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Abstract
Understanding driving behavior is critical for enhancing road safety, optimizing insurance, healthcare costs,
and informing the development of mobility services and advanced vehicle systems. Driving remains a high-risk
daily activity, influenced by a complex interplay of psychological, cognitive, and contextual factors such as
stress, impulsivity, risk perception, and environmental conditions. To address this complexity, this research
empirically investigated a broad range of psychological and behavioral aspects of driving through a combined
methodology involving standardized psychometric surveys and high-fidelity driving simulation. The experimental
setup integrates wearable biometric sensors to monitor psycho-physiological responses under varying levels
of cognitive load and environmental complexity. Findings will inform the development of cognitively enriched
software agents, enabling more realistic agent-based traffic simulations capturing both vehicle dynamics and
the psychological dimensions of driving behavior. Preliminary results, mainly aimed to verify the correctness of
the experimental design, are presented and discussed to assess the capability of reproducing nuanced driving
behaviors within agent-based traffic simulations to enhance their ecological validity, adaptability, and predictive
accuracy.
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1. Introduction

The study of driving behavior carries significant social and economic relevance, particularly in relation
to road safety, insurance and healthcare costs, and the integration of shared mobility services [1]. A
thorough understanding of driving behaviors – especially those classified as improper or unsafe – is
essential to inform regulatory frameworks, enhancing vehicle design and Advanced Driver Assistance
Systems (ADAS), and addressing a variety of interrelated transportation challenges.

In recent decades, growing academic attention has been devoted to this domain, employing diverse
methodological approaches and analytical techniques [2]. These investigations are inherently complex
and resource-intensive, often requiring the collection and integration of heterogeneous data sources
that capture both human and technological dimensions [3].

Driving constitutes a routine activity for much of the global population, with average daily driving
times exceeding one hour per individual [4]. Nonetheless, it remains a high-risk activity, frequently
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associated with severe injuries, fatalities, and considerable economic costs – many of which can be
attributed to adverse emotional states experienced during driving tasks [5].

A wide range of psychological constructs has been identified as influential in shaping driver be-
havior [6]. These include cognitive abilities (e.g., attention, perception, decision-making), affective
dimensions (e.g., stress, anger, anxiety), personality traits, and individual psychological characteristics
(e.g., impulsivity, risk perception, emotion regulation, and self-efficacy) [7].

Cognitive abilities directly impact on risk perception. As a result, some drivers exhibit heightened
risk sensitivity, prompting more defensive behaviors, while others may underestimate potential hazards
and engage in more reckless or aggressive maneuvers [8]. Emotional and psychological stressors have
also been shown to modulate driving performance. Drivers experiencing heightened stress or negative
emotional states are statistically more prone to exhibit aggressive behaviors, such as excessive speeding,
tailgating, or confrontational interactions with other road users [9]. Attitudinal factors, including those
related to road safety, risk-taking, and perceptions of other drivers, play a relevant role [10]. Positive
safety attitudes are generally associated with decreased engagement in risky behaviors, while higher
levels of self-efficacy — defined as an individual’s belief in their capacity to execute a specific task –
correlate with safer driving practices and greater compliance with traffic regulations [11]. Moreover,
certain personality dimensions – such as sensation-seeking and conscientiousness – are associated
with divergent driving profiles. However, psychological variables are modulated by contextual factors,
including environmental conditions and socio-cultural norms [12].

From a methodological perspective, the study of driving behavior – particularly with respect to
aggressiveness – necessitates comprehensive data on a range of interrelated parameters, encompassing
driver motivation, environmental features, vehicle dynamics, sensory technologies, and external stimuli.
To this end, data acquisition methods typically include psychometric questionnaires, sensor-based
monitoring, and driving simulation platforms [13, 14, 15].

The scenario outlined above highlights the intrinsic complexity and critical relevance of driving
behaviors. On one hand, these behaviors are influenced by a multitude of psychological, cognitive,
and contextual factors; on the other hand, a deeper understanding of such behaviors is crucial for the
development of realistic traffic simulation models.

To this end, a consolidated body of literature has explored traffic dynamics through the use of agent-
based simulation frameworks, which can operate at varying levels of granularity – namely, microscopic,
mesoscopic, and macroscopic [16]. While higher-resolution models offer greater behavioral fidelity, they
also demand significant computational resources. However, advancements in computing technologies
have progressively mitigated this limitation, making detailed modeling increasingly feasible [17].

The final core objective of this research is to acquire empirically grounded knowledge on driving
behaviors to encode this information into cognitive software agents. These enriched agents can be then
used to perform realistic agent-based traffic simulations, capturing not only the physical dynamics but
also the psychological dimensions of driver behavior.

In what follows, we present and discuss some preliminary empirical findings aimed to verify the
correctness of the proposed experimental approach. These results have been obtained by validating a
combined methodology involving psychometric surveys and driving scenarios on a high-fidelity driving
simulation platform. The platform is enhanced with wearable biometric sensors – such as electrodermal
activity (EDA), heart rate, and skin temperature monitors – to capture drivers’ psycho-physiological
states during various simulated scenarios.

