemaker (component of Clusterlabs) that contains the code to re-start a web server in a failover node.

Conversely, a specialized R-agent is capable of relying on specialized service to restore the computing
resources with the minimum losses for the application itself. For example, an R-agent could collect
snapshot of a virtual machine at regular intervals, in order to restore the state of the application at a
certain time.

The main characteristics of an R-agent are summarized in Table 2.

R-Agent for restart

R-Agent for failover

Behavior

operates inside the computing environ-
ment (virtual machine, physical ma-
chine, sensor, and so on) of the com-
puting resource

can operates from the outside. It can
performs failover through by using a
redundant resource (virtual machine,
passive/active server, sensor in standby,
and so on)

Limitation

the R-agent operates inside the com-
puting environment, as a consequence
it will be affected by a failure of the en-
vironment itself

the R-agent operates outside of the
computing environment of the re-
source, a consequence it cannot control
the computing resource.

Benefit

The R-agent is able, in principle, of tak-
ing a sequence of actions to recover
the computing resource from inside its
computing environment

the R-agent is not affected from any
failure of the computing environment

Knowledge and capabilities

knowledge necessary in the applica-
tion domain, in order to perform ac-
curate actions to restart the computing
resource

specific in the domain of the comput-
ing environment, for example hot to
restart a virtual machine in a cloud en-
vironment

Reliability and availability

limited to the fact that the agent is alive
in the same computing environment of
the computing resource

an R-agent for failover can have a 100%
reliability and availability, as it runs
outside of the computing environment
of the computing resource

Specialized vs unspecialized

Table 2
Main characteristics of an R-agent.

a specialized agent is able to orches-
trate tools and services to recover the
application in the same environment, if
possible; an unspecialized agent relies
on very simple mechanisms to recover
a sevice/application

a specialized agent is able to orches-
trate tools and services to restart the
application in a suitable alternative en-
vironment, if possible; an unspecialized
agent relies on very simple mechanisms
to recover a device/application in a suit-
able/alternative environment

7. Related work

Software agents can be employed in a wide range of computational contexts [31]. We studied the use of
software agents along with suitable models in various contexts as social networks [32, 33], trust [25, 34],
IoT[35, 36, 37, 38, 39, 40, 41, 42], and cloud computing [18, 27].

Since in this work we focus in the contribution of software agents to HA systems, in this Section we
discuss a few relevant work in the literature about existing solutions for HA systems in general, as well
specific works about software agents supporting HA systems.

7.1. Challenges and solutions for HA systems

HA requirements can be addressed through several different solutions at many levels (e.g., applications,
DB, operating system, physical/virtual machine, etc) [3]. Such solutions include the employment of
redundant resources and sort of automation to orchestrate the redundant resources. A common solution
for a wide range of applications is represented by the adoption of HAC, based on various different
configurations of redundant resources, as for instance active-active or active-passive, N+1, N+N and so
on [3]. As observed and remarked in the previous sections of this work, the overall management of the
MEFR can benefit from a high level of automation and coordination.

In order to support the statement above, we observe that, although many of the current HA solutions
provide application monitoring, application-specific errors are often not captured. Indeed, application-
related errors are often difficult to monitor (for instance, an application temporarily unresponsive) but,
at the same time, they represent an opportunity to improve the real value of Mean time between failure
(MTBF). To address this problem there is any specific literature, as the solution will depend on the
specific application and, as a consequence, on the availability of additional modules and procedures.
In this field, specialized software agents can provide an excellent support to the HA requirement of
specific applications.

Moreover, the environment aspect is nowadays crucial for HA system (as also remarked in the
Sections 4-6), and it may represent a challenge. Indeed, since in virtual environments hosts and guest
are separated, the coordinated monitoring of both environment can be complicated: the guest is not
generally aware of the host and, at the same time, the host may not be aware of the guest problems. The
problem has been explored in [43]. For this reason we have taken into account the environment, and
state that an agent can be executed inside and/or outside of the application environment. Moreover, with
respect to this specific aspect, the adoption of intelligent agents and, overall, multi-agent systems [44]
can address this concern.