The remainder of the paper is structured as follows: Section 2 reviews relevant literature on aggressive
driving and agent-based traffic simulations. Section 3 introduces the psychological instruments and
simulation tools employed. Sections 4 presents the collected data and discuss the experimental findings,
while Sections 5 discusses finding and limitation of this research. Finally, Section 6 concludes the study
and outlines potential directions for future research.



2. Related Work

This section provides a concise review of the relevant literature concerning the psychological foundations
of driving behavior and the tools used for its detection and analysis. Specifically, it synthesizes empirical
findings and theoretical contributions that explore both the psychological determinants of driver
behavior and the technological tools employed to monitor, simulate and evaluate such behaviors in
experimental and applied contexts.

2.1. Psychological Foundations

Driving behavior constitutes a multidimensional construct, and any attempt to develop descriptive
or predictive models, implement safety – enhancing technologies, or modifying behavior policies
must be grounded in a comprehensive understanding of its underlying determinants – including the
psychological and social variables that shape driver attitudes and actions.

Cognitive functions – such as reasoning, judgment, problem-solving, working memory, multitasking,
and risk perception – play a fundamental role in driving behavior, enabling individuals to gather,
process, and act upon dynamic information from the driving environment [18]. Cognition directly
influences risk perception. Drivers with more accurate risk assessment abilities tend to make safer
and more deliberate choices [19, 20]. Conversely, individuals with compromised cognitive functions –
due to fatigue, sleep deprivation, distractions, or substance use – can increase the likelihood of driving
errors and hazardous behaviors [21] for a diminished risk perception, which may lead to underestimate
certain behaviors – such as speeding or aggressive maneuvers – and are thus more prone to violations
and high-risk driving [22].

Emotional states such as sadness, anger, and anxiety significantly impair driving performance by
diverting cognitive resources away from the primary task of driving. These emotions can reduce
attention to the road, slow reaction times, and increase the likelihood of engaging in high-risk behaviors,
such as speeding or aggressive maneuvers [23]. Anxiety, in particular, has a nuanced impact on
driving and in, more severe cases, anxiety may manifest as aggressive or impulsive responses to traffic
stressors [24]. Emotion regulation is the capacity to modulate and manage own emotional responses.
A poor emotion regulation is associated with increased impulsivity and a higher propensity for road
rage, aggressive interactions, and risky driving decisions [25]. Emotional intelligence (EI) is the ability
to perceive, understand, and manage one’s own emotions, as well as to interpret and respond to the
emotions of others [26]. Drivers with high EI are more capable of maintaining calm, making reasoned
decisions, and sustaining attention under pressure [27]; it is correlated with safer and more composed
driving behavior.

Personality traits play a fundamental role in shaping driving behavior, often interacting with other
variables such as age, experience, individual cognitive profiles, and situational context. For instance,
high levels of extroversion have been linked to a greater likelihood of engaging in risky driving
behaviors [28]. In contrast, conscientious individuals exhibit more rule-compliant and safety-oriented
driving styles [29]. Neuroticism has been associated with erratic and impulsive driving, often under
stress or in high-demand conditions [30, 31]; conversely, agreeableness is positively related greater
patience, cooperativeness, and lower levels of aggressiveness [30]. Impulsivity has consistently been
identified as a significant predictor of risky behaviors [32] and, similarly, sensation-seeking is correlated
with greater risk-taking while driving [29, 33]. Finally, individuals with a pronounced risk propensity
tend to seek excitement and stimulation, making them more likely to engage in hazardous driving
behaviors [34]. These findings underscore the critical role of personality traits in traffic safety research
and highlight the importance of incorporating psychological profiling into simulations.

Attitudes and beliefs toward traffic laws and safety regulations influence driving behavior. Positive
attitudes are generally associated with greater compliance, such as adherence to speed limits and traffic
signals, whereas negative or dismissive beliefs may result in risky actions, including red-light violations
or aggressive maneuvers [35]. Personal commitment to road safety also plays a critical role and drivers
who hold favorable attitudes toward safe driving practices are more likely to adopt defensive behaviors



and exhibit courteous conduct toward other road users. In contrast, individuals with indifferent or
negative attitudes toward road safety often engage in behaviors that increase crash risk. Moreover,
beliefs about multitasking capabilities are closely associated with distracted driving tendencies [19]
leading to severe compromises in attention and situational awareness behind the wheel. Importantly,
these attitudes and beliefs are not formed in isolation; they are often shaped by broader social and
cultural influences.

2.2. Driving Behaviors Data Collection

The collection of information about driving behaviors is a process involving several disciplines and the
methodologies chosen for their analysis, depending on the required level of accuracy. However, more
approaches can be also combined in synergistic way to provide a more comprehensive data collection.

The Driving Behavior Questionnaire (DBQ) is widely utilized in research due to its simplicity and
effectiveness in capturing both statistical and motivational data related to driving behavior. Despite
its advantages, the DBQ lacks a direct connection to external variables such as traffic flow conditions,
which may also influence driving behavior [36]. The first DBQ [37], referred to as the Manchester
Driving Behavior Questionnaire (MDBQ), was a set of 50 questions designed to explore the motivational
underpinnings of various driving behaviors –specifically violations, errors, and lapses. Over time, a
large number of BDQ have been proposed, although the most part of them substantially is a variant of
the original MDBQ.

To acquire empirical data on driving behavior, a range of sensors is employed, typically classified
based on their positioning and function into four categories [38, 39, 40], namely:

On-board sensors, typically integrated into vehicles during manufacturing [38], have seen a rapid
increase in variety and capability [15]. Their primary function is to monitor vehicle dynamics but
recently also track driver states such as sleepiness, alertness, distraction, alcohol levels [41, 42]. High-
end professional sensor systems offer superior data accuracy, though lower-cost alternatives – such
as smartphone-based platforms – have demonstrated acceptable accuracy in numerous experimental
contexts [15, 43].

On-road sensors can be classified as either intrusive or non-intrusive, depending on whether their
deployment disrupts normal traffic conditions [44], and as active or passive, based on whether they
emit signals (e.g., laser, radar, and wave) or rely on ambient input (e.g., video cameras –generally, more
cost-effective and returning high-quality data [45]).

Motion-based sensors infer driver behavior by analyzing the vehicle’s motion, modeled as a rigid body
responding to driver inputs. These behaviors are detected via either on-board or on-road platforms.
However, measurements taken at low speeds (below 10 km/h) are typically excluded due to noise
susceptibility and limited relevance [15].

Driver status monitoring systems use physiological and biometric sensors to detect conditions such
as distraction [46, 47], fatigue [48], and aggressiveness. The latter requires contextual data involving
environmental conditions, vehicle dynamics, and driver-specific characteristics for accurate assess-
ment [49].

2.3. Agent-based Traffic Simulator Platforms

The development of driving simulators dates back to the 1960s [50], but in these last decades technologi-
cal advancement made them able to emulate real-world in a sophisticated and accurate manner. Driving
simulators provide a valuable platform for investigating complex driving behaviors within a controlled,
safe, and repeatable environment [51]. Agent-based simulators with programmable behavioral models
offer a flexible and powerful approach for analyzing road traffic and driver behavior. They enable
each vehicle to be modeled as an autonomous agent with individual characteristics, decision-making
capabilities, and specific responses to environmental stimuli. This approach allows realistic simulations
– often on large-scale – including a variety of detailed driver profiles to test different scenarios, while
significantly reduces costs and risks.



Table 1
Comparison of driving and traffic simulators with behavior customization modes

Simulator Type Open Behavioral Customization
Source Customization Modes

City Car Driving Driving Modding
CARLA Driving API, scripting, behavior trees
CITIFLOW Traffic Neural nets, hybrid control models
FLOW Traffic Python rules built on top of SUMO
MATSim Traffic Java, score functions, logic rules
SUMO Traffic API, logic rules, behavior setting
AIMSUN Traffic API, scripting, external modules
VISSIM Traffic API, scripting

Several driving traffic simulators are available to reproduce realistic situations that can be largely
customized by needs on urban and traffic scenarios, environmental variables, rules, drivers’ behaviors,
and unexpected events. In Table 2.3, there are some performing driving traffic simulator (e.g., City
Car Driving [52], CARLA [53], CityFlow [54], Flow [55], MATSim [56], SUMO [57], AIMSUM [58], and
VISSIM [59]) that in our opinion came as the most closed to our needs. In the last column customization
modalities of embedded agents are reported.

In particular, to verify the experimental approach, the City Car Driving [52] (CCD) simulator has
been exploited here, given that a fine customization of drivers’ behaviors is not required in this phase
– agent customization are admitted in CCD only via modding, being it mainly designed for driver
training purposes. After to have validated here our experimental approach, then a highly configurable,
open-source driving simulators should be adopted to inject psychological traits in agents. Currently,
we are paying attention to the CARLA, MATSim and SUMO simulators – largely used in academic and
industrial research for experimental studies in psychology, cognitive sciences, and traffic engineering –
for simulating highly realistic, large, dynamic, and customizable scenarios involving high cognitive
loads giving the opportunity of encoding in advanced agents profiles real data, psychometric traits, and
biometric signals.

3. Methods

This research aims to deepen the understanding of driving behaviors with the objective of integrating
these insights into cognitive agent models to improve the behavioral realism of traffic simulations and,
in particular, this study is devoted to validate the experimental approach. A mixed-method approach will
be employed in the experimental approach, to combine self-report measures with objective performance
data obtained from driving simulators. This methodology enables the exploration of the complex
interplay between psychological factors and driving behavior within urban environments. In detail, the
following research objectives will addressed:

• Examine the relationships between self-reported driving styles, personality traits, difficulties in
emotion regulation, empathy, and mindfulness within a sample of drivers.

• Investigate the associations between psychological variables and objective driving performance
metrics under conditions of escalating cognitive demand in a simulated driving environment.

• Assess the correspondence between reported driving styles and psycho-physiological responses,
as measured by biometric sensors, during simulated driving tasks involving increasingly complex
urban scenarios.

By addressing these objectives, the research aims to advance the understanding of the psychological
foundations of driving behavior, with the ultimate goal of informing the development of cognitively
enriched traffic simulations that reflect individual differences among drivers.