A similar limitation is represented by the public cloud environment [45]. Indeed, the provisioning of
IaaS (infrastructure as a Service) computational resources in the public cloud offers a broad range of
advantages but, on the other hand, limited control of resources. At the same time, high availability for
Enterprise applications requires accessing some elements of the hosts. This problem has been discussed
in [9], on which the authors focus on the fact that current availability solutions do not rely on the
specific application.

7.2. Software agents for high available systems

As previously illustrated in Section 7.1, common solutions for HA systems are realized to implement
HA clusters, and resource agents are, in fact, simple functions coordinated by an HA manager.

For example, common cluster management software solutions, like that of IBM [46] or Clusterlabs [3,
47] there exists a distinction between HA manager, which holds the control of the cluster management
services, and those services called HA service agents (IBM) or resource agents (Clusterlabs). Those
agents have the responsibility of service monitoring and to perform very simple operations like starting
and arresting the service, and simple monitoring of the service daemon. It is clear that, in production
systems, software agents are very simple, they still lack of a more sophisticated implementation of
agents for HA systems.

In [48] the authors deal with the problem of supporting mission critical Web Services. They propose to
improve the architecture of web services by providing more autonomic behavior: configuring themselves,
diagnosing faults, and self-managing. They proposes extensions to the Web Services architecture to
support mission-critical applications, which must hold properties of high availability. They provide
additional features in order to enrich Web Services with strong reliability aspects, as replication, data
streaming, sophisticated user-programmable failure detection, reliable messaging, and events. The
interesting aspect of the work is that the authors provide a support for consistent, coordinated behavior
even when a system includes large numbers of lightweight components. In this sense, the authors
extended the Web Service platform with a distributed intelligence supporting availability of high number
of distributed objects.

The work in [49] represents an interesting review of the software agent technology by taking into
account the use of software agents in a specific mission-critical environment (oil and gas industry). They
claim that requirements as environmental safety, high availability and reliability cannot be provided
with traditional software approaches. Software agents are capable, in principle, to sense the environment
and make decisions without any human intervention. The authors provide interesting thought about
how software agents can be used to improve decisions within specific industrial processes. They proved
that, in the specific area of mission-critical business, three core processes can be supported by less than
10 software agents in its initial outline.

The authors of a recent work [50] proposes an approach to replicate in the cloud a number of software
agents associated to the control of manufacturing resources. They proved that replicating agents in
Cloud Manufacturing Control architectures results in a HA decentralized control system. They state
that the methodology represents an extension of the generic agentification process, i.e. associate a
software agent to a physical entity in order to simplify the access to the resource’s operations. Moreover,
software agent can be easily integrated in standard multi-agent system (MAS) framework. Indeed, the
authors used JADE [51] to validate their approach.

Since high availability is nowadays provided by cloud computing systems, a few works have discussed
the relation between cloud computing and software agents, for example [52]. The paper examines the
main characteristics of a Cloud computing systems, as for example elasticity, which allows users to adapt
the computing platform to variable needs. The paper focuses on the implementation of high performance
complex systems and intelligent applications by using of cloud systems and software agents. The author
emphasizes that, from the convergence of Cloud computing and software agents, a few improvements
can be provided into the platform itself, i.e. intelligent and flexible cloud services, autonomous and
pro-active services, autonomic clouds. As HA is one of the master requirement provided by cloud
computing services, this analysis provided evidence that the main features of software agents provide
an important support to HA in such systems.

8. Conclusions

This paper analyzed a few important aspects related to the possible contribution given by intelligent
agents to HA Systems. In particular, after introducing a few well known aspects of HA systems, we
have focused on the typical loop monitoring-failure detection-recover of such systems. Then we have
analyzed the possible use of software agents in the main operations involved in such a loop. In particular,
we have characterized three types of agent: i) M-agent, ii) F-agent and iii) R-agent. As a first output
of our analysis, it has emerged that a common aspect of the agents is their deployment. Any of these
agents will operate inside the application environment or outside. Even better, we found that both type
of deployment should be implemented in order to get the maximum support.