3.1. Driving Behavior Questionnaire

A comprehensive battery of standardized self-report instruments was administered online via Qualtrics
to a preliminary sample of 59 young adults (38 females, 21 males), recruited through online advertise-
ments. All participants had a valid driver’s license (i.e., were over 18 years old), reported regular driving
experience, were fluent in Italian, and were not undergoing treatment for psychiatric or neurological
conditions at the time of participation. Informed consent was obtained from all participants prior to
enrollment, and no financial compensation was provided. The study protocol received approval from
the institutional ethical board. The administered Driving Behavior Questionnaire (DBQ) comprised 165
items covering the following domains:

• Demographics and Driving History.
• Driving Styles — assessed using the Italian validated version of the Multidimensional Driving Style

Inventory [60, 61], with responses rated on a 6-point Likert scale.
• Personality Traits — measured by the Ten-Item Personality Inventory [62], using a 7-point Likert

scale to evaluate the Big Five personality dimensions.
• Emotion Regulation Difficulties — evaluated via the Italian version of the Difficulties in Emotion

Regulation Scale [63], using a 5-point Likert scale.
• Empathy — measured using the Brief Interpersonal Reactivity Index [64], structured into four

subscales and rated on a 5-point Likert scale.
• Mindfulness — assessed through the short form of the Philadelphia Mindfulness Scale [65], evalu-

ating awareness and acceptance on a 5-point Likert scale.

3.2. Experimental Driving Simulation Platform

This section presents the integrated hardware and software infrastructure exploited to support the
study of Human-Agent Interaction (HAI) in driving scenarios [66]. The platform enables real-time
monitoring, data acquisition, and adaptive agent behavior in a controlled yet immersive environment.

3.2.1. Hardware Setup

The simulation station is built to replicate realistic driving conditions and enable naturalistic human-
agent interaction (see Figure 3.2.1). It features a high-performance PC with a triple monitor configuration
and a Logitech G29 steering wheel with pedals for immersive vehicle control. A tablet positioned beside
the wheel simulates in-vehicle infotainment systems, while a real car seat mounted on a customized
base enhances comfort during prolonged sessions. Frontal and side views of the participant are recorded
using two HD webcams, allowing analysis of gaze direction, facial expressions, and overall behavior.

(a)

(b)

Figure 1: Simulation equipment: (a) Driving simulation station; (b) Biometric sensors.

Additionally, a custom wearable device based on the Arduino MKR1000 (see Figure 3.2.1) captures
key physiological signals, including the Galvanic Skin Response (GSR) measured with nickel electrodes



and converted to conductance using a calibrated resistance model and heart rate acquired via a Groove
optical sensor using an I2C interface [67].

3.2.2. Software Architecture and Simulation Protocol

The experimental platform is based on a modular, agent-oriented software architecture specifically
designed to support real-time data integration, adaptive simulation, and multi-modal analysis. The
system orchestrates multiple components-sensors, simulation environment, logging tools, and reasoning
modules – through a loosely coupled scalable and extensible structure.

• Driving Simulation Software - The core of the simulation environment is powered by City Car
Driving – Home Edition [52] (v1.5.9, 2019), a configurable virtual platform capable of replicating
realistic Italian urban traffic conditions. This module allows for the dynamic customization of key
environmental variables, including vehicle types, weather conditions, traffic density, and road
events. Vehicles are implemented as agents responding to both driver and environmental stimuli
in a deterministic way.

• Protocol Controller - A dedicated agent manages the experimental driving protocol, configuring
the simulation across four progressive sessions with increasing cognitive load and environmental
complexity. Parameters such as traffic flow, pedestrian activity, and surrounding driver behaviors
are systematically modulated.

• Data Logging Agent - Driving behavior and system events data are captured locally via an
integrated SQLite backend, enabling downstream process mining and temporal behavior modeling.

• Communication Broker - Inter-agent communication is handled asynchronously via an MQTT
broker (Eclipse Mosquitto) – including physiological sensors and external monitoring devices-
systems – ensuring real-time data exchange.

• Time-Series Database - Biometric and contextual data streams (e.g., heart rate, GSR, traffic condi-
tions) are stored in InfluxDB, a time-series database optimized for high-throughput storage and
retrieval.

• Multi-modal Recording Agent - User interaction and system behavior are captured using OBS
Studio, with recordings automatically managed via through the obs-websocket plugin to ensure
synchronization with simulation phases.

The simulation protocol consisted of four sequential driving sessions, each one progressively designed
to induce higher levels of stress and cognitive demand. Their optimal setup required the execution of
some preliminary tests to the aim. Therefore, as a result of this setting activity:

• Session 1 - Traffic density = 10%, driver behavior = cautious, pedestrian presence = 20%;
• Session 2 - Traffic density = 20%, driver behavior = cautious, pedestrian presence = 20%;
• Session 3 - Traffic density = 30%, driver behavior = aggressive, pedestrian presence = 40%;
• Session 4 - Traffic density = 30%, driver behavior = aggressive, pedestrian presence = 60%.

To simulate emotionally salient and unpredictable driving conditions, each session introduced progres-
sively complex challenges, such as abrupt braking by lead vehicles, sudden lane changes, unauthorized
pedestrian crossings, and collisions. These controlled manipulations were designed to systematically
elicit cognitive and emotional responses while maintaining ecological validity.

4. Experiments

In this section, we present the preliminary statistically-based results of our experimental study carried
out to validate a combined methodology exploring the relationships between psychological variables,
self-reported driving styles, and physiological responses during simulated driving tasks. The analysis
is structured into three main parts: first, we examine correlations between psychological measures
and driving styles. Next, we analyze physiological activation through GSR data under varying driving



conditions. Finally, we interpret these findings in the context of emotional regulation, personality traits,
and task difficulty. Data analyses were conducted on a total sample of 59 participants who completed
the questionnaire designed to examine associations between driving styles (MDSI), personality traits
(I-TIPI-R), empathy (B-IRI), mindfulness (PHLMS), and emotion regulation (IT-DERS18). Out of the
59 participants, 30 constituted a subsample of volunteers who took part in the second phase of the
experiment, which involved a driving simulation and the recording of physiological data during the
practical task. Descriptive features of these samples are reported in Table 2 and Table 3.

Table 2
Demographic Characteristics of the Questionnaire Sample (𝑁 = 59)

Variable Category n %

Gender Male 40 67.8
Female 19 32.2

Age Group 18-25 years 29 49.2
26-35 years 28 47.5
36-45 years 2 3.3

Education level Bachelor’s degree or higher 42 71.2
Upper secondary education 17 28.8

Occupational Status Full-time student 20 33.9
Full-time worker 22 37.3
Student and worker 16 27.1
Other 1 1.7

Professional Drivers yes 5 8.6
No 54 91.4

Years Since Driving License (B) Mean (SD) 6.7(4.27)

Table 3
Demographic Characteristics of the Driving Simulator Sample (𝑁 = 30)

Variable Category n %

Gender Male 19 63.3
Female 11 36.7

Age Group 18-25 years 14 46.7
26-35 years 15 50.0
36-45 years 1 3.3

Education level Bachelor’s degree or higher 17 56.7
Upper secondary education 8 26.7
Postgraduate specialization 5 16.6

Occupational Status Full-time student 9 30.0
Full-time worker 12 40.0
Student-worker (work predominant) 4 13.3
Student-worker (study predominant) 5 16.7

For this subsample, analyses were carried out to explore the associations between drivers’ phys-
iological indices during the simulation and the psychological constructs assessed via questionnaire.
Additionally, to investigate whether certain psychosocial variables could predict skin conductance
responses, regression analyses were conducted using GSR measurements during the driving sessions as
the dependent variable, and the psychosocial constructs of empathy, emotion regulation, and mind-
fulness as independent variables. The selection of predictors was based on the results of bivariate
analyses and theoretical considerations. Descriptive analysis revealed that the most frequently endorsed
driving styles among participants were anxious, risky, and dissociative, consistent with findings from
prior research in young adult populations. Regarding personality traits, participants scored highest on
agreeableness and openness, and lowest on emotional stability (Table 4).



Table 4
Descriptive statistics of the driving styles and the psychological variables.

Driving styles (MDSI) Mean Standard Dev Minimum Maximum

Dissociative 1.9 0.55 1.0 3.6
Anxious 3.2 0.52 2.2 4.3
Risky 1.8 0.83 1.0 4.5
Angry 2.2 0.88 1.0 5.0
High velocity 2.6 0.67 1.3 4.2
Distress reduction 2.6 0.82 1.0 4.0
Patient 4.3 0.66 2.0 5.5
Careful 3.5 0.51 2.7 5.0

Personality trait (I-TIPI-R) Mean Standard Dev Minimum Maximum

Extraversion 4.3 0.69 2.0 7.0
Agreeableness 4.3 0.88 2.5 6.0
Conscientiousness 4.5 0.82 3.0 7.0
Neuroticism 4.3 0.80 3.0 6.5
Opennesstoexperience 4.9 0.67 3.5 6.0

Empathy (B-IRI) Mean Standard Dev Minimum Maximum

EmpathicConcern 4.0 0.57 2.8 5.0
PersonalDistress 2.5 0.72 1.0 4.5
PerspectiveTaking 3.9 0.77 1.5 5.0
FantasyScale 3.3 0.92 1.0 5.0

Mindfulness (PHLMS) Mean Standard Dev Minimum Maximum

Awareness 18.7 2.98 11.0 25.0
Acceptance 14.7 3.44 7.0 21.0

Emotion dysregulation (IT-DERS18) Mean Standard Dev Minimum Maximum

Awareness 11.5 2.28 5.0 15.0
Clarity 6.0 2.63 3.0 12.0
GoalOriented 9.1 3.56 3.0 15.0
Impulse 5.2 2.89 3.0 15.0
NonAcceptance 6.2 3.01 3.0 14.0
Strategies 6.7 2.88 3.0 15.0
Total 44.7 10.5 27.0 77.0

4.1. Correlations between Driving Styles and Psychological Variables

Analyses were conducted to examine the relationships between the previously described constructs
and various driving styles, namely: “dissociative”, “anxious”, “risky”, “angry”, “high-speed”, “stress-
reducing”, “patient”, and “attentive”. Preliminary assessments indicated that the variables did not meet
the assumption of normal distribution. Consequently, a non-parametric data analysis approach was
adopted. This framework utilized non-parametric correlation coefficients to quantify the strength and
direction of associations between variables, offering a robust alternative when parametric assumptions
are violated.