For an M-agent, we have focused on the available mechanisms to perform monitoring —proactive vs
reactive—, while for F-agent we have focused on the interactions with R-agent and M-agent, as well as
the analysis operation on the data received by M-agents to detect a failure and/or a malfunction. Finally,
we have characterized R-agent with respect to the twofold possible contribution of such an agent: i)
trying to restart the application and/or the failed resource, or ii) implement some failover mechanisms

—i.e., restarting the service in a redundant resource. We have focused on the fact that those operations
requires an in depth knowledge about the computing environment and/or the applications, as well as
certain specific capabilities.

We have also highlighted as intelligent agents, in order to support high available systems, should be
executed in the application environment; in this way they can collect relevant, high quality monitoring
data which, in turn, allow agents to perform sophisticated actions to guarantee the desired level of
availability. In this sense, the ability of an agent to gain knowledge about the application and the
environment can represent an addition about standard and/or naive solutions.

Acknowledgments

This work has been supported by the project “Piano Pia.ce.ri 2024-2026" granted by the University of
Catania.

Declaration on Generative Al

The author(s) have not employed any Generative Al tools.

References

[1] M. De Benedetti, F. Messina, G. Pappalardo, C. Santoro, Jarvsis: a distributed scheduler for iot
applications, Cluster Computing (2017) 1-16.

(2] L Pramanick, High availability, The International Journal of High Performance Computing
Applications 15 (2001) 169-174.

[3] P. Somasekaram, R. Calinescu, R. Buyya, High-availability clusters: A taxonomy, survey, and
future directions, Journal of Systems and Software 187 (2022) 111208.

[4] M. Wooldridge, Intelligent agents, Multiagent systems: A modern approach to distributed artificial
intelligence 1 (1999) 27-73.

[5] A.]Juliani, V.-P. Berges, E. Teng, A. Cohen, J. Harper, C. Elion, C. Goy, Y. Gao, H. Henry, M. Mattar,
et al., Unity: A general platform for intelligent agents, arXiv preprint arXiv:1809.02627 (2018).

[6] 1. Rudowsky, Intelligent agents, Communications of the Association for Information Systems 14
(2004) 14.

[7] P. De Meo, F. Messina, D. Rosaci, G. M. L. Sarné, An agent-oriented, trust-aware approach
to improve the qos in dynamic grid federations, Concurrency and Computation: Practice and
Experience 27 (2015) 5411-5435.

(8] S.Igbal, W. Altaf, M. Aslam, W. Mahmood, M. U. G. Khan, Application of intelligent agents in
health-care, Artificial Intelligence Review 46 (2016) 83-112.

[9] M. Nabi, M. Toeroe, F. Khendek, Availability in the cloud: State of the art, Journal of Network and
Computer Applications 60 (2016) 54-67.

[10] R.Giunta, F. Messina, G. Pappalardo, E. Tramontana, Providing qos strategies and cloud-integration
to web servers by means of aspects, Concurrency and Computation: Practice and Experience 27
(2015) 1498-1512.

[11] F. Messina, G. Pappalardo, C. Santoro, Integrating cloud services in behaviour programming for
autonomous robots, in: Algorithms and Architectures for Parallel Processing: 13th International
Conference, ICA3PP 2013, Vietri sul Mare, Italy, December 18-20, 2013, Proceedings, Part II 13,
Springer International Publishing, 2013, pp. 295-302.

[12] F. Messina, G. Pappalardo, D. Rosaci, C. Santoro, G. M. L. Sarné, A trust model for competitive
cloud federations, Complex, Intelligent, and Software Intensive Systems (CISIS) (2014) 469-474.

[13] L. Qian, Z. Luo, Y. Du, L. Guo, Cloud computing: An overview, in: IEEE international conference
on cloud computing, Springer, 2009, pp. 626—631.

[14]
[15]
[16]

[17]

[23]
[24]
[25]
[26]

[27]

(28]

N. Antonopoulos, L. Gillam, Cloud computing, volume 51, Springer, 2010.

R. Buyya, J. Broberg, A. Goscinski, Cloud computing, Principles and Paradigms, Publisher (2011).
M. N. Sadiku, S. M. Musa, O. D. Momoh, Cloud computing: opportunities and challenges, IEEE
potentials 33 (2014) 34-36.