Specifically, Kendall’s tau (𝜏 ) correlation coefficient was computed for each pair of variables; it is a
non-parametric measure of association that evaluates the strength and direction of the relationship
between two variables by comparing the number of concordant and discordant pairs across all possible
observation pairs. Unlike Pearson’s correlation coefficient, which assumes normally distributed data
and assesses linear relationships, Kendall’s tau does not require the normality assumption and is robust
to outliers. This makes it particularly suitable for analyzing ordinal data or datasets that deviate from
normality, ensuring a more reliable assessment of associations under these conditions. Kendall’s tau
correlations showed that (Table 5):

• Risky, Angry, and High velocity driving style was significantly negatively correlated with the
perspective-taking subscale of empathy (𝜏 = -0.273/-0.212/-0.208, p < .05);

• Dissociative, Anxious, and Angry was positively correlated with DERS total score (𝜏 = 0.214/-
0.287/-0.200, p < .05), while Risky style was correlated with the impulse subscale of IT-DERS18
(𝜏 = 0.253, p < .05), indicating greater emotional dysregulation;



• Anxious driving style was significantly positively correlated with the agreeableness subscale of
personality traits (𝜏 = 0.269, p < .05).

4.1.1. MANCOVA and Follow-up ANCOVA Analysis on GSR Physiological Indices

A repeated Multivariate Analysis of Covariance (MANCOVA) [68] measures was conducted to investigate
the effect of incrementally challenging driving conditions on physiological responses measured through
Galvanic Skin Response (GSR). The four dependent variables were GSR-derived indices: number of
peaks, peak amplitude, EDA_Tonic_SD, and EDA_Sympathetic. The number of peaks refers to the
count of rapid changes in skin conductance, also known as phasic events, within a specific time interval.
This metric indicates the frequency of immediate physiological responses to stimuli, reflecting the
individual’s level of arousal or reactivity. Conversely, the amplitude of these peaks quantifies the
intensity of each phasic response; higher amplitudes denote greater physiological activation in response
to a given stimulus. Utilizing these two parameters, two indices were computed: the average number of
peaks and the average peak amplitude for each driving session. These indices comprehensively assess
the frequency and intensity of the participants’ autonomic responses during the driving tasks (Table 6).

The within-subjects factor consisted of the three driving sessions (Sessions 1, 2, and 3), each one
characterized by increasing difficulty levels (see Section 3). The six driving styles measured by the
Multidimensional Driving Style Inventory (MDSI) were included as covariates to account for individual
differences that could affect physiological activation. The analysis revealed a significant multivariate
effect of the driving session on the combined physiological variables: F(8, 14) = 3.705, p = .016, Wilks’ Λ
= .321, partial 𝜂2 = .679. This indicates that the increasing difficulty of the driving task significantly
influenced physiological responses, even after controlling for individual driving styles. Moreover,
significant interactions were found between the driving session and specific driving styles, particularly:

• Dissociative driving style: F(8, 14) = 2.99, p = .035, Wilks’ Λ = .369, partial 𝜂2 = .631;

Table 5
Correlation coefficient (Kendall 𝜏 ) among driving styles and psychological variables.

Driving styles (MDSI)
Dissociative Anxious Risky Angry High Distress Patient Careful

velocity reduction

Personality trait (TIPI-R)

Extraversion 0.006 0.109 -0.108 0.140 0.160 -0.127 0.063 0.137
Agreeableness -0.45 0.269** 0.033 0.162 0.114 0.087 -0.123 -0.019
Conscientiousness 0.127 0.094 0.097 0.039 -0.032 -0.0.89 0.144 0.056
Neuroticism 0.093 0.070 0.020 -0.002 0.0.58 -0.131 0.021 0.039
Opennesstoexperience -0.151 0.124 -0.117 0.038 0.080 0.012 0.148 0.048

Empathy (B-IRI)

EmpathicConcern 0.302** 0.129 -0.119 -0.026 -0.072 0.168 -0.003 0.043
PersonalDistress 0.253** 0.213* 0.060 -0.052 0.160 -0.047 0.013 0.020
PerspectiveTaking 0.212* 0.063 -0.273** -0.212* 0.160* 0.141 0.060 -0.031
FantasyScale 0.220* 0.269** -0.105 0.023 0.160 0.118 -0.005 -0.046

Mindfulness (PHLMS)

Awareness -0.088 -0.165 0.017 -0.178 -0.011 0.173 -0.136 0.035
Acceptance -0.094 -0.155 0.036 -0.041 -0.029 -0.027 -0.039 -0.016

Emotion dysregulation (IT-DERS18)

Awareness 0.063 -0.062 0.073 -0.104 -0.007 0.109 -0.174 0.067
Clarity 0.144 0.219 0.065 0.126 -0.068 -0.102 0.139 -0.014
GoalOriented 0.271** 0.290** 0.106 0.184 0.002 0.038 0.166 0.024
Impulse 0.050 0.114 0.253 0.387** 0.180 -0.036 -0.141 -0.167
NonAcceptance 0.021 0.134 0.064 0.043 -0.005 0.081 -0.097 -0.131
Strategies 0.177 0.173 0.018 0.088 -0.048 -0.007 0.025 0.009
Total 0.214 0.287** 0.129 0.200* 0.032 0.011 0.002 -0.058

* 𝑝 < 0.05
** 𝑝 < 0.001



Table 6
Mean and standard deviation of GSR index during the three driving sessions.