A. Fox, R. Griffith, A. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
et al., Above the clouds: A berkeley view of cloud computing, Dept. Electrical Eng. and Comput.
Sciences, University of California, Berkeley, Rep. UCB/EECS 28 (2009) 2009.

A. Comi, L. Fotia, F. Messina, G. Pappalardo, D. Rosaci, G. M. L. Sarné, A reputation-based approach
to improve qos in cloud service composition, in: 2015 IEEE 24th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises, IEEE, 2015, pp. 108—113.

F. Calzolari, S. Arezzini, A. Ciampa, E. Mazzoni, A. Domenici, G. Vaglini, High availability using
virtualization, in: Journal of Physics: Conference Series, volume 219, IOP Publishing, 2010, p.
052017.

M. Portnoy, Virtualization essentials, volume 19, John Wiley & Sons, 2012.

T. Rosado, J. Bernardino, An overview of openstack architecture, in: Proceedings of the 18th
international database engineering & applications symposium, 2014, pp. 366—-367.

D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli, S. Soman, L. Youseff, D. Zagorodnov, The
eucalyptus open-source cloud-computing system, in: 2009 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid, IEEE, 2009, pp. 124-131.

Computing 15 (2011) 11-14.

F. Messina, G. Pappalardo, C. Santoro, Complexsim: a flexible simulation platform for complex
systems, International Journal of Simulation and Process Modelling 6 8 (2013) 202-211.

A. Comi, L. Fotia, F. Messina, D. Rosaci, G. M. L. Sarné, A partnership-based approach to improve
qos on federated computing infrastructures, Information Sciences 367 (2016) 246-258.
Pacemaker, Clusters from scratch, 2024. URL: https://clusterlabs.org/projects/pacemaker/doc/3.0/
Clusters_from_Scratch/html/.

F. Messina, G. Pappalardo, D. Rosaci, G. M. L. Sarné, An agent based architecture for vim software
tracking in cloud federations, in: 2014 Eighth International Conference on Complex, Intelligent
and Software Intensive Systems, IEEE, 2014, pp. 463-468.

H. Chan, T. Chieu, An approach to high availability for cloud servers with snapshot mechanism,
in: Proceedings of the industrial track of the 13th ACM/IFIP/USENIX international middleware
conference, 2012, pp. 1-6.

A. Imran, A. U. Gias, R. Rahman, A. Seal, T. Rahman, F. Ishraque, K. Sakib, Cloud-niagara: A
high availability and low overhead fault tolerance middleware for the cloud, in: 16th Int’l Conf.
Computer and Information Technology, IEEE, 2014, pp. 271-276.

A. Kanso, Y. Lemieux, Achieving high availability at the application level in the cloud, in: 2013
IEEE Sixth International Conference on Cloud Computing, IEEE, 2013, pp. 778-785.

H. Nwana, M. Wooldridge, Software agent technologies, BT Technology Journal 14 (1996).

P. De Meo, F. Messina, D. Rosaci, G. M. L. Sarné, Forming time-stable homogeneous groups into
online social networks, Information Sciences 414 (2017) 117-132.

G. Fortino, L. Fotia, F. Messina, D. Rosaci, G. M. L. Sarné, A social edge-based iot framework using
reputation-based clustering for enhancing competitiveness, IEEE Transactions on Computational
Social Systems 10 (2023) 2051-2060. doi:10.1109/TCSS.2022.3208376.

G. Fortino, L. Fotia, F. Messina, D. Rosaci, G. M. L. Sarné, Trusted object framework (tof): A
clustering reputation-based approach using edge computing for sharing resources among iot smart
objects, Computers & Electrical Engineering 96 (2021) 107568.

G. Fortino, F. Messina, D. Rosaci, G. M. L. Sarné, Using trust measures to optimize neighbor selection
for smart blockchain networks in iot, IEEE Internet of Things Journal 10 (2023) 21168-21175.
doi:10.1109/J10T.2023.3263582.