Mean Standard Dev N

s1_SCR_Peaks_N 5.63 2.97 30.0
s2_SCR_Peaks_N 4.87 2.86 30.0
s3_SCR_Peaks_N 4.63 2.51 30.0
s1_SCR_Peaks_Amplitude_Mean 0.32 0.33 30.0
s2_SCR_Peaks_Amplitude_Mean 0.45 0.69 30.0
s3_SCR_Peaks_Amplitude_Mean 0.61 0.64 30.0
s1_EDA_Tonic_SD 0.93 0.10 30.0
s2_EDA_Tonic_SD 0.92 0.12 30.0
s3_EDA_Tonic_SD 0.93 0.15 30.0
s1_EDA_Sympathetic 0.05 0.17 30.0
s2_EDA_Sympathetic 0.04 0.21 30.0
s3_EDA_Sympathetic 0.02 0.10 30.0

• Risky driving style: F(8, 14) = 3.937, p = .012, Wilks’ Λ = .308, partial 𝜂2 = .692;
• High-speed driving style: F(8, 14) = 3.183, p = .028, Wilks’ Λ = .355, partial 𝜂2 = .645.

These data show that the GSR peak frequency varied as a function of the interaction between driving
style and task difficulty level. Moreover, these findings, univariate Follow-up Analysis of Covariance
(ANCOVA) [69] were conducted. Considering only the driving session as the independent variable,
a significant effect was found for the number of peaks, F(2, 42) = 5.274, p = .009, partial 𝜂2 = .201,
confirming that task difficulty significantly influenced the frequency of physiological responses. No
significant effects were found for the other GSR indices. Planned contrasts further examined differences
in the number of peaks across driving sessions. These analyses revealed a significantly lower number
of peaks in Session 3 vs. Session 2, and in Session 1 vs. Session 2, suggesting a physiological activation
pattern that peaks during intermediate challenge levels and decreases thereafter, potentially due to
adaptation or response saturation (Table 7).

5. Discussion

The present study is aimed to explore the psychological and physiological correlates of driving behavior
in a sample of young adult drivers using a simulator-based assessment. The findings validated – with
some limitations – the adopted experimental design for providing empirical support for the relevance
of emotional and personality-related constructs in predicting both self-reported driving styles and
real-time physiological arousal, useful for implementing realistic driving behaviors of cognitive agents
in driving simulators.

5.1. Psychological variables and Driving Styles

One of the key findings was the negative correlation between empathy, particularly perspective-taking,
and risky driving behavior (mainly risky, angry, and high-velocity driving styles). This suggests that
individuals with lower capacity to consider others’ viewpoints may be more inclined to be engaged
in reckless or aggressive behavior behind the wheel. This is consistent with previous researches
linking deficits in empathy to reduced prosocial behavior and increased impulsivity in high-stress
contexts. Similarly, emotional dysregulation emerged as a strong predictor of maladaptive driving

Table 7
Test of within-subjects contrast for the driving session variable.

Tests of Within-Subjects Contrasts df F Sig Partial Eta Squared 𝜂2

SCR_PeaksN Session 1 vs. Session 2 1 4.678 0.042 0.182
Session 2 vs. Session 3 1 16.420 0.001 0.439



styles, including risky, angry, and high-speed driving. Participants who reported greater difficulties in
managing their emotional responses tended to display styles characterized by poor judgment, aggression,
or impulsivity. These findings align with emotion regulation theory, which posits that individuals with
low regulation capacity are more reactive in stressful or uncertain environments, such as dense urban
driving conditions.

Regarding the relationships between personality traits and driving styles, the only significant corre-
lation identified was a positive association between anxious driving style and the personality trait of
agreeableness. As one of the Big Five personality dimensions [70], agreeableness encompasses qualities
such as kindness, empathy, and cooperativeness. Individuals high in agreeableness tend to be more
concerned about the well-being of others and are motivated to maintain harmonious interpersonal
relationships.

The positive and significant association between anxious driving and agreeableness may suggest that
these psychological characteristics interact among them to produce a driving profile in which anxiety
is expressed as an increased caution and attentiveness toward other road users. Drivers exhibiting this
combination may be more sensitive to social and relational dynamics, translating their interpersonal
concerns into a style of driving that emphasizes safety, respect, and avoidance of potential conflict
or misunderstanding in traffic environments. However, contrary to previous findings (e.g., [71]), this
study did not find clear evidence linking maladaptive driving styles with maladaptive personality
traits. Several factors, including methodological and experimental design differences, could explain the
discrepancy between these results and prior literature.

It is important to note that researches involving personality traits frequently yields nuanced findings,
and inconsistencies in results across studies are not uncommon. More research is needed to clarify the
nature and strength of the relationships between personality characteristics and maladaptive driving
behaviors, primarily through studies using diversified samples and multimethod assessments.

5.2. Physiological Activation, Driving Styles, and Simulation Difficulty

A repeated-measures MANCOVA was conducted to examine the relationship between skin conductance
indices, driving styles, and driving simulation sessions. The goal was to assess how different simulated
driving sessions, each characterized by increasing difficulty levels, affected GSR-derived physiological
indices while accounting for individual differences in driving style.

The results revealed that, when controlling for individual driving styles, simulated driving sessions
significantly affected the overall physiological response. Significant interactions emerged between
the driving session factor and three specific driving styles: dissociative, risky, and high- speed. These
findings suggest that such styles modulate physiological reactivity differently, depending on the difficulty
of the driving task. However, among the GSR indices only the “number of peaks” index [72] was
significantly affected by the driving session. Pairwise comparisons revealed that the frequency of GSR
peaks was significantly lower in the Session 1 vs. Session 2, and lower in Session 2 vs. Session 3, the
most demanding condition. No significant effects were observed for the other GSR indices. Interestingly,
the decrease in galvanic skin response peaks with increasing task difficulty contradicts the assumption
that more challenging conditions elicit higher stress and greater physiological arousal. A possible
reason is that, despite the increased difficulty, participants may have developed greater confidence
and familiarity with the simulator, thus resulting in habituation. In the initial sessions, participants
may have shown stronger physiological responses due to novelty or uncertainty; however, as task
complexity increased, adaptive mechanisms may have reduced arousal even as the demands grew.

Another hypothesis relates to cognitive focusing: with greater difficulty, participants may have
become more cognitively engaged and focused on the task, dampening automatic emotional responses.
Under such conditions, the brain may allocate more resources to problem-solving and action planning,
which could suppress unnecessary sympathetic activity, as measured by GSR peak frequency. Moreover,
the experimental design was conceptualized at increasing difficult, but it may not have imposed sufficient
stress or cognitive engagement to elicit stronger physiological responses. Thus, a process of progressive
familiarization may have prevailed over a true challenge response, resulting in reduced physiological



activation. This underscores the importance of re-evaluating task difficulty and experimental parameters
in future studies to calibrate the intended stressor effect better.

5.3. Limitations

Despite the promising results, this preliminary study has several limitations. First, the sample was
relatively small and consisted mainly of university students, limiting the generalization to broader popu-
lations. However, from the perspective of validating the experimental approach, the composition of the
sample is essentially irrelevant at this stage of the research. Second, using a driving simulator—although
ecologically valid—does not fully replicate real-world driving conditions, which may influence behavior.
Third, the self-report nature of psychological measures may introduce biases such as social desirability
or inaccurate self-assessment. Future research should include larger, more diverse samples with a longi-
tudinal design to assess changes over time. The integration of additional physiological and behavioral
data, such as heart rate variability or eye tracking, could enrich the understanding of emotional driving
processes. Moreover, it will be needed to test whether enhancing emotional regulation and mindfulness
can causally improve driving behavior and reduce accident risk. Finally, validated the experimental
design, future research should also adopt a different driving simulation software able to support the
required high-degree of customization.

6. Conclusions

This study highlights the need for a comprehensive, interdisciplinary approach to understand human
driving behavior. The multifactorial nature of driving behavior – encompassing cognitive, emotional,
personality-related, and contextual dimensions – demands sophisticated methodologies capable of
capturing its inherent complexity. By combining psychometric data, high-fidelity driving simulation,
and biometric monitoring, models of human behavior, not only facilitate a deeper understanding of
individual differences in driving styles, but also provide the necessary foundation for modeling these
behaviors within cognitive software agents.

Agents, endowed with realistic, detailed psychological profiles, represent a powerful tool for enhanc-
ing the behavioral fidelity and predictive power of agent-based traffic simulations, moving beyond
purely physical models to incorporate psychological realism, better reflecting the variability and unpre-
dictability inherent in real-world traffic systems. This advancement has the potential to significantly
improve the design of smart transportation systems, contribute to the development of more adaptive
Advanced Driver Assistance Systems (ADAS), and support the formulation of evidence-based road
safety policies. Besides, behavioral heterogeneity among agents can, in turn, produce emergent traffic
patterns that more closely mirror actual urban dynamics, providing deeper insights into system-level
outcomes such as congestion, accident probability, and responsiveness to policy interventions.

The integration of psycho-physiological states further augments the behavioral realism of agents,
enabling the simulation of dynamic fluctuations in driver performance under varying cognitive loads
and emotional conditions. This level of modeling will be useful not only for studying current human-
driven traffic systems but also for anticipating interactions between human drivers and autonomous
vehicles in mixed traffic environments.

Our preliminary findings demonstrate the feasibility and value of the proposed approach, and the
design of simulations, establishing a foundation for the systematic translation of psychological constructs
into programmable agent parameters. Future work will focus on consolidating and expanding the
empirical dataset, refining cognitive agent models, validating both the customization capabilities of
the driving simulation software and the simulation outcomes to bridge the gap between psychological
theory and traffic engineering practice.
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