G. Fortino, L. Fotia, F. Messina, D. Rosaci, G. M. L. Sarné, A blockchain-based group formation
strategy for optimizing the social reputation capital of an iot scenario, Simulation Modelling

https://clusterlabs.org/projects/pacemaker/doc/3.0/Clusters_from_Scratch/html/
https://clusterlabs.org/projects/pacemaker/doc/3.0/Clusters_from_Scratch/html/
http://dx.doi.org/10.1109/TCSS.2022.3208376
http://dx.doi.org/10.1109/JIOT.2023.3263582

[37]

[38]
[39]
[40]

[41]

[45]

[46]

[50]

Practice and Theory 108 (2021) 102261.

G. Fortino, L. Fotia, F. Messina, D. Rosaci, G. M. L. Sarné, A social edge-based iot framework using
reputation-based clustering for enhancing competitiveness, IEEE Transactions on Computational
Social Systems 10 (2022) 2051-2060.

G. Fortino, F. Messina, D. Rosaci, G. M. L. Sarne, Using trust measures to optimize neighbor selection
for smart blockchain networks in iot, IEEE Internet of Things Journal 10 (2023) 21168-21175.

F. Messina, C. Santoro, F. F. Santoro, Enhancing security and trust in internet of things through
meshtastic protocol utilising low-range technology, Electronics 13 (2024) 1055.

F. Messina, D. Rosaci, G. M. L. Sarne, Applying trust patterns to model complex trustworthiness
in the internet of things, Electronics 13 (2024) 2107.

G. Fortino, F. Messina, D. Rosaci, G. M. L. Sarne, Improving computational efficiency of the tons
algorithm in selecting neighbor agents in blockchain trust-based iot environments, in: CEUR
WORKSHOP PROCEEDINGS, volume 3735, CEUR-WS, 2024, pp. 84-97.

F. Messina, D. Rosaci, G. M. L. Sarné, A neural-symbolic approach to extract trust patterns in iot
scenarios, Future Internet 17 (2025) 116.

S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, P. F. Chan, Leveraging virtualization to optimize
high-availability system configurations, IBM Systems Journal 47 (2008) 591-604.

W. Van der Hoek, M. Wooldridge, Multi-agent systems, Foundations of Artificial Intelligence 3
(2008) 887-928.

P. Hofmann, D. Woods, Cloud computing: The limits of public clouds for business applications,
IEEE Internet Computing 14 (2010) 90-93.

HAagents, High availability services and service agent, 2024. URL: https://www.ibm.com/docs/en/
pcmce/4.2.1?topic=availability-services-service-agent.

clusterlabs, Clusterlabs, 2025. URL: https://clusterlabs.org/.

K. Birman, R. Van Renesse, W. Vogels, Adding high availability and autonomic behavior to web
services, in: Proceedings. 26th International Conference on Software Engineering, IEEE, 2004, pp.
17-26.

E. Landre, J. @lmheim, G. O. Weersland, H. Renneberg, Software agents—an emergent software
technology that enables us to build more dynamic, adaptable, and robust systems, in: SPE Annual
Technical Conference and Exhibition?, SPE, 2006, pp. SPE-103354.

S.Raileanu, F. D. Anton, T. Borangiu, S. Anton, Design of high availability manufacturing resource
agents using jade framework and cloud replication, Service Orientation in Holonic and Multi-Agent
Manufacturing: Proceedings of SOHOMA 2017 (2018) 201-215.

F. Bellifemine, A. Poggi, G. Rimassa, Jade—a fipa-compliant agent framework, in: Proceedings of
PAAM, volume 99, London, 1999, p. 33.

D. Talia, et al,, Cloud computing and software agents: Towards cloud intelligent services., in:
WOA, volume 11, Citeseer, 2011, pp. 2-6.

https://www.ibm.com/docs/en/pcmc/4.2.1?topic=availability-services-service-agent
https://www.ibm.com/docs/en/pcmc/4.2.1?topic=availability-services-service-agent
https://clusterlabs.org/

	1 Introduction
	2 Key concepts and terminology
	3 Monitoring, failure detection and recovery in High Availability Systems
	4 Monitoring
	5 Failure detection
	6 Recovery
	7 Related work
	7.1 Challenges and solutions for HA systems
	7.2 Software agents for high available systems

	8 Conclusions